Devoir libre Nº2

à rendre le samedi 11/10/2025.

Partie I : Étude de quelques normes sur $\mathcal{M}_n(\mathbb{K})$.

On définit sur $\mathcal{M}_n(\mathbb{K})$ la norme notée $\|.\|_{\infty}$ telle que pour tout $A = (a_{i,j})_{1 \leq i,j \leq n}, \|A\|_{\infty} = \max_{1 \leq i,j \leq n} |a_{i,j}|.$

- **1.** Montrer que : $\forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, $||AB||_{\infty} \leq n||A||_{\infty}||B||_{\infty}$.
- **2.** Soit N une norme sur $\mathcal{M}_n(\mathbb{K})$.
 - **a.** On pose $(E_{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$.

Soit
$$X = (x_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$$
. Montrer que $N(X) \le \left(\sum_{1 \le i,j \le n} N(E_{i,j})\right) \|X\|_{\infty}$.

- **b.** i. Montrer que N est une fonction continue de $\mathcal{M}_n(\mathbb{K})$ muni de la norme $\|.\|_{\infty}$ vers \mathbb{R} muni de la valeur absolue.
 - ii. On pose $S_{\infty} = \{X \in \mathcal{M}_n(\mathbb{K}), \|X\|_{\infty} = 1\}.$ Montrer qu'il existe $X_0 \in S_{\infty}$ tel que pour tout $X \in S_{\infty}, N(X_0) \leq N(X).$
 - iii. En déduire qu'il existe $\alpha > 0$ tel que pour tout $X \in \mathcal{M}_n(\mathbb{K}), \ \alpha \|X\|_{\infty} \leq N(X)$.
- **c.** En déduire que toutes les normes de $\mathcal{M}_n(\mathbb{K})$ sont équivalentes.
- **3.** Soit N une norme sur $\mathcal{M}_n(\mathbb{K})$ et soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$.
 - **a.** Montrer qu'il existe un réel strictement positif β tel que $N(AB) \leq n\beta ||A||_{\infty} ||B||_{\infty}$.
 - **b.** Montrer qu'il existe deux réels strictement positifs α et β tels que $N(AB) \leq n \frac{\beta}{\alpha^2} N(A) N(B)$.
- **4.** Soit N une norme sur $\mathcal{M}_{n,1}(\mathbb{K})$, pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, on pose

$$||A|| = \sup \left\{ \frac{N(AX)}{N(X)}, \ X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\} \right\}.$$

- **a.** i. Justifier, pour tout $A \in \mathcal{M}_n(\mathbb{K})$, l'existence de ||A||.
 - ii. Montrer que, pour tout $A \in \mathcal{M}_n(\mathbb{K}), \|A\| = \sup \{N(AX), X \in \mathcal{M}_{n,1}(\mathbb{K}), N(X) = 1\}.$
 - iii. Montrer que $\|.\|$ est une norme sur $\mathcal{M}_n(\mathbb{K})$.
- **b.** Montrer que, pour tout $A \in \mathcal{M}_n(\mathbb{K})$ et pour tout $X \in \mathcal{M}_{n,1}(\mathbb{K})$, $N(AX) \leq ||A||N(X)$.
- **c.** En déduire que pour tout $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, $||AB|| \leq ||A|| ||B||$.

Partie II: Suites de matrices.

5. Soit $(A_m)_{m\in\mathbb{N}}$ est une suite d'éléments de $\mathcal{M}_{n,p}(\mathbb{K})$ et soit $A\in\mathcal{M}_{n,p}(\mathbb{K})$, on pose pour tout $m\in\mathbb{N}$

$$A_m = \left(a_{i,j}^{(m)}\right)_{\substack{1 \le i \le n \\ 1 \le j \le p}} \quad \text{et} \quad A = \left(a_{i,j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le p}}.$$

Montrer que la suite $(A_m)_{m\in\mathbb{N}}$ converge vers A si, et seulement si, pour tout $(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket$, la suite $\left(a_{i,j}^{(m)}\right)_{m\in\mathbb{N}}$ converge vers $a_{i,j}$.

En cas de convergence, on écrit $\lim_{m \to +\infty} A_m = \left(\lim_{m \to +\infty} \left(a_{i,j}^{(m)}\right)\right)_{\substack{1 \le i \le n \\ 1 \le i \le n}}$

- **6.** Soit α un réel, on pose pour tout $m \in \mathbb{N}^*$, $A_m = \begin{pmatrix} 1 & -\frac{\alpha}{m} \\ \frac{\alpha}{m} & 1 \end{pmatrix}$.
 - **a.** Montrer que pour tout $m \in \mathbb{N}^*$, il existe $C_m \in \mathbb{R}$ et $\theta_m \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ tels que

$$A_m = C_m \begin{pmatrix} \cos \theta_m & -\sin \theta_m \\ \sin \theta_m & \cos \theta_m \end{pmatrix}$$

b. Déterminer $\lim_{m \to +\infty} A_m^m$.

D'après : CNC 2017 MP (extrait).