TD Nº1

Structures algébriques usuelles (correction)

1 Groupes

Corrigé de l'exercice 1. 1. On a $1 \in H$ et si $(z_1, z_2) \in H^2$, alors $(z_1 z_2^{-1})^n = z_1^n z_2^{-n} = 1$ donc $z_1 z_2^{-1} \in H$. Ainsi H est un sous-groupe de G.

- 2. On vérifie d'abord que $H \subset G$. Pour $a + b\sqrt{3} \in H$, on a $a^2 3b^2 = 1 > 0$ et $a \in \mathbb{N}$ donc $a > \sqrt{3}|b|$ et par suite $a + b\sqrt{3} > \sqrt{3}(|b| + b) \ge 0$. Ainsi $H \subset G$.
 - On a $1 = 1 + 0\sqrt{3}$ donc $1 \in H$.
 - Soient $a + b\sqrt{3}$ et $a' + b'\sqrt{3}$ deux éléments de H. On a

$$(a+b\sqrt{3})(a'+b'\sqrt{3}) = \underbrace{(aa'+3bb')}_{\in \mathbb{N}} + \sqrt{3}\underbrace{(ab'+ba')}_{\in \mathbb{Z}}.$$

Car $a \ge \sqrt{3}|b|$ et $a' \ge \sqrt{3}|b'|$ donc $aa' + 3bb' \ge 3(|b||b'| + bb') \ge 0$ donc $aa' + 3bb' \in \mathbb{N}$. Ainsi $(a + b\sqrt{3})(a' + b'\sqrt{3}) \in H$.

• Il reste à montrer que H est stable par passage à l'inverse. Soit $a+b\sqrt{3}\in H,$ on a

$$\frac{1}{a+b\sqrt{3}} = \frac{a-b\sqrt{3}}{a^2-3b^2} = a-b\sqrt{3} \in H \text{ puisque } a^2-3b^2 = 1$$

D'où, H est bien un sous-groupe de G.

3. Il est clair que $I_3 \in H$. Soient $A = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{pmatrix}$ deux éléments de H. On a

$$AB = \begin{pmatrix} 1 & x + x' & z + z' + xy' \\ 0 & 1 & y + y' \\ 0 & 0 & 1 \end{pmatrix} \in H.$$

De plus, le calcul précédent montre que $A^{-1} = \begin{pmatrix} 1 & -x & -z + xy \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}$ qui est, bien un élément de H.

Corrigé de l'exercice 2. Soit $x \in G$. On a $x^2 = e$ donc $x = x^{-1}$. Si $(x, y) \in G^2$ alors, $xy = x^{-1}y^{-1} = (yx)^{-1} = yx$. Ainsi G est un groupe abélien.

Corrigé de l'exercice 3. 1.

$\sigma \circ \sigma'$	σ = Id	σ = (12)	σ = (13)	σ = (23)	σ = (123)	σ = (132)
$\sigma' = \operatorname{Id}$	Id	(12)	(13)	(23)	(123)	(132)
σ' = (12)	(12)	Id	(123)	(132)	(13)	(23)
σ' = (13)	(13)	(132)	Id	(123)	(23)	(12)
σ' = (23)	(23)	(123)	(132)	Id	(12)	(13)
$\sigma' = (123)$	(123)	(23)	(12)	(13)	(132)	Id
$\sigma' = (132)$	(132)	(13)	(23)	(12)	Id	(123)

2. On a $(12)^{-1} = (12)$, $(13)^{-1} = (13)$, $(23)^{-1} = (23)$ et $(123)^{-1} = (132)$, $(132)^{-1} = (123)$.

3. Le groupe (S_3, \circ) n'est pas abélien car $(12)(13) \neq (13)(12)$. Les sous-groupes du groupe (S_3, \circ) sont $H_1 = \{ \mathrm{Id}, (12) \}, H_2 = \{ \mathrm{Id}, (13) \}, H_3 = \{ \mathrm{Id}, (23) \}, \text{ et } H_4 = \{ \mathrm{Id}, (123), (132) \}.$

Binyze Mohamed $1\ /\ 12$

Corrigé de l'exercice 4. 1. Soit $(\overline{k}, \overline{\ell}) \in (\mathbb{Z}/n\mathbb{Z})^2$. On a : $\varphi(\overline{k} + \overline{\ell}) = \varphi(\overline{k} + \ell) = e^{2i(k+\ell)\pi/n} = e^{2ik\pi/n} e^{2i\ell\pi/n} = \varphi(\overline{k})\varphi(\overline{\ell})$. Donc φ est un morphisme de groupes. De plus,

$$\overline{k} \in \ker \varphi \iff \varphi(\overline{k}) = 1 \iff e^{2ik\pi/n} = 1 \iff 2k\pi/n \in 2\pi\mathbb{Z} \iff \overline{k} = \overline{0}.$$

Donc $\ker \varphi = \{\overline{0}\}\$ et φ est injectif. Comme $\operatorname{Card} \mathbb{Z}/n\mathbb{Z} = \operatorname{Card} \mathbb{U}_n$, alors φ est un isomorphisme de groupes.

2. Soit $(\theta, \theta') \in \mathbb{R}^2$. On a

$$\varphi(\theta)\varphi(\theta') = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta' & -\sin\theta' \\ \sin\theta' & \cos\theta' \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta\cos\theta' - \sin\theta\sin\theta' & -\cos\theta\sin\theta' - \sin\theta\cos\theta' \\ \cos\theta\sin\theta' + \sin\theta\cos\theta' & \cos\theta\cos\theta' - \sin\theta\sin\theta' \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta + \theta') & -\sin(\theta + \theta') \\ \sin(\theta + \theta') & \cos(\theta + \theta') \end{pmatrix} = \varphi(\theta + \theta').$$

Donc φ est un morphisme de groupes. De plus,

$$\theta \in \ker \varphi \iff \varphi(\theta) = I_2 \iff \cos \theta = 1 \text{ et } \sin \theta = 0 \iff \theta \in 2\pi \mathbb{Z}$$

Donc $\ker \varphi = 2\pi \mathbb{Z}$.

Corrigé de l'exercice 5. 1. Soit
$$(m,n) \in \mathbb{N}^* \times \mathbb{N}$$
. On a $f(n) = f(\underbrace{1 + \ldots + 1}_{n \text{ termes}}) = \underbrace{f(1) + \ldots + f(1)}_{n \text{ termes}} = nf(1)$ et

$$f(1) = f\left(\frac{m}{m}\right) = f\left(\frac{1}{m} + \ldots + \frac{1}{m}\right) = mf\left(\frac{1}{m}\right) \operatorname{donc} f\left(\frac{1}{m}\right) = \frac{1}{m}f(1).$$

2. De la relation $mf\left(\frac{1}{m}\right) = f(1)$ on a m divise f(1) pour tout $m \in \mathbb{N}^*$ donc nécessairement f(1) = 0 et par suite f(n) = 0 pour tout $n \in \mathbb{Z}$. Si $r = \frac{p}{q} \in \mathbb{Q}$ alors, $f(r) = f\left(\frac{p}{q}\right) = pf\left(\frac{1}{q}\right) = rf(1) = 0$. Ainsi f est le morphisme nul.

Corrigé de l'exercice 6. On a $\{-1,1\} \times \{-1,1\} = \{(1,1),(-1,1),(1,-1),(-1,-1)\}$ qui est un groupe multiplicatif et $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0},\overline{0}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{1})\}$ qui est un groupe additif.

et

+	$(\overline{0},\overline{0})$	$(\overline{1},\overline{0})$	$(\overline{0}, \overline{1})$	$(\overline{1},\overline{1})$
$(\overline{0}, \overline{0})$	$(\overline{0}, \overline{0})$	$(\overline{1},\overline{0})$	$(\overline{0}, \overline{1})$	$(\overline{1},\overline{1})$
$\overline{(\overline{1},\overline{0})}$	$(\overline{1},\overline{0})$	$(\overline{0}, \overline{0})$	$(\overline{1}, \overline{1})$	$(\overline{0},\overline{1})$
$\overline{(\overline{0},\overline{1})}$	$(\overline{0}, \overline{1})$	$(\overline{1},\overline{1})$	$(\overline{0}, \overline{0})$	$(\overline{1},\overline{0})$
$(\overline{1},\overline{1})$	$(\overline{1}, \overline{1})$	$(\overline{0}, \overline{1})$	$(\overline{1},\overline{0})$	$(\overline{0}, \overline{0})$

×	(1,1)	(-1,1)	(1,-1)	$\left \begin{array}{c} (-1,-1) \end{array} \right $
(1,1)	(1,1)	(-1,1)	(1,-1)	(-1, -1)
(-1,1)	(-1,1)	(1,1)	(-1, -1)	(1,-1)
(1,-1)	(1,-1)	(-1, -1)	(1,1)	(-1,1)
(-1,-1)	(-1, -1)	(1,-1)	(-1,1)	(1,1)

On remarque que les tables sont « identiques », donc les groupe $(\{-1,1\} \times \{-1,1\},\times)$ et $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},+)$ sont isomorphes. Plus précisément, l'application $\varphi: (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},+) \longrightarrow (\{-1,1\} \times \{-1,1\},\times)$ est un $(\overline{k},\overline{\ell}) \longmapsto ((-1)^k,(-1)^\ell)$

isomorphisme de groupes.

Corrigé de l'exercice 7. 1. D'abord, H est un sous-groupe de G. En effet :

- On a $e = a^0 b^0 \in H$.
- Si $x = a^{i_1}b^{j_1}a^{i_2}b^{j_2}\dots a^{i_n}b^{j_n} \in H$ et $y = a^{k_1}b^{\ell_1}a^{k_2}b^{\ell_2}\dots a^{k_m}b^{\ell_m} \in H$ alors, $xy = a^{p_1}b^{q_1}a^{p_2}b^{q_2}\dots a^{p_r}b^{q_r} \in H$.
- Si $x = a^{i_1}b^{j_1}a^{i_2}b^{j_2}\dots a^{i_n}b^{j_n} \in H$ alors, $x^{-1} = b^{-j_n}a^{-i_n}\dots b^{-j_2}a^{-i_2}b^{-j_1}a^{-i_1} = a^0b^{-j_n}a^{-i_n}\dots b^{-j_2}a^{-i_2}b^{-j_1}a^{-i_1}b^0 \in H$.

Soit $K=<\left\{a,b\right\}>$ le groupe engendré par a et b. On a $a=a^1b^0\in H$ et $b=a^0b^1\in H$ donc $K\subset H$.

Inversement, On a $a^i \in K$ et $b^j \in K$ pour tout $(i, j) \in \mathbb{Z}^2$ donc $a^i b^j \in K$ et par suite, $H \subset K$ d'où K = H.

2. Lorsque ab = ba, alors $H = \{a^i b^j, (i, j) \in \mathbb{Z}^2\}$.

Binyze Mohamed 2 / 12

3. Soit $G = \langle \{A, B\} \rangle$ le groupe engendré par A et B. On a $A^2 = I_3$ donc $A^{-1} = A$ et $B^3 = I_3$ donc $B^{-1} = B^2$. On en déduit que $A^i \in \{I_2, A\}$ et $B^j \in \{I_3, B, B^2\}$ pour tout $(i, j) \in \mathbb{Z}^2$. De plus, $BA = AB^2$ donc

$$G = \left\{ A^{i_1} B^{j_1} A^{i_2} B^{j_2} \dots A^{i_n} B^{j_n}, \quad n \in \mathbb{N}^*, i_1, j_1, i_2, j_2, \dots, i_n, j_n \in \mathbb{Z} \right\} = \left\{ A^i B^j, \quad i, j \in \mathbb{Z} \right\} = \left\{ \mathbf{I}_3, A, B, AB, AB^2 \right\}.$$

Corrigé de l'exercice 9. Supposons $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = <(\overline{a}, \overline{b}) >$. Le groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ est de cardinal 4. Le générateur $(\overline{a}, \overline{b})$ vérifie $2 \times (\overline{a}, \overline{b}) = (\overline{0}, \overline{0})$ donc $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = = \{(\overline{0}, \overline{0}), (\overline{a}, \overline{b})\}$ et par suite, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ est de cardinal 2, ce qui est absurde. Ainsi, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'est pas cyclique.

Corrigé de l'exercice 10. 1. On pose $E = \{1, \ldots, n\}$ et $\sigma' = (\tau(x_1) \ \tau(x_2) \ \ldots \ \tau(x_r))$.

- Si $x \in E \setminus \{x_1, \dots, x_r\}$, on a $\sigma(x) = x$ et $\tau(x) \in E \setminus \{\tau(x_1), \dots, \tau(x_r)\}$, ce qui donne $\tau \circ \sigma(x) = \tau(x) = \sigma'(\tau(x)) = \sigma' \circ \tau(x)$, i-e: $\tau \circ \sigma \circ \tau^{-1}(x) = \sigma'(x)$.
- Si $x = x_k$ où $k \in \{1, ..., r\}$, alors $\tau \circ \sigma(x) = \tau(\sigma(x_k)) = \tau(x_{k+1})$ en notant $x_{r+1} = x_1$ donc $\sigma' \circ \tau(x) = \sigma'(\tau(x_k)) = \tau(x_{k+1})$ i-e : $\tau \circ \sigma \circ \tau^{-1}(x) = \sigma'(x)$.

Ainsi, $\tau \circ \sigma \circ \tau^{-1}(x) = \sigma'(x)$ pour tout $x \in E$. D'où $\tau \circ \sigma \circ \tau^{-1} = \sigma'$.

2. a. Soit $(i \ j)$ une transposition avec $1 \le i \ne j \le n$. Si i = 1 ou j = 1, il n'y a rien à montrer car $(i \ j) = (j \ i)$. Supposons $i \ne 1$ et $j \ne 1$, on a d'après la première question :

$$(i \ j) = (1 \ i)(1 \ j)(1 \ i)^{-1} = (1 \ i)(1 \ j)(1 \ i).$$

Comme S_n est engendré par les transpositions, on déduit que S_n est engendré par les n-1 transpositions (1 k) avec $2 \le k \le n$.

b. D'après la première question, S_n est engendré par les transpositions (1 k) avec $2 \le k \le n$, il suffit de décomposer chaque transposition (1 k) en produit de transpositions de type (i i + 1).

Si k = 2, alors (1 k) = (1 2) = (1 1 + 1) est de la forme souhaitée.

Si $3 \le k \le n$, alors d'après la première question :

$$(1 k) = (k-1 k)(1 k-1)(k-1 k)^{-1} = (k-1 k)(1 k-1)(k-1 k).$$

D'autre part : (1 k - 1) = (k - 2 k - 1)(1 k - 2)(k - 2 k - 1) et on continue la décomposition ainsi de suite si nécessaire.

c. D'après la deuxième question, S_n est engendré par les transpositions $(k \ k+1)$ avec $1 \le k \le n-1$, il suffit de montrer que chaque transposition $(k \ k+1)$ est dans G où $G \stackrel{\text{def}}{=} < \tau$, $\gamma >$ avec $\tau = (1 \ 2)$ et $\gamma = (1 \ 2 \dots n)$ le sous groupe de S_n engendré par τ et γ . Pour $n \ge 3$, on a d'après la première question :

$$\gamma(1\ 2)\gamma^{-1} = (\gamma(1)\ \gamma(2)) = (2\ 3)$$

$$\gamma(2\ 3)\gamma^{-1} = (\gamma(2)\ \gamma(3)) = (3\ 4)$$

$$\vdots$$

$$\gamma(n-2\ n-1)\gamma^{-1} = (\gamma(n-2)\ \gamma(n-1)) = (n-1\ n)$$

Donc $(k k + 1) = \gamma^{k-1} (1 2) (\gamma^{k-1})^{-1}$ pour $1 \le k \le n - 1$.

Corrigé de l'exercice 11. 1. Supposons G abélien et soit $(x,y) \in H^2$, donc $x = \varphi(a)$ et $y = \varphi(b)$ avec $(a,b) \in G^2$.

On a $x \top y = \varphi(a) \top \varphi(b) = \varphi(a \star b) = \varphi(b \star a) = \varphi(b) \top \varphi(a) = y \top x$. Donc H est abélien.

Supposons H abélien, on a $\varphi^{-1}:(H,T)\longrightarrow (G,\star)$ est un isomorphisme de groupes, donc d'après ce qui précède, G est abélien.

Binyze Mohamed 3 / 12

- **2.** Supposons $G = \langle a \rangle$. On a $\varphi(a) \in H$ donc $\langle \varphi(a) \rangle \subset H$. Soit $h \in H$, donc $h = \varphi(g)$ avec $g \in G$, donc $g = a^k$ avec $k \in \mathbb{Z}$, i-e $h = \varphi(a^k) = (\varphi(a))^k$ donc $h \in \langle \varphi(a) \rangle$ donc $H \subset \langle \varphi(a) \rangle$, d'où l'égalité : $H = \langle \varphi(a) \rangle$. Pour la réciproque, on considère φ^{-1} au lieu de φ .
- 3. Fixons $(k,b) \in \mathbb{Z} \times G$ et considérons les ensembles $I = \{x \in G, x^k = b\}$ et $J = \{x \in H, x^k = \varphi(b)\}$. On va montrer que φ réalise une bijection entre I et J.

Soit $y \in J$, il existe $x \in G$ unique tel que $y = \varphi(x)$. Or $(\varphi(x))^k = \varphi(b)$ i-e $\varphi(x^k) = \varphi(b)$ donc $x^k = b$ car φ est injectif donc $x \in I$. D'où : $\forall y \in J$, $\exists ! x \in I$, $y = \varphi(x)$. En particulier, les ensembles I et J ont même cardinal.

4. Le groue $\mathbb{Z}/4\mathbb{Z}$ est cyclique mais $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'est pas cyclique, donc $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$ et $(\mathbb{Z}/4\mathbb{Z}, +)$ ne sont pas isomorphes.

Le groupe $\mathbb{Z}/6\mathbb{Z}$ est abélien mais \mathcal{S}_3 n'est pas abélien, donc $(\mathbb{Z}/6\mathbb{Z}, +)$ et (\mathcal{S}_3, \circ) ne sont pas isomorphes. Les groupes (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ne sont pas isomorphes car l'équation $x^4 = 1$ a deux solutions dans \mathbb{R}^* et quatre solutions dans \mathbb{C}^* .

2 Ordre d'un élément dans un groupe

Corrigé de l'exercice 12. 1. On a $4 \times \overline{3} = \overline{12} = \overline{0}$ et $k \times \overline{3} \neq \overline{0}$ pour $1 \le k \le 3$ donc l'ordre de $\overline{3}$ est 4.

2. Soit $D = \operatorname{diag}\left(1,j,j^2\right)$. On a $D^3 = \operatorname{diag}\left(1,j^3,j^6\right) = \mathbf{I}_3$ et $D^2 = \operatorname{diag}\left(1,j^2,j\right) \neq \mathbf{I}_3$ donc l'ordre de D est 3.

Corrigé de l'exercice 13. 1. Soit $k \in \mathbb{N}$. On a

$$(aba^{-1})^k = \underbrace{(aba^{-1})(aba^{-1})\dots(aba^{-1})(aba^{-1})}_{k \text{ termes}} = ab(a^{-1}a)a\dots(a^{-1}a)ba^{-1} = ab^ka^{-1}$$

donc $(aba^{-1})^k = e \iff ab^ka^{-1} = e \iff b^ka^{-1} = e \iff b^k = e$. On en déduit que b et aba^{-1} ont le même ordre (fini ou infini).

Soit $k \in \mathbb{N}$. On a $a^k = e \iff (a^k)^{-1} = e \iff (a^{-1})^k = e$ donc a et a^{-1} ont le même ordre (fini ou infini).

2. Supposons $(ab)^n = e$. On a $b(ab)^n = b$ soit encore $(ba)^n b = b$ donc $(ba)^n = e$. Ainsi, ba est d'ordre fini au plus égal à n. Un raisonnement symétrique établit que ab est d'ordre inférieur à celui de ba et donc ab et ba ont le même ordre.

Corrigé de l'exercice 14. 1. Pour tout $k \in \mathbb{N}$, on a $R_{\theta}^k = \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix} = R_{k\theta}$ (récurrence sur k), donc

$$R_{\theta}$$
 est d'ordre fini $\iff \exists k \in \mathbb{N}^*$ tel que $R_{\theta}^k = I_2$
 $\iff R_{k\theta} = I_2$
 $\iff \cos k\theta = 1$ et $\sin k\theta = 0$
 $\iff k\theta \in 2\pi\mathbb{Z} \iff \frac{\theta}{2\pi} \in \mathbb{Q}.$

2. Supposons $\frac{\theta}{2\pi} = \frac{p}{q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tels que $p \wedge q = 1$. D'après la question précédente, R_{θ} est d'ordre fini. Soit n l'ordre de R_{θ} , on a

$$R_{\theta}^n = \mathcal{I}_2 \iff n\theta \in 2\pi\mathbb{Z} \iff \frac{np}{q} \in \mathbb{Z} \iff q \text{ divise } np \stackrel{\text{B\'{e}zout}}{\Longrightarrow} q \text{ divise } n \Longrightarrow n \in \left\{q, 2q, 3q, \dots\right\}.$$

Or $R_{\theta}^q = I_2$ donc l'ordre de R_{θ} égal à q.

Corrigé de l'exercice 15. 1. a. Soit $d = m \wedge n$. On a n = n'd, m = m'd avec $n' \wedge m' = 1$. Pour tout $k \in \mathbb{Z}$, on a $\left(a^m\right)^k = e \iff a^{mk} = e \iff n \mid mk \iff n' \mid m'k \stackrel{\text{B\'ezout}}{\Longrightarrow} n' \mid k \iff \frac{n}{d} \text{ divise } k.$

Donc l'ordre de a^m est égal à $\frac{n}{m \wedge n}$.

Binyze Mohamed 4 / 12

- **b.** On a $\overline{m} = m.\overline{1}$ et $\overline{1}$ est d'ordre n, par suite, l'ordre de \overline{m} est égal à $\frac{n}{m \wedge n}$.
- **2. a.** On a $p \mid p \lor q$ et $q \mid p \lor q$ donc $a^{p \lor q} = e_G$ et $b^{p \lor q} = e_H$ donc $(a, b)^{p \lor q} = \left(a^{p \lor q}, b^{p \lor q}\right) = \left(e_G, e_H\right)$. De plus, pour tout $k \in \mathbb{Z}$ on a

$$(a,b)^k = (e_G, e_H) \iff a^k = e_G \text{ et } b^k = e_H \iff p \mid k \text{ et } q \mid k \iff p \lor q \mid k.$$

Donc l'ordre de (a, b) est égale à $p \vee q$.

b. Soit $(\overline{a}, \overline{b})$ un élément de $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ d'ordre 3. Notons p l'ordre de \overline{a} et q l'ordre de \overline{b} . D'après la question précédente, $p \vee q = 3$. Mais, l'ordre d'un élément divise l'ordre du groupe, donc p divise 3 et q divise 6. Ainsi, (p,q) = (1,3), (3,1) ou (3,3). D'où $(\overline{a},\overline{b}) \in \{(\overline{0},\overline{2}), (\overline{0},\overline{4}), (\overline{1},\overline{0}), (\overline{2},\overline{0}), (\overline{1},\overline{2}), (\overline{1},\overline{4}), (\overline{2},\overline{2}), (\overline{2},\overline{4})\}$.

Corrigé de l'exercice 16. Soit p l'ordre de G et q l'ordre de H.

- Supposons $p \wedge q = 1$. Soit a un générateur de G (donc d'ordre p) et b un générateur de H (donc d'ordre q). Le couple (a,b) est d'ordre $p \vee q = pq$. Puisque $G \times H$ est de cardinal pq, on en déduit que $G \times H$ est cyclique.
- Supposons $G \times H$ est cyclique. Soit (a,b) un générateur de $G \times H$, donc a est un générateur de G et b est un générateur de H donc l'ordre de a est p et l'ordre de b est q. Or (a,b) est d'ordre $p \vee q$, donc $p \vee q$ divise pq et par suite, $p \vee q = pq$ ce, qui implique que $p \wedge q = 1$.

Corrigé de l'exercice 17. 1. On a $\sigma = (i_1 \ i_2 \dots i_r) = (i_1 \ i_2)(i_2 \ i_3) \dots (i_{r-1} \ i_r)$ donc

$$\varepsilon(\sigma) = \varepsilon((i_1 \ i_2)(i_2 \ i_3) \dots (i_{r-1} \ i_r)) = \underbrace{\varepsilon(i_1 \ i_2) \dots \varepsilon(i_{r-1} \ i_r)}_{(r-1) \text{ termes}} = \underbrace{(-1) \dots (-1)}_{(r-1) \text{ termes}} = (-1)^{r-1}.$$

2. Pour $1 \le k \le r - 1$, on a $\sigma^k(i_1) = i_{k+1}$ donc $\sigma^r(i_1) = i_1$. De même, $\sigma^r(i_2) = i_2, \ldots, \sigma^p(i_r) = i_r$ et $\sigma^p(j) = j$ pour $j \notin \{i_1, \ldots, i_r\}$ donc $\sigma^r = \text{Id c'est-à-dire}, \sigma$ est d'ordre r.

Corrigé de l'exercice 18. 1. Soit p l'ordre de a. On a $(f(a))^p = (a^p) = f(e_G) = e_H$, donc l'ordre de f(a) divise p. Supposons f injectif et soit $1 \le k \le p-1$. On a $a^k \ne e_G \Longrightarrow f(a^k) \ne f(e_G) \Longrightarrow f(a^k) \ne e_H \Longrightarrow (f(a))^k \ne e_H$. Ainsi, a et f(a) ont même ordre.

2. Supposons G fini donc H est fini. Pour $n \in \mathbb{N}^*$, considérons les ensembles

$$A_n = \{a \in G, a \text{ est d'ordre } n\}$$
 et $B_n = \{b \in H, b \text{ est d'ordre } n\}$.

 A_n et B_n sont finis, la question revient donc à montrer que A_n et B_n ont même cardinal. Pour cela, on va montrer que f réalise une bijection entre A_n et B_n .

Soit alors $b \in B_n$, donc il existe $a \in G$ tel que f(a) = b et, d'après la question précédente, a et b ont même ordre, donc $a \in A_n$. D'où les ensembles A_n et B_n ont même cardinal.

3. Dans le groupe $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, les éléments $(\overline{3}, \overline{0})$ et $(\overline{0}, \overline{1})$ sont d'ordre 2 et, dans le groupe $\mathbb{Z}/12\mathbb{Z}$, seul $\overline{6}$ qui est d'ordre 2. Ainsi, $\mathbb{Z}/12\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ne sont pas isomorphes.

Corrigé de l'exercice 19. 1. On a

$$(ab)^{p\vee q} = a^{p\vee q} . b^{p\vee q}$$
 car a et b commutent
= $e.e = e$ car $p \mid p \vee q$ et $q \mid p \vee q$

donc ab est d'ordre fini et divise $p \vee q$. Le résultat n'est pas vrai si a et b ne commutent pas. En effet : dans $\left(\mathcal{GL}_2(\mathbb{R}),\times\right)$, les matrices $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ et $B=\begin{pmatrix}0&1\\-1&-1\end{pmatrix}$ sont d'ordre fini : $A^4=\mathrm{I}_2,\ B^3=\mathrm{I}_2$, mais le produit AB ne l'est pas : $(AB)^k=\begin{pmatrix}(-1)^k&(-1)^kk\\0&(-1)^k\end{pmatrix}\neq\mathrm{I}_2$ pour tout $k\in\mathbb{N}^*$.

2. Soit $k \in \mathbb{Z}$. On a

Binyze Mohamed 5 / 12

$$(ab)^k = e \implies a^k b^k = e \implies (a^k b^k)^p = e \implies a^{kp} b^{kp} = e \implies b^{kp} = e \implies q \text{ divise } kp \stackrel{\text{Gauss}}{\Longrightarrow} q \text{ divise } k.$$

De même, on obtient p divise k et par suite, $p \vee q$ divise k. De plus, $(ab)^{p\vee q} = e$ d'où ab est d'ordre $p \vee q$. Le résultat n'est pas vrai si p et q ne sont pas premiers entre eux. En effet : dans le groupe (abélien) $\mathbb{Z}/12\mathbb{Z}$, on a $\overline{2}$ est d'ordre 6 et $\overline{3}$ est d'ordre 4 ($4 \wedge 6 \neq 1$) mais, le produit $\overline{2} \times \overline{3} = \overline{6}$ est d'ordre $2 \neq 4 \vee 6$.

3. Soit $k \ge 3$ un entier fixé. Soit r_i , $1 \le i \le k$ l'ordre de a_i avec $r_i \wedge r_j = 1$ pour $i \ne j$. Notons $c = \prod_{i=1}^k a_i$ avec $a_i a_j = a_j a_i$ pour tout $i \ne j$ et $r = r_1 \vee \ldots \vee r_k$. On veut montrer le résultat suivant : l'ordre de c est égal à r. On a :

$$c^r = a_1^r \dots a_k^r$$
 car $a_i a_j = a_j a_i$ pour tout $i \neq j$
= $e \dots e = e$ car chaque r_i divise r pour $1 \leq i \leq k$

donc c est d'ordre fini et divise r.

Soit $m \in \mathbb{Z}$ tel que $c^m = e$. Posons, pour $1 \le i \le k$, $r'_i = r_1 \lor \ldots \lor r_{i-1} \lor r_{i+1} \lor \ldots \lor r_k$. On a

$$c^m = e \implies a_1^m \dots a_k^m = e \implies \left(a_1^m \dots a_k^m\right)^{r_i'} = e \implies a_1^{mr_i'} \dots a_k^{mr_i'} = e \implies a_i^{mr_i'} = e$$

donc r_i divise mr_i' . Or les r_i sont premiers entre eux deux à deux donc $r_i' = \prod_{\substack{j=1\\j\neq i}}^k r_j$. Par le lemme de Gauss, puisque

 $r_i \wedge r_i' = 1$, on a r_i divise m pour tout $1 \le i \le k$ et par suite, r divise m. D'où c est d'ordre r.

4. On a $\sigma = \underbrace{(1\ 2\ 7)}_{=\sigma_1}\underbrace{(3\ 4\ 6\ 8)}_{=\sigma_2}\underbrace{(9\ 13\ 11\ 12\ 10)}_{=\sigma_3}$. Les cycles σ_1 , σ_2 et σ_3 sont à supports disjoints, donc commutent deux à deux. De plus, l'ordre de σ_1 égal à 3, l'ordre de σ_2 égal à 4 et l'ordre de σ_3 égal à 5. D'où l'ordre de σ est égal à $3 \lor 4 \lor 5 = 60$.

Corrigé de l'exercice 20. 1. Soit $a \in G$ tel que $a \neq e$. On a l'ordre de a divise p donc l'ordre de a égal à 1 ou p. Comme $a \neq e$, alors l'ordre de a égal à p. Par ailleurs, $\langle a \rangle \subset G$ et les groupes $\langle a \rangle$ et G ont même cardinal, donc $G = \langle a \rangle$. Par suite, G est cyclique.

- 2. a. < a > est un sous-groupe de H différent de $\{e\}$, donc nécessairement H = < a >.
 - **b.** Si a est d'ordre infini alors on a de même pour H. D'après le théorème de classification des groupes monogènes, H est isomorphe à \mathbb{Z} qui contient des sous-groupes non triviaux (on a vu dans le cours que les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z}$ avec $n \in \mathbb{N}$, donc si $f: \mathbb{Z} \longrightarrow H$ est un isomorphisme de groupes, alors $f(2\mathbb{Z})$ est un sous-groupe non trivial de H) ce qui est absurde donc H est cyclique isomorphe à $\mathbb{Z}/n\mathbb{Z}$. Si n n'est pas premier, alors $\mathbb{Z}/n\mathbb{Z}$ contient des sous-groupes non triviaux, donc (même raisonnement) H contient des sous-groupes non triviaux ce qui est absurde. Ainsi, H est cyclique d'ordre un nombre premier.

3 Anneaux, corps et algèbres

Corrigé de l'exercice 21. 1. On a $1 = 1 + \sqrt{2} \times 0 \in \mathbb{Z}\left[\sqrt{2}\right]$.

Soit $(x, x') \in (\mathbb{Z}[\sqrt{2}])^2$ tel que $x = a + \sqrt{2}b$ et $x' = a' + \sqrt{2}b'$ avec $(a, a', b, b') \in \mathbb{Z}^4$. On a

$$x - x' = \underbrace{a - a'}_{\in \mathbb{Z}} + \sqrt{2} \underbrace{(b - b')}_{\in \mathbb{Z}} \in \mathbb{Z} \left[\sqrt{2} \right] \quad \text{et} \quad xx' = \underbrace{aa' + 2bb'}_{\in \mathbb{Z}} + \sqrt{2} \underbrace{(ab' + ba')}_{\in \mathbb{Z}} \in \mathbb{Z} \left[\sqrt{2} \right].$$

Donc $\mathbb{Z}\left[\sqrt{2}\right]$ est un sous-anneau de \mathbb{R} .

2. Soit $f: (\mathbb{C}, +, \times) \longrightarrow (\mathcal{M}_2(\mathbb{R}), +, \times)$. Vérifiant que f est un morphisme d'anneaux. $a+ib \longmapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$

On a
$$f(1) = f(1 + i \times 0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$
. Soit $(a, a', b, b') \in \mathbb{R}^4$. On a

Binyze Mohamed $6 \ / \ 12$

$$f((a+ib)+(a'+ib')) = \begin{pmatrix} a+a' & -(b+b') \\ b+b' & a+a' \end{pmatrix} = f(a+ib)f(a'+ib')$$

et

$$f(a+ib)f(a'+ib') = \begin{pmatrix} aa' - bb' & -(ab' + ba') \\ ab' + ba' & aa' - bb' \end{pmatrix} = f(aa' - bb' + i(ab' + ba')) = f((a+ib)(a'+ib')).$$

Donc f est un morphisme d'anneaux. De plus, $\mathcal{A} = \operatorname{Im} f$ est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$ donc un anneau.

Soit $M = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathcal{A}$ non nul, donc a ou b est non nul. Mais $\det M = a^2 + b^2 \neq 0$ et par suite, M est inversible.

Il est clair que f est injectif, donc $f: \mathbb{C} \longrightarrow \mathcal{A}$ est un isomorpgisme de corps.

Corrigé de l'exercice 22. • On a $1 = 1 + i \times 0 \in \mathbb{Z}[i]$. Soit $(x, x') \in (\mathbb{Z}[i])^2$ tel que x = a + ib et x' = a' + ib' avec $(a, a', b, b') \in \mathbb{Z}^4$. On a

$$x-x'=\underbrace{a-a'}_{\in\mathbb{Z}}+i\underbrace{(b-b')}_{\in\mathbb{Z}}\in\mathbb{Z}\left[i\right]\quad\text{et}\quad xx'=\underbrace{aa'-bb'}_{\in\mathbb{Z}}+i\underbrace{(ab'+ba')}_{\in\mathbb{Z}}\in\mathbb{Z}\left[i\right].$$

Donc $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} .

Soit $z \in \mathbb{U}(\mathbb{Z}[i])$ (groupe des éléments inversibles de l'anneau $\mathbb{Z}[i]$). Il existe $z' \in \mathbb{Z}[i]$ tel que zz' = 1. On écrit z = a + ib et z' = a' + ib' avec $(a, a', b, b') \in \mathbb{Z}^4$, on a

$$zz' = 1 \implies |z||z'| = 1 \implies \underbrace{(a^2 + b^2)}_{\in \mathbb{N}} \underbrace{(a'^2 + b'^2)}_{\in \mathbb{N}} = 1 \implies a^2 + b^2 = 1$$

donc $(a,b) \in \{(1,0),(0,1),(-1,0),(0,-1)\}$ et $z \in \{1,i,-1,-i\}$. Inversement, les éléments 1,i,-1 et -i sont bien inversibles et par suite, $\mathbb{U}(\mathbb{Z}[i]) = \mathbb{U}_4 = \{1, i, -1, -i\}$ groupe des racines 4-ème de l'unité.

a. On a Corrigé de l'exercice 23. 1.

$$a \sum_{k=0}^{p-1} (1-a)^k = (a-1+1) \sum_{k=0}^{p-1} (1-a)^k$$

$$= -(1-a) \sum_{k=0}^{p-1} (1-a)^k + \sum_{k=0}^{p-1} (1-a)^k$$

$$= -\sum_{k=0}^{p-1} (1-a)^{k+1} + \sum_{k=0}^{p-1} (1-a)^k$$

$$= -\sum_{k=0}^{p} (1-a)^k + \sum_{k=0}^{p-1} (1-a)^k = -(1-a)^p + 1 = 1.$$

De même, $\left(\sum_{k=0}^{p-1} (1-a)^k\right) a = 1$, donc *a* est inversible et $a^{-1} = \sum_{k=0}^{p-1} (1-a)^k$.

b. On a $(1-a)^p = (-a(1-a^{-1}))^p = (-a)^p(1-a^{-1})^p$ car -a et $(1-a^{-1})$ commutent. Par suite, $(1-a^{-1})^p = 0$ car a est inversible.

2. On écrit $M = I_3 - N$ avec $N = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$. On a $N^3 = (I_3 - M)^3 = O_3$ donc d'après la question précédente,

la matrice M est inversible et $M^{-1} = \sum_{k=0}^{2} (I_3 - M)^k = I_3 + I_3 - M + (I_3 - M)^2 = I_3 + N + N^2 = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.

7 / 12 Binyze Mohamed

3. a. On a $\mathcal{N} \neq \emptyset$ car $0 \in \mathcal{N}$. Si $x \in \mathcal{N}$ et $a \in A$, alors $ax \in \mathcal{N}$. Soit $(x, y) \in \mathcal{N}^2$ donc, il existe $(n, p) \in \mathbb{N}^{*2}$ tel que $x^n = y^p = 0$. Par la formule du binôme, on a

$$(x+y)^{n+p} = \sum_{k=0}^{n+p} \binom{n+p}{k} x^{n+p-k} y^k = \underbrace{x^n \sum_{k=0}^{p} \binom{n+p}{k} x^{p-k} y^k}_{=0 \text{ car } x^n=0} + \underbrace{y^p \sum_{k=p+1}^{n+p} \binom{n+p}{k} x^{n+p-k} y^{k-p}}_{=0 \text{ car } y^p=0} = 0$$

donc $x + y \in \mathcal{N}$ ce qui permet de conclure que \mathcal{N} est un idéal de A.

- Le résultat n'est pas vrai si A n'est pas commutatif. En effet : si on prend $A = \mathcal{M}_2(\mathbb{R})$ alors les matrices $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$ sont nilpotentes d'ordre 2 mais $A + B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ n'est pas nilpotente car inversible (matrice de rotation d'angle π).
- **4.** Soit $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ la décomposition de n en fateurs premiers $(n \ge 2)$.
 - Soit $\overline{k} \in \mathbb{Z}/n\mathbb{Z}$ un élément nilpotent. Il existe $\alpha \in \mathbb{N}^*$ tel que $\overline{k}^{\alpha} = \overline{0}$ donc p_i divise k^{α} pour tout $1 \le i \le r$ et par suite p_i divise k pour tout $1 \le i \le r$. Comme les p_i sont premiers entre eux, $\prod_{i=1}^r p_i$ divise k.
 - Inversement, si $k = \prod_{i=1}^r p_i \times b$ avec $b \in \mathbb{N}$ alors, en posant $\alpha = \max_{1 \le i \le r} p_i$ on a $k^{\alpha} = nb^{\alpha}p_1^{\alpha-\alpha_1} \dots p_r^{\alpha-\alpha_r}$ donc $\overline{k}^{\alpha} = \overline{0}$.

D'où $\mathcal{N} = \left\{ \overline{k} \in \mathbb{Z}/n\mathbb{Z}, \prod_{i=1}^r p_i \text{ divise } k \right\}.$

Corrigé de l'exercice 24. 1. Soit $n \in \mathbb{N}$. On a f(1) = 1, 0 = f(0) = f(n-n) = f(n) + f(-n) donc f(-n) = -f(n) et

$$f(n) = f(\underbrace{1 + \ldots + 1}_{n \text{ termes}}) = \underbrace{f(1) + \ldots + f(1)}_{n \text{ termes}} = nf(1) = n.$$

Ainsi, f(n) = n pour tout $n \in \mathbb{Z}$. De plus, pour $m \in \mathbb{N}^*$, on a :

$$1 = f(1) = f\left(\frac{m}{m}\right) = f\left(\frac{1}{m} + \ldots + \frac{1}{m}\right) = mf\left(\frac{1}{m}\right) \text{ donc } f\left(\frac{1}{m}\right) = \frac{1}{m}.$$

Si $r = \frac{p}{q} \in \mathbb{Q}$ alors, $f(r) = f\left(\frac{p}{q}\right) = pf\left(\frac{1}{q}\right) = r$. D'où f(r) = r pour tout $r \in \mathbb{Q}$.

2. Soit $x \ge 0$. Il existe $y \in \mathbb{R}$ tel que $x = y^2$ donc $f(x) = f(y^2) = (f(y))^2 \ge 0$.

Si maintenant a et b sont des réels tels que $a \ge b$ alors $a - b \ge 0$, donc $f(a) - f(b) = f(a - b) \ge 0$. Ainsi, f est croissante.

3. Soit $x \in \mathbb{R}$. On a $a_n \le x < b_n$ avec $a_n = \frac{\lfloor x.10^n \rfloor}{10^n}$ et $b_n = \frac{\lfloor x.10^n \rfloor + 1}{10^n}$. D'après la question précédente, on a

$$f(a_n) = a_n$$
 et $f(b_n) = b_n$, donc $a_n \le f(x) \le b_n$.

Comme $a_n \xrightarrow[n \to +\infty]{} 0$ et $b_n \xrightarrow[n \to +\infty]{} 0$, on en déduit que f(x) = x pour tout $x \in \mathbb{R}$. Ainsi, $f = \mathrm{Id}_{\mathbb{R}}$.

Corrigé de l'exercice 25. 1. On a $\mathbb{U}(\mathbb{Z}/8\mathbb{Z}) = \{\overline{k} \in \mathbb{Z}/8\mathbb{Z}, k \wedge 8 = 1\} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}.$

$$\begin{array}{c|ccccc}
\overline{k} & \overline{1} & \overline{3} & \overline{5} & \overline{7} \\
\hline
\text{Ordre de } \overline{k} & 1 & 3 & 5 & 7
\end{array}$$

Aucun élément n'étant d'ordre $4 = \operatorname{Card} \mathbb{U}(\mathbb{Z}/8\mathbb{Z})$. Ainsi, la groupe $\mathbb{U}(\mathbb{Z}/8\mathbb{Z})$ n'est pas cyclique.

2. On a $\mathbb{U}(\mathbb{Z}/11\mathbb{Z}) = \{\overline{k} \in \mathbb{Z}/11\mathbb{Z}, k \wedge 11 = 1\} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}\}$. Cherchons le sous-groupe de $\mathbb{U}(\mathbb{Z}/11\mathbb{Z})$ engendré par $\overline{2}$. On a $\overline{2}^0 = \overline{1}$, $\overline{2}^1 = \overline{2}$, $\overline{2}^2 = \overline{4}$, $\overline{2}^3 = \overline{8}$, $\overline{2}^4 = \overline{16} = \overline{5}$, $\overline{2}^5 = \overline{10}$, $\overline{2}^6 = \overline{9}$, $\overline{2}^7 = \overline{7}$, $\overline{2}^8 = \overline{3}$, $\overline{2}^9 = \overline{6}$. On obtient ainsi tous les éléments de $\mathbb{U}(\mathbb{Z}/11\mathbb{Z})$. Ainsi, $\mathbb{U}(\mathbb{Z}/11\mathbb{Z})$ est cyclique.

Binyze Mohamed 8 / 12

Corrigé de l'exercice 26. 1. Soit $a \in I \cap \mathbb{U}(A)$. Si $x \in A$ alors, $x = \underbrace{a^{-1}}_{\in I}$. $\underbrace{ax}_{\in I} \in I$ car I est un idéal, donc I = A.

- 2. On a A est un anneau commutatif. Soit $x \in A \setminus \{0\}$. L'idéal engendré par x ne peut pas être l'idéal $\{0\}$, donc c'est A tout entier. En particulier, il existe $y \in A$ tel quexy = yx = 1. Ainsi, tout élément non nul de A est inversible et par suite, A est un corps.
- 3. Soit $x \in A \setminus \{0\}$. Considérons, pour $m \in \mathbb{N}$, $I_m = x^m A$, l'idéal engendré par x^m . Puisque A admet un nombre fini d'idéaux, il existe n < m tel que $x^m A = x^n A$. En particulier, il existe $a \in A$ tel que $x^n = x^m a$ donc $x^n (1 - x^{m-n} a) = 0$. L'anneau A étant intègre (et étant non nul), ceci entraine que $x^{m-n}a=1$. Ainsi, x est inversible (d'inverse $x^{m-n-1}a$) et par suite, A est un corps.
- **4.** Soit I un idéal non nul de K et soit $x \in I \setminus \{0\}$ alors, x est inversible et d'après la première question, I = K.

Corrigé de l'exercice 27. On va montrer que \mathscr{C}_A est une sous-algèbre de $\mathcal{M}_3(\mathbb{R})$. On a :

- $I_3 \in \mathscr{C}_A$.
- Si $\lambda \in \mathbb{R}$ et $M, N \in \mathcal{C}_A$, alors $A(M + \lambda N) = AM + \lambda AN = MA + \lambda NA = (M + \lambda N)A$, donc $M + \lambda N \in \mathcal{C}_A$.
- Si $M, N \in \mathcal{C}_A$, alors AMN = MAN = MNA, donc $MN \in \mathcal{C}_A$.

D'où \mathcal{C}_A est une algèbre.

Corrigé de l'exercice 28. Il suffit de montrer que \mathcal{A} est une sous-algèbre de $\mathcal{M}_3(\mathbb{R})$.

• Si
$$M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \in \mathcal{A}$$
, alors $M = a \underbrace{\mathbf{I}_3}_{\in \mathcal{A}} + b \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}}_{=M \in \mathcal{A}} + c \underbrace{\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}}_{=N \in \mathcal{A}}$ donc $\mathcal{A} = \operatorname{Vect}(\mathbf{I}_3, M, N)$. Ainsi, \mathcal{A} est un

sev de $\mathcal{M}_3(\mathbb{R})$.

• Si
$$M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \in \mathcal{A}$$
 et $M' = \begin{pmatrix} a' & b' & c' \\ c' & a' & b' \\ b' & c' & a' \end{pmatrix} \in \mathcal{A}$, alors $MM' = \begin{pmatrix} aa' + bc' + cb' & ab' + a'b + cc' & ac' + a'c + bb' \\ ac' + a'c + bb' & aa' + bc' + cb' & ab' + a'b + cc' \\ ab' + a'b + cc' & ac' + a'c + bb' & aa' + bc' + cb' \end{pmatrix}$ donc $MM' \in \mathcal{A}$.

D'où \mathcal{A} est une algèbre. De plus, la famille (I_3, M, N) est libre, donc dim $\mathcal{A} = 3$.

• Soit Σ_0 le système $\begin{cases} x \equiv 1[6] \\ x \equiv 2[7] \end{cases}$.

Les entiers 6 et 7 sont premiers entre eux et l'on peut écrire $7 \times 1 + 6 \times (-1) = 1$. L'entier

$$x = 1 \times 7 \times 1 + 2 \times 6 \times (-1) = -5$$

est alors solution du système Σ_0 et donc $\Sigma_0 \iff \begin{cases} x \equiv -5 \begin{bmatrix} 6 \end{bmatrix} \\ x \equiv -5 \begin{bmatrix} 7 \end{bmatrix} \end{cases}$.

Par le théorème des restes chinois $\begin{cases} x \equiv -5 \begin{bmatrix} 6 \end{bmatrix} \\ x \equiv -5 \begin{bmatrix} 7 \end{bmatrix} \end{cases} \iff x \equiv -5 \begin{bmatrix} 42 \end{bmatrix}$.

Finalement, les solutions du système sont donc les -5 + 42k avec $k \in \mathbb{Z}$.

• Soit Σ_1 le système $\begin{cases} 3x \equiv 2[5] \\ 5x \equiv 1[6] \end{cases}$.

Les entiers 3 et 5 sont premiers entre eux donc $\bar{3}$ est inversible dans l'anneau $\mathbb{Z}/5\mathbb{Z}$ et l'on peut écrire $5 \times 2 + 3 \times (-3) = 1$ donc l'inverse de $\overline{3}$ dans l'anneau $\mathbb{Z}/5\mathbb{Z}$ est $\overline{-3}$.

De même, l'inverse de $\overline{5}$ dans l'anneau $\mathbb{Z}/6\mathbb{Z}$ est $\overline{-1}$. Ainsi, $\Sigma_1 \iff \begin{cases} x \equiv -6 [5] \\ x \equiv -1 [6] \end{cases}$.

Par la même démarche que précédement, les solutions du système sont donc le

9 / 12 Binyze Mohamed

• On utilise deux fois le théorème chinois : $\begin{cases} x \equiv 3[4] \\ x \equiv 4[5] \\ x \equiv 1[3] \end{cases} \iff \begin{cases} x \equiv 3[4] \\ x \equiv -11[15] \end{cases} \iff x \equiv 19[60].$

Ainsi, les solutions du système sont donc les 19 + 60k avec $k \in \mathbb{Z}$.

Corrigé de l'exercice 30. Résolution de l'équation $x^2 - \overline{4}x + \overline{3} = \overline{0}$ dans $\mathbb{Z}/11\mathbb{Z}$. On écrit :

$$x^2 - \overline{4}x + \overline{3} = \overline{0} \iff (x - \overline{2})^2 - \overline{1} = \overline{0} \iff (x - \overline{3})(x - \overline{1}) = \overline{0}.$$

L'anneau $\mathbb{Z}/11\mathbb{Z}$ étant intègre (car 11 est premier) donc $x = \overline{3}$ ou $\overline{1}$. L'ensemble des solutions est donc $\{\overline{1}, \overline{3}\}$. Résolution de l'équation $x^2 - \overline{4}x + \overline{3} = \overline{0}$ dans $\mathbb{Z}/8\mathbb{Z}$. On a

$$x^2 - \overline{4}x + \overline{3} = \overline{0} \iff (x - \overline{2})^2 = \overline{1}.$$

Il suffit alors de déterminer les éléments $\mathbb{Z}/8\mathbb{Z}$ dont le carré vaut $\overline{1}$.

Donc, l'ensemble des solutions de l'équation $k^2=\overline{1}$ dans $\mathbb{Z}/8\mathbb{Z}$ est $\left\{-\overline{7},-\overline{5},-\overline{3},-\overline{1},\overline{1},\overline{3},\overline{5},\overline{7}\right\}$. Ainsi, l'équation est équivalente $x-\overline{2}\in\left\{-\overline{7},-\overline{5},-\overline{3},-\overline{1},\overline{1},\overline{3},\overline{5},\overline{7}\right\}$. L'ensemble des solutions est donc $\left\{-\overline{5},-\overline{3},-\overline{1},\overline{1},\overline{3},\overline{5}\right\}$.

Corrigé de l'exercice 31. 1. On a $x^2 = \overline{1} \iff (x - \overline{1})(x + \overline{1}) = 0$. Comme $\mathbb{Z}/p\mathbb{Z}$ est un corps, $x = \overline{-1}$ ou $x = \overline{1}$. Dans le corps $\mathbb{Z}/p\mathbb{Z}$, tout élément de $\{\overline{1}, \ldots, \overline{p-1}\}$ est inversible et son inverse est différent de lui-même, sauf pour $\overline{1}$ et $\overline{-1}$ d'après ci-dessus. Dans le produit $\overline{2} \times \ldots \times \overline{p-2}$, on regroupe chaque terme avec son inverse et par suite, on a $\overline{1} \times \ldots \times \overline{p-1} = \overline{1} \times \overline{p-1} = \overline{-1}$. D'où $(p-1)! \equiv -1$ [p].

2. Puisque $k \in \{1, ..., n-1\}$, alors k est un facteur de (n-1)! et il existe $\ell \in \mathbb{N}$ tel que $(n-1)! = k\ell$ donc $k \times (-\ell) \equiv 1 [n]$ et k est inversible dans $\mathbb{Z}/n\mathbb{Z}$.

Comme k est inversible dans $\mathbb{Z}/n\mathbb{Z}$, alors k est premier avec n et ceci est vrai pour tout $k \in \{1, \ldots, n-1\}$ et par suite, n est premier. (sinon k divise n donc $k \wedge n \neq 1$)!

Corrigé de l'exercice 32. L'algorithme d'Euclide (divisions euclidiennes successives) donne :

$$X^{4} - 4X^{3} + 2X^{2} + X + 6 = (X^{4} - 3X^{3} + 2X^{2} + X + 5) \times 1 + (-X^{3} + 1)$$

$$X^{4} - 3X^{3} + 2X^{2} + X + 5 = (-X^{3} + 1)(-X + 3) + \underbrace{(2X^{2} + 2X + 2)}_{\text{dernier reste non nul}}$$

$$-X^{3} + 1 = (2X^{2} + 2X + 2)\left(-\frac{1}{2}X + \frac{1}{2}\right) + 0$$

donc $D = A \wedge B = X^2 + X + 1$ (D est unitaire). Trouvons les coefficients de Bézout U et V tels que AU + BV = D. En remontant l'algorithme précédent, on a successivement :

$$2X^{2} + 2X + 2 = (-X^{3} + 1)(X - 3) + B$$
$$2X^{2} + 2X + 2 = (A - B)(X - 3) + B = A.(X - 3) + (-X + 4).B$$

On peut donc choisir $U = \frac{1}{2}X - \frac{3}{2}$ et $V = \frac{-1}{2}X + 2$.

Corrigé de l'exercice 33. P est à racines simples si, et seulement si, P et P' n'ont aucunes racines complexes en commun si, et seulement si, $P \wedge P' = 1$.

Corrigé de l'exercice 34. 1. Si $\alpha \in \mathbb{K}$ est une racine de P, alors le polynôme $X - \alpha$ divise P et par suite, P n'est pas irréductible sur \mathbb{K} .

2. Soit $P \in \mathbb{K}[X]$ tel que deg P = 2 ou 3. Supposons P n'est pas irréductible sur \mathbb{K} . On peut écrire P sous la forme P = AB avec deg $A \ge 1$, deg $B \ge 1$. Comme deg P = 2 ou 3, nécessairement deg A = 1 ou deg B = 1 et dans les deux cas, P admet une racine dans \mathbb{K} .

Binyze Mohamed $10 \ / \ 12$

3. La réciproque n'est pas vraie si deg $P \ge 4$. En effet : le polynôme $X^4 + 1$ n'a pas de racines dans $\mathbb R$ pourtant P n'est pas irréductible sur $\mathbb R$ puisque $X^4 + 1 = (X^2 + \sqrt{2}X + 1)(X^2 - \sqrt{2}X + 1)$ et les deux trinômes obtenus sont à discriminant strictement négatif.

4. Soit $\alpha \in \mathbb{Z}$ une racine de $X^2 - X - 1$. On a $\alpha^2 = \alpha + 1$ donc α divise $\alpha + 1$ ce qui est absurde donc, le polynôme $X^2 - X - 1$ n'a pas de racines dans \mathbb{Z} et par suite, $X^2 - X - 1$ est irréductible sur \mathbb{Z} .

De même, le polynôme $X^3 - X - 1$ est irréductible sur \mathbb{Z} .

5. Soit $\alpha = \frac{p}{q} \in \mathbb{Q}$ avec $p \wedge q = 1$ une racine de $8X^3 - 6X - 1$. On a

$$8\alpha^3 - 6\alpha - 1 = 0 \iff 8p^3 - 6pq^2 = q^3 \iff 8p^3 = q^2(q+6p) \implies p \mid q^2(q+6p) \stackrel{\text{Gauss}}{\Longrightarrow} p \mid q+6p \implies p \mid q$$

et ceci est absurde car $p \wedge q = 1$. On en déduit que $8X^3 - 6X - 1$ est irréductible sur \mathbb{Q} . Par linéarisation, on a

$$\cos^{3}\left(\frac{\pi}{9}\right) = \frac{1}{4}\cos\left(\frac{3\pi}{9}\right) + \frac{3}{4}\cos\left(\frac{\pi}{9}\right) = \frac{1}{8} + \frac{3}{4}\cos\left(\frac{\pi}{9}\right)$$

donc $\cos\left(\frac{\pi}{9}\right)$ est racine de $8X^3 - 6X - 1$ et, par suite, $\cos\left(\frac{\pi}{9}\right)$ est irrationnel.

Corrigé de l'exercice 35. Soit $q \in [[1, n]]$ et $\omega_q = \mathrm{e}^{2i\pi/q}$. On a

$$\omega_q$$
 est racine de $X^k - 1 \iff \omega_q^k = 1 \iff \mathrm{e}^{2ik\pi/q} = 1 \iff \frac{k}{q} \in \mathbb{Z} \iff q \text{ divise } k.$

Donc le facteur $(X - \omega_q)$ apparaît α_k fois pour chaque $k \in [[1, n]]$ tel que q divise k. Ainsi, La multiplicité de ω_q en tant que racine de P vaut $\sum_{\substack{k=1\\ q \mid k}}^n \alpha_k$.

Corrigé de l'exercice 36. Soit $P \in \mathbb{C}[X]$, $\deg P = n$ tel que P' divise P. Notons z_1, \ldots, z_k les racines de P' de multiplicite $\alpha_1, \ldots, \alpha_k$.

On a $\sum_{i=1}^k \alpha_i = n-1$. Comme P' divise P, toute racine de P' est racine de $P: P(z_i) = P'(z_i) = 0, 1 \le i \le k$. Donc

 z_i est racine de P de multiplicité $\alpha_i + 1$ et on a, $n \ge \sum_{i=1}^k \alpha_i + 1 = n - 1 + k$ et par suite, $k \le 1$ c'est-à-dire P' admet une seule racine. On en déduit que $P' = c(X - \alpha)^{n-1}$ avec c, $\alpha \in \mathbb{C}$. Finalement, $P = \lambda(X - \alpha)^n$ avec λ , $\alpha \in \mathbb{C}$. Réciproquement, les polynômes de la forme ci-dessus est solution.

Corrigé de l'exercice 37. On commence par chercher les racines de P. On a :

$$P(x) = 0 \iff \left(\frac{1+x}{1-x}\right)^m = \mathrm{e}^{2i\pi\alpha} \quad \text{avec} \quad \theta_k = \frac{\pi\alpha + k\pi}{m}$$

$$\iff \frac{1+x}{1-x} = \mathrm{e}^{2i\theta_k} \quad \text{avec} \quad 1 \le k \le m-1$$

$$\iff x = \frac{\mathrm{e}^{2i\theta_k} - 1}{\mathrm{e}^{2i\theta_k} + 1}$$

$$\iff x = \frac{\mathrm{e}^{i\theta_k}}{\mathrm{e}^{i\theta_k}} \frac{\mathrm{e}^{i\theta_k} - \mathrm{e}^{-i\theta_k}}{\mathrm{e}^{i\theta_k} + \mathrm{e}^{-i\theta_k}} \quad \text{règle de l'arc moitié}$$

$$\iff x = \frac{2i\sin(\theta_k)}{2\cos(\theta_k)}$$

$$\iff x = i\tan\theta_k \quad \text{qui est bien défini puisque } \frac{\alpha}{\pi} \quad \text{n'est pas rationnel.}$$

On trouve m racines distinctes pour P polynôme de degré m donc $P = \lambda \prod_{k=0}^{m-1} (X - i \tan \theta_k)$ avec λ est le coefficient dominant de P. Or $\lambda = 1 + (-1)^{m+1} e^{2i\pi\alpha}$. Finalement :

Binyze Mohamed $11\ /\ 12$

$$P = (1 + (-1)^{m+1} e^{2i\pi\alpha}) \prod_{k=0}^{m-1} (X - i \tan \theta_k).$$

Corrigé de l'exercice 38. Les racines de X^n-1 sont les $e^{2ik\pi/n}$ avec $1 \le k \le n-1$ donc $X^n-1 = \prod_{k=0}^{n-1} (X - e^{2ik\pi/n})$ (*).

On écrit $\sin\left(x + \frac{k\pi}{n}\right) = \frac{e^{i(x+k\pi/n)} - e^{-i(x+k\pi/n)}}{2i} = \frac{e^{2ik\pi/n} - e^{-2ix}}{2i e^{-ix} e^{ik\pi/n}}$ d'où, en utilisant les relations

- $\prod_{k=0}^{n-1} (e^{-2ix} e^{2ik\pi/n}) = e^{-2inx} 1$ obtenue en remplaçant X par e^{-2ix} dans (\star) et
- $\prod_{k=0}^{n-1} e^{ik\pi/n} = \exp\left(\frac{i\pi}{n} \frac{n(n-1)}{2}\right) = i^{n-1} \operatorname{car} \sum_{k=0}^{n-1} k = \frac{n(n-1)}{2},$

on obtient:

$$\Pi_{s} = \frac{1}{(2i)^{n} e^{-inx}} \prod_{k=0}^{n-1} \left(\frac{e^{2ik\pi/n} - e^{-2ix}}{e^{ik\pi/n}} \right)$$

$$= \frac{(-1)^{n}}{(2i)^{n} e^{-inx}} \frac{\prod_{k=0}^{n-1} \left(e^{-2ix} - e^{2ik\pi/n} \right)}{\prod_{k=0}^{n-1} e^{ik\pi/n}}$$

$$= \frac{(-1)^{n}}{(2i)^{n} e^{-inx}} \frac{e^{-2inx} - 1}{i^{n-1}}$$

$$= \frac{(-1)^{n}(-2i\sin nx)}{2^{n}i^{2n-1}} = \frac{\sin nx}{2^{n-1}}.$$

De même, $\Pi_c = \frac{\sin(nx + \pi/2)}{2^{n-1}} \cos x = \sin(x + \pi/2).$

Corrigé de l'exercice 39. Si $\frac{p}{q}$ est une racine de (\star) , alors

$$a_n p^n + a_{n-1} p^{n-1} q + a_{n-2} p^{n-2} q^2 + \dots + a_1 p q^{n-1} + a_0 q^n = 0$$
 (1).

- D'après (1), on a : $a_np^n = -q(a_{n-1}p^{n-1} + a_{n-2}p^{n-2}q + ... + a_1pq^{n-2} + a_0q^{n-1})$. On en déduit que q divise a_np^n . Comme p et q sont premiers entre eux, par le lemme de Gauss, q divise a_n .
- D'après (1), on a : $-p(a_np^{n-1} + a_{n-1}p^{n-2}q + a_{n-2}p^{n-3}q^2 + ... + a_1q^{n-1}) = a_0q^n$. On en déduit que p divise a_0q^n . Comme p et q sont premiers entre eux, par le lemme de Gauss, p divise a_0 .

Binyze Mohamed $12\ /\ 12$