Devoir maison Nº1 (correction)

Partie I : Groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$.

L'objectif de cette partie est de montrer que le groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ est cyclique.

1. a. Soit $P \in K[X]$, $P = \sum_{i=0}^{p} a_i X^i$ et $\alpha \in K$ tel que $P(\alpha) = 0$. On a :

$$P(X) = P(X) - P(\alpha) = \sum_{i=0}^{p} a_i X^i - \sum_{i=0}^{p} a_i \alpha^i = \sum_{i=1}^{p} a_i X^i - \sum_{i=1}^{p} a_i \alpha^i = \sum_{i=1}^{p} a_i (X^i - \alpha^i) = (X - \alpha)Q(X).$$

Donc $(X - \alpha)$ divise P.

b. Récurrence sur $p = \deg P \in \mathbb{N}^*$.

Initialisation: Pour p=1, la propriété est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: Supposons le résultat est vraie au rang p-1 et montrons le au rang p.

Si $\alpha \in K$ est une racine de P (le cas contraire est trivial), alors $P = (X - \alpha)Q$ avec $\deg Q = p - 1$. Par hypothèse de récurrence, Q a au plus p - 1 racines dans K donc P a au plus p racines dans K.

Conclusion: P admet au plus $\deg P$ racines dans K.

- 2. a. D'après le théorème d'Euler, $k^{\varphi(p)} \equiv 1$ [p] pour tout k premier avec p. Or $\varphi(p) = p-1$ car p premier, donc le polynôme $X^{p-1}-1$ a au moins p-1 racines dans le corps $\mathbb{Z}/p\mathbb{Z}$ puisque les entiers k pour lesquels $k \wedge p = 1$ sont $1, \ldots, p-1$. Et d'après la question précédente, $X^{p-1}-1$ a au plus p-1 racines dans le corps $\mathbb{Z}/p\mathbb{Z}$. D'où $X^{p-1}-1$ admet exactement p-1 racines dans le corps $\mathbb{Z}/p\mathbb{Z}$.
 - **b.** d divise p-1 donc p-1=md avec $m \in \mathbb{N}^*$. On a $X^{p-1}-1=(X^d)^m-1=(X^d-1)R(X)$ avec R un polynôme à coefficients dans $\mathbb{Z}/p\mathbb{Z}$ et deg R=md-d=p-1-d.

On a $X^{p-1}-1$ admet exactement p-1 racines dans $\mathbb{Z}/p\mathbb{Z}$. Le polynôme R admet au plus p-1-d racines dans $\mathbb{Z}/p\mathbb{Z}$ et X^d-1 a au plus d racines dans $\mathbb{Z}/p\mathbb{Z}$.

Puisque les racines de $(X^d-1)R(X)$ sont les racines de (X^d-1) ou les racines de R(X), alors nécessairement R admet exactement p-1-d racines et par suite, X^d-1 admet exactement d racines dans $\mathbb{Z}/p\mathbb{Z}$.

3. a. Soit $k \in \mathbb{Z}$. On a

$$(ab)^k = e \implies a^k b^k = e \implies (a^k b^k)^r = e \implies a^{kr} b^{kr} = e \implies b^{kr} = e \implies s \text{ divise } kr \stackrel{\text{Gauss}}{\Longrightarrow} s \text{ divise } k.$$

De même, on obtient r divise k et par suite, $r \vee s$ divise k. De plus, $(ab)^{r \vee s} = e$ d'où ab est d'ordre $r \vee s = rs$.

b. Soit $k \geq 3$ un entier fixé. Soit r_i , $1 \leq i \leq k$ l'ordre de a_i avec $r_i \wedge r_j = 1$ pour $i \neq j$. Notons $c = \prod_{i=1}^{k} a_i$ et $r = r_1 \vee \ldots \vee r_k$. On veut montrer le résultat suivant : l'ordre de c est égal à r. On a :

$$c^r = a_1^r \dots a_k^r$$
 car $a_i a_j = a_j a_i$ pour tout $i \neq j$
= $e \dots e = e$ car chaque r_i divise r pour $1 \leq i \leq k$

donc c est d'ordre fini et divise r.

Soit $m \in \mathbb{Z}$ tel que $c^m = e$. Posons, pour $1 \le i \le k$, $r'_i = r_1 \lor \ldots \lor r_{i-1} \lor r_{i+1} \lor \ldots \lor r_k$. On a

$$c^m = e \implies a_1^m \dots a_k^m = e \implies \left(a_1^m \dots a_k^m\right)^{r_i'} = e \implies a_1^{mr_i'} \dots a_k^{mr_i'} = e \implies a_i^{mr_i'} = e$$

donc r_i divise mr_i' . Or les r_i sont premiers entre eux deux à deux donc $r_i' = \prod_{\substack{j=1\\j\neq i}}^k r_j$. Par le lemme de Gauss,

puisque $r_i \wedge r_i' = 1$, on a r_i divise m pour tout $1 \leq i \leq k$ et par suite, r divise m. D'où c est d'ordre r.

- **4. a.** On a $p_j^{\alpha_j}$ divise p-1 donc d'après la question 2, le polynôme $X^{p_j^{\alpha_j}}-1$ admet exactement $p_j^{\alpha_j}$ racines dans $\mathbb{Z}/p\mathbb{Z}$ et le polynôme $X^{p_j^{\alpha_j-1}}-1$ admet exactement $p_j^{\alpha_j-1}$ racines dans $\mathbb{Z}/p\mathbb{Z}$.

 Donc il y a $p_j^{\alpha_j}-p_j^{\alpha_j-1}=p_j^{\alpha_j-1}(p_j-1)$ racines éléments $a\in\mathbb{Z}/p\mathbb{Z}$ tels que $a^{p_j^{\alpha_j}}=1$ et $a^{p_j^{\alpha_j-1}}\neq 1$.

 Puisque $p_j-1\geq 1$, il existe $x_j\in\mathbb{Z}/p\mathbb{Z}$ tel que $x_j^{p_j^{\alpha_j}}=1$ et $x_j^{p_j^{\alpha_j-1}}\neq 1$.
 - **b.** L'ordre de x_j divise $p_j^{\alpha_j}$ donc x_j est de la forme $p_j^{\beta_j}$ avec $\beta_j \leq \alpha_j$. Si $\beta_j \leq \alpha_j - 1$ alors $\alpha_j - 1 = \beta_j + \delta_j$ où $\delta_j \in \mathbb{N}$ donc

$$x_{j}^{p_{j}^{\alpha_{j}-1}} = x_{j}^{p_{j}^{\beta_{j}+\delta_{j}}} = x_{j}^{p_{j}^{\beta_{j}}p_{j}^{\delta_{j}}} = \left(x_{j}^{p_{j}^{\beta_{j}}}\right)^{p_{j}^{\delta_{j}}} = 1$$

ce qui contredit $x_j^{p_j^{\alpha_j-1}} \neq 1$ et par suite, $\beta_j \geq \alpha_j$. D'où $\beta_j = \alpha_j$ et x_j est d'ordre $p_j^{\alpha_j}$.

- **c.** Chaque x_j est d'ordre $p_j^{\alpha_j}$ et les $p_j^{\alpha_j}$, $1 \le j \le m$ sont premiers entre eux deux à deux, donc d'après la question 3, x est d'ordre $\prod_{j=1}^m p_j^{\alpha_j}$ c-à-d x est d'ordre p-1.
- **5.** $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ est un groupe d'ordre p-1 et il existe $x \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ d'ordre p-1 d'où le groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ est cyclique engendré par x.

Partie II : Carrés modulo n.

6. a. On a :

$$\overline{a} \in \mathbb{U}(\mathbb{Z}/n\mathbb{Z}) \iff \exists u \in \mathbb{Z}, \ \overline{au} = \overline{1}$$

$$\iff \exists (u,v) \in \mathbb{Z}^2, \ au + nv = 1$$

$$\stackrel{\text{Bézout}}{\iff} a \wedge n = 1.$$

- **b.** Si $\overline{-1} = \overline{1}$ alors $\overline{2} = \overline{0}$ donc p divise 2 ce qui est absurde car p est premier impair. Par suite $\overline{-1} \neq \overline{1}$.
- 7. a. Soit $\alpha, \beta \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$. On a $\sigma(\alpha\beta) = (\alpha\beta)^2 = \alpha^2\beta^2 = \sigma(\alpha)\sigma(\beta)$ car $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ est abélien, donc σ est un morphisme de groupes.
 - **b.** $\alpha \in \ker(\sigma) \iff \sigma(\alpha) = \overline{1} \iff \alpha^2 = \overline{1} \iff \alpha = \overline{1} \text{ ou } \alpha = \overline{-1} \text{ car } \mathbb{Z}/p\mathbb{Z} \text{ est un corps.}$ D'où $\ker \sigma = \{\overline{-1}, \overline{1}\}.$
 - **c.** L'application $\sigma: \mathbb{U}(\mathbb{Z}/p\mathbb{Z}) \longrightarrow \operatorname{Im} \sigma$ est surjective. Soit $y \in \operatorname{Im} \sigma$, il existe $x \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ tel que $\alpha \longmapsto \alpha^2$ $\sigma(x) = y$. On a :

$$x' \in \sigma^{-1}\big(\big\{y\big\}\big) \iff \sigma(x') = \sigma(x) \iff \sigma(x'x^{-1}) = \overline{1} \iff x'x^{-1} \in \ker \sigma \iff x' \in (\ker \sigma).x.$$

c-à-d $\sigma^{-1}(\{y\}) = (\ker \sigma).x$ donc $\operatorname{Card} \sigma^{-1}(\{y\}) = \operatorname{Card} (\ker \sigma).x$. Or l'application $h \longmapsto h.x$ est une bijection de $\ker \sigma$ sur $(\ker \sigma).x$ donc $\operatorname{Card} \sigma^{-1}(\{y\}) = \operatorname{Card} \ker \sigma$. Le lemme des bergers permet alors de conclure que : $\operatorname{Card} \mathbb{U}(\mathbb{Z}/p\mathbb{Z}) = \operatorname{Card} \ker \sigma \times \operatorname{Card} \operatorname{Im} \sigma$ d'où $\operatorname{Card} \operatorname{Im} \sigma = \frac{p-1}{2} = p'$.

- **d.** i. Card $T = \operatorname{Card} \mathbb{U}(\mathbb{Z}/p\mathbb{Z}) \operatorname{Card} \operatorname{Im} \sigma = p 1 p' = p'$.
 - ii. Soit $\theta \in T$ fixé. Soit $s \in \text{Im } \sigma$ tel que $s' = \theta s \in \text{Im } \sigma$, alors $\theta = s' s^{-1} \in \text{Im } \sigma$ ce qui est absurde car $\theta \notin \text{Im } \sigma$ et par suite, $\theta s \in T$. Ainsi, $\{\theta s, s \in \text{Im } \sigma\} \subset T$.

De plus, $\operatorname{Card} T = p' = \operatorname{Card} \operatorname{Im} \sigma$. Or l'application $s \longmapsto \theta s$ est une bijection de $\operatorname{Im} \sigma$ sur $\{\theta s, s \in \operatorname{Im} \sigma\}$, donc $\operatorname{Card} \operatorname{Im} \sigma = \operatorname{Card} \{\theta s, s \in \operatorname{Im} \sigma\}$ c-à-d $\operatorname{Card} T = \operatorname{Card} \{\theta s, s \in \operatorname{Im} \sigma\}$. D'où l'égalité $T = \{\theta s, s \in \operatorname{Im} \sigma\}$.

- **e.** Il est clair que l'application $\chi_p : \mathbb{U}(\mathbb{Z}/p\mathbb{Z}) \longrightarrow \{-1,1\}$ est surjective. Soit α, β dans $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$. On va distinguer quatre cas :
 - Si $\alpha, \beta \in \text{Im } \sigma \text{ alors } \alpha\beta \in \text{Im } \sigma \text{ donc } \chi_p(\alpha\beta) = 1 = \chi_p(\alpha)\chi_p(\beta) = 1 \times 1 = 1.$
 - Si $\alpha, \beta \in T$ alors $\alpha = \theta s$ et $\beta = \theta s'$ avec $\theta \in T$ fixé et $s, s' \in \text{Im } \sigma$ donc $\alpha \beta = \theta^2 s s' \in \text{Im } \sigma$ et on a $\chi_p(\alpha \beta) = 1 = -1 \times -1 = \chi_p(\alpha) \chi_p(\beta)$.
 - Si $\alpha \in \text{Im } \sigma \text{ et} \beta \in T \text{ alors } \alpha\beta = \delta \in T \text{ car sinon } \beta = \alpha^{-1}\delta \in \text{Im } \sigma \text{ ce qui est absurde et par suite,}$

$$\chi_p(\alpha\beta) = -1 = 1 \times -1 = \chi_p(\alpha)\chi_p(\beta).$$

• Si $\alpha \in T$ et $\beta \in \text{Im } \sigma$ (de même!).

D'où : pour tous α, β dans $\mathbb{U}(\mathbb{Z}/p\mathbb{Z}), \ \chi_p(\alpha\beta) = \chi_p(\alpha)\chi_p(\beta).$

- **f.** Soit $f: \mathbb{U}(\mathbb{Z}/p\mathbb{Z}) \longrightarrow \{-1,1\}$ un morphisme de groupes surjectif.
 - Si $\alpha \in \text{Im } \sigma$, il existe $\beta \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ tel que $\alpha = \beta^2$ donc $f(\alpha) = \big(f(\beta)\big)^2 = 1$.
 - Si $\alpha \in T$, alors comme f est surjectif, il existe $\theta \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ tel que $f(\theta) = -1$ donc $\theta \in T$ car sinon $f(\theta) = 1$ ce qui contredit le cas précédent et par suite, $\alpha = \theta s$ avec $s \in \text{Im } \sigma$. On a alors $f(\alpha) = f(\theta s) = f(\theta)f(s) = -1 \times 1 = -1$.

Ainsi,
$$f(\alpha) = \begin{cases} 1 & \text{si } \alpha \in \text{Im}(\sigma) \\ -1 & \text{si } \alpha \in T \end{cases}$$
 d'où $f = \chi_p$.

8. Soit $a \in \mathbb{Z}$ tel que $1 \le a \le 10$.

\overline{a}	$\overline{1}$	$\overline{2}$	3	$\overline{4}$	5	$\overline{6} = \overline{-5}$	$\overline{7} = \overline{-4}$	$\overline{8} = \overline{-3}$	$\overline{9} = \overline{-2}$	$\overline{10} = \overline{-1}$
\overline{a}^2	$\overline{1}$	$\overline{4}$	$\overline{9}$	$\overline{5}$	3	3	5	$\overline{9}$	$\overline{4}$	$\overline{1}$
$\left(\frac{a}{p}\right)$	1	-1	1	1	1	-1	-1	-1	1	-1

Partie III : Symbole de Legendre.

- **9.** Le groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ est d'ordre p-1 donc d'après le cours, $\alpha^{p-1} = \overline{1}$ c-à-d $\alpha^{2p'} = \overline{1}$ donc $\alpha^{p'} \in \ker \sigma = \{\overline{-1}, \overline{1}\}$ d'où $\alpha^{p'} = \overline{1}$ ou $\overline{-1}$.
- **10. a.** L'application $\psi: \mathbb{U}(\mathbb{Z}/p\mathbb{Z}) \longrightarrow \{\overline{-1},\overline{1}\}$ est un morphisme de groupes (clair) et les groupes $\{\overline{-1},\overline{1}\}$ $\alpha \longmapsto \alpha^{p'}$

et $\{-1,1\}$ sont isomorphes, donc φ est un morphisme de groupes comme composée de deux morphismes de groupes.

Montrons que φ est surjectif. Soit $y \in \{-1, 1\}$.

- Si y = 1, on a $\varphi(\overline{1}) = 1$ puisque $\overline{1}^{p'} = \overline{1}$.
- Supposons y=-1. Si pour tout $\alpha \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ on a $\alpha^{p'}=\overline{1}$ alors le polynôme $X^{p'}-1$ possède p-1=2p' racines dans $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ ce qui est absurde car le polynôme $X^{p'}-1$ admet exactement p' racines dans $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$. Donc il existe $\alpha \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ tel que $\alpha^{p'}=\overline{-1}$ et $\varphi(\alpha)=-1$. D'où φ est surjectif.
- **b.** φ est surjectif, par unicité (question 7), On a $\varphi = \chi_p$. Par suite, $\forall \overline{a} \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z}), \ \varphi(\overline{a}) = \chi_p(\overline{a}) = \left(\frac{a}{p}\right)$.
 - Si $\overline{a}^{p'} = \overline{1}$, alors $1 = \chi_p(\overline{a}) = \left(\frac{a}{p}\right)$.
 - Si $\overline{a}^{p'} = \overline{-1}$, alors $-1 = \chi_p(\overline{a}) = \left(\frac{a}{p}\right)$.

Dans tous les cas, $a^{p'} \equiv \left(\frac{a}{p}\right) \pmod{p}$.

11. D'après la question précédente,

$$\left(\frac{-1}{p}\right) = 1 \iff (-1)^{p'} \equiv 1 \pmod{p}$$

$$\iff p' \equiv 0 \pmod{2}$$

$$\iff p \equiv 1 \pmod{4}.$$

 et

$$\left(\frac{-1}{p}\right) = -1 \iff (-1)^{p'} \equiv -1 \pmod{p}$$

$$\iff p' \equiv 1 \pmod{2}$$

$$\iff p \equiv 3 \pmod{4}.$$

D'après : Agrégation interne 2000 (extrait).