Devoir maison Nº1

Notations et rappels

- Soit n un entier ≥ 2 . On note $\mathbb{Z}/n\mathbb{Z}$ l'anneau des classes d'entiers modulo n, et $\mathbb{U}(\mathbb{Z}/n\mathbb{Z})$ le groupe multiplicatif des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.
- Si $a \in \mathbb{Z}$ est un entier quelconque, on note \overline{a} la classe de a dans l'anneau $\mathbb{Z}/n\mathbb{Z}$.
- On rappelle que, si p est un nombre premier, l'anneau $\mathbb{Z}/p\mathbb{Z}$ est un corps et $\operatorname{Card}\left(\mathbb{U}\left(\mathbb{Z}/p\mathbb{Z}\right)\right)=p-1$.
- On rappelle le *lemme des bergers* que l'on pourra utiliser librement :

Soient X, Y deux ensembles finis, et $f: X \longmapsto Y$ une application surjective telle que tout élément de Y a exactement n antécédents dans X. Alors $\operatorname{Card}(X) = n\operatorname{Card}(Y)$.

• Dans tout le probleme, p un nombre **premier impair** : p = 2p' + 1.

Partie I : Groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$.

L'objectif de cette partie est de montrer que le groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ est cyclique.

- **1.** Soit K un corps et $P \in K[X]$ un polynôme non nul à coefficients dans K.
 - **a.** Soit $\alpha \in K$ une racine de P. Montrer qu'il existe $Q \in K[X]$ tel que $P = (X \alpha)Q$.
 - **b.** Montrer que P a au plus deg P racines dans K.
- **2.** Soit d un diviseur de p-1.
 - **a.** Justifier que le polynome $X^{p-1}-1$ admet exactement p-1 racines dans $\mathbb{Z}/p\mathbb{Z}$.
 - **b.** Montrer que le polynome X^d-1 admet exactement d racines dans $\mathbb{Z}/p\mathbb{Z}$.
- **3. a.** Soit a, b dans $\mathbb{U}(\mathbb{Z}/n\mathbb{Z})$ d'ordres respectivement r et s. On suppose que $r \wedge s = 1$. Montrer que ab est d'ordre rs.
 - **b.** Plus généralement, montrer que, si a_1, \ldots, a_k dans $\mathbb{U}(\mathbb{Z}/n\mathbb{Z})$ d'ordres respectivement r_1, \ldots, r_k tels que, pour tout $i \neq j$, $r_i \wedge r_j = 1$, alors $\prod_{i=1}^k a_i$ est d'ordre $\prod_{i=1}^k r_i$.
- **4.** Soit $p-1=\prod_{j=1}^m p_j^{\alpha_j}$ la décomposition en nombres premiers de p-1. Fixons $j\in [1,m]$.
 - **a.** Montrer l'existence d'un élément x_j dans $\mathbb{Z}/p\mathbb{Z}$ tel que $x_j^{p_j^{\alpha_j}}=1$ et $x_j^{p_j^{\alpha_j-1}}\neq 1$.
 - **b.** Montrer que x_j est d'ordre $p_j^{\alpha_j}$ dans $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$.
 - **c.** On pose $x = \prod_{j=1}^{m} x_j$. Montrer que x est d'ordre p-1.
- **5.** Conclure.

Partie II : Carrés modulo n.

- **6.** Soit $a \in \mathbb{Z}$.
 - **a.** Montrer l'équivalence : $\overline{a} \in \mathbb{U}(\mathbb{Z}/n\mathbb{Z}) \iff a \wedge n = 1$.
 - **b.** Montrer que $\overline{-1}$ et $\overline{1}$ sont distincts dans $\mathbb{Z}/p\mathbb{Z}$.
- **7.** Pour tout $\alpha \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$, on pose $\sigma(\alpha) = \alpha^2$.
 - a. Démontrer que l'application σ de $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ dans lui-même ainsi définie est un morphisme de groupes.

- **b.** Déterminer $ker(\sigma)$, le noyau de σ .
- c. En déduire que Card $(\operatorname{Im}(\sigma)) = p'$. Indication. utiliser le lemme des bergers.
- **d.** On note T le complémentaire de $\operatorname{Im}(\sigma)$ dans $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$.
 - i. Déterminer le cardinal de T.
 - ii. Démontrer que, si on fixe un élément θ de T, on a $T = \{\theta s, s \in \text{Im}(\sigma)\}$.
- **e.** Pour tout $\alpha \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$, on pose

$$\chi_p(\alpha) = \begin{cases}
1 & \text{si } \alpha \in \text{Im}(\sigma) \\
-1 & \text{si } \alpha \in T
\end{cases}$$

Démontrer que l'application χ_p de $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ dans le groupe multiplicatif $\{-1,1\}$ ainsi définie est un morphisme de groupes surjectif.

- **f.** Démontrer que l'application χ_p est le seul morphisme surjectif du groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ dans le groupe multiplicatif $\{-1,1\}$.
- **8.** Pour tout entier $a \in \mathbb{Z}$, non divisible par p, on pose

$$\left(\frac{a}{p}\right) = \chi_p(a).$$

Le nombre $\left(\frac{a}{p}\right)$ est appelé symbole de Legendre.

Calculer le nombre $\left(\frac{a}{11}\right)$ pour tout entier a tel que $1 \le a \le 10$.

Partie III : Symbole de Legendre.

On rappelle que p est un nombre premier impair : p = 2p' + 1. On se propose de calculer, en fonction des valeurs de p, le symbole de Legendre $\left(\frac{-1}{p}\right)$.

- **9.** Soit $\alpha \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$. Démontrer que l'on a $\alpha^{2p'} = \overline{1}$, et en déduire que $\alpha^{p'}$ est égal à $\overline{1}$ ou $\overline{-1}$. Indication. utiliser les résultats de la question 7.
- **10.** Pour tout $\alpha \in \mathbb{U}(\mathbb{Z}/p\mathbb{Z})$, on pose

$$\varphi(\alpha) = \begin{cases} 1 & \text{si } \alpha^{p'} = \overline{1} \\ -1 & \text{si } \alpha^{p'} = \overline{-1} \end{cases}$$

a. Démontrer que l'on définit ainsi un morphisme φ du groupe $\mathbb{U}(\mathbb{Z}/p\mathbb{Z})$ dans le groupe multiplicatif $\{-1,1\}$. Démontrer que le morphisme φ est surjectif.

Indication. utiliser les résultats de la première partie.

b. En déduire que, pour tout nombre entier a premier avec p, on a

$$a^{p'} \equiv \left(\frac{a}{p}\right) \pmod{p}.$$

11. Démontrer les équivalences suivantes :

$$\left(\frac{-1}{p}\right) = 1 \iff p = 1 \pmod{4},$$

$$\left(\frac{-1}{p}\right) = -1 \iff p = 3 \pmod{4}.$$

D'après : Agrégation interne 2000 (extrait).