Devoir de contrôle Nº1

Devoir de contrôle Nº1

Q1. Soit $H = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, n \in \mathbb{Z} \right\}$.

1.	Montrer	aue H	est un	sous-groupe	de	$(\mathcal{GL}_2(\mathbb{R}), \times)$	١.
1.	MOHITE	que 11	Cot un	sous-groupe	uc	$(9 \sim 2(11), \land)$, .

......

2. Montrer que H est monogène et, déterminer un groupe qui lui soit isomorphe.

Q2. Soit $\varphi: (\mathbb{Z}/3\mathbb{Z}, +) \longrightarrow (\mathbb{Z}/4\mathbb{Z}, +)$ un morphisme de groupes.

1. Montrer que l'ordre de $\varphi(\overline{1})$ divise 3 et divise 4.

2. En déduire que $\varphi(\overline{1}) = \overline{0}$

3. Déterminer alors φ

Q3. Soit G un groupe multiplicatif et H un sous-groupe non trivial de G. Montrer que $\langle G \setminus H \rangle = G$.

.....

Q4. Soit G un groupe multiplicatif d'ordre 4.

1. Supposons G contient un élément d'ordre 4. Montrer que G est isomorphe à $\mathbb{Z}/4\mathbb{Z}$.

......

2. Supposons que G ne contient aucun élément d'ordre 4.

a. Montrer que $\forall x \in G, \ x^2 = e$.

Nom et prénom :	Devoir de contrôle №1	MP Laâyoune
${\sf Q8.}$ Soit A un anneau commutatif intège fi	ni et $a \in A \setminus \{0\}$. On considère l'application	ion $f_a:A\longrightarrow A$ définie par
$f_a(x) = ax.$		
1. Montrer que f_a est injectif.		
2. En déduire que A est un corps.		
2. En dedune que A est un corps.		
Q9. Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$ un morphisme d'anne	aux tel que $\forall x \in \mathbb{R}, \ f(x) = x.$	
Montrer que $f = \mathrm{Id}_{\mathbb{C}}$ ou $f(z) = \overline{z}$ pour	tout $z \in \mathbb{C}$.	
Q10. Soit $(a,b) \in \mathbb{Z}^2$ non nuls.		
1. Montrer qu'il existe $m \in \mathbb{N}^*$ unique te	$1 \text{ que}: a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}.$	
2. Montrer que m est caractérisé par : $\left\{\right.$	$\begin{array}{ccc} a \mid m & \\ b \mid m & \end{array} \text{et} \left(\forall \ c \in \mathbb{Z}, \ \begin{cases} a \mid c \\ b \mid c & \Longrightarrow \ m \mid \end{cases} \right.$	$\mid c \rangle$.
	(0)	
Q11. Déterminer $\mathbb{U}(\mathbb{Z}/7\mathbb{Z})$, le groupe des clique?	éléments inversibles de l'anneau $\mathbb{Z}/7\mathbb{Z}$. Le	e groupe $\mathbb{U}(\mathbb{Z}/7\mathbb{Z})$ est-il cy-

Nom et pré	nom :	Devoir de contrôle Nº1	MP Laâyoune
013 D4-		$\int 3x + 2 \equiv -1 [5]$	
Q12. Res	oudre le système de congruence sui	$\begin{cases} 3x - 1 \equiv 3 [7] \end{cases}$	
• • • • • • •			
• • • • • • •			
• • • • • • • • • • • • • • • • • • • •			
Q13. Soit	$\mathbb{Z}[X]$ l'anneau des polynômes à co	efficients entiers, on pose	
	$\mathcal{I} = \left\{ (1 + \right\}$	$(X^2)A + 2XB, (A, B) \in (\mathbb{Z}[X])^2$?}.
	•) ·	j
1. Mon	trer que \mathcal{I} est un idéal de $\mathbb{Z}[X]$.		
• • • •			
• • • •			
• • • •			
• • • •			
2. \mathcal{I} est	-il engendré par un élément de $\mathbb{Z}[Z]$	[X]?	
Q14. Moi	atrer que le polynôme $P = X^3 + X$	$+1$ est irréductible sur \mathbb{Q} .	

Devoir de contrôle Nº1

Nom et prénom :

MP Laâyoune