TD Nº 1

Structures algébriques usuelles

1 Groupes

Exercice 1. Dans chaque cas, montrer que H est un sous-groupe de G.

1.
$$H = \mathbb{U}_n = \left\{ z \in \mathbb{C}, \ z^n = 1 \right\}, \ G = \left(\mathbb{C}^*, \times \right).$$

2. $H = \left\{ a + b\sqrt{3}, \ (a,b) \in \mathbb{N} \times \mathbb{Z} \ \text{tq} \ a^2 - 3b^2 = 1 \right\}, \ G = \left(\mathbb{R}_+^*, \times \right).$

$$3. \ H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, \ (x,y,z) \in \mathbb{R}^3 \right\}, \ G = \left(\mathcal{GL}_3(\mathbb{R}), \times \right).$$

Exercice 2. Soit G un groupe tel que $x^2 = e$ pour tout $x \in G$. Montrer que G est abélien.

Exercice 3. Table du groupe (S_3, \circ) . L'ensemble S_3 possède 6 éléments :

- l'application identité : $Id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$.
- trois transpositions: $(12) := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$; $(13) := \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$; $(23) := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.
- deux cycles de longueur 3 : (123) := $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$; (132) := $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.
- **1.** Dresser la table du groupe (S_3, \circ) .

$\sigma \circ \sigma'$	$\sigma = \operatorname{Id}$	σ = (12)	σ = (13)	σ = (23)	σ = (123)	σ = (132)
$\sigma' = \operatorname{Id}$						
$\sigma' = (12)$						
σ' = (13)						
$\sigma' = (23)$						
σ' = (123)						
$\sigma' = (132)$						

- **2.** En déduire l'inverse de chacun des éléments du groupe (S_3, \circ) .
- **3.** Le groupe (S_3, \circ) est-il abélien? décrire tous les sous-groupes du groupe symétrique (S_3, \circ) .

Exercice 4. 1. Soit $n \in \mathbb{N}^*$. Montrer que $\varphi : (\mathbb{Z}/n\mathbb{Z}, +) \longrightarrow (\mathbb{U}_n, \times)$ est un isomorphisme de groupes. $\overline{k} \longmapsto e^{2ik\pi/n}$

2. Montrer que $\varphi: (\mathbb{R}, +) \longrightarrow (\mathcal{GL}_2(\mathbb{R}), \times)$ est un morphisme de groupes. Quel est son noyau? $\theta \longmapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Exercice 5. Morphismes de $(\mathbb{Q},+)$ dans $(\mathbb{Z},+)$. Soit $f:\mathbb{Q} \longrightarrow \mathbb{Z}$ un morphismes de groupes.

- **1.** Montrer que f(n) = nf(1) et $f\left(\frac{1}{m}\right) = \frac{1}{m}f(1)$ pour tout $(m,n) \in \mathbb{N}^* \times \mathbb{N}$.
- **2.** Montrer alors que f est le morphisme nul.

Exercice 6. Montrer que les groupes produits $(\{-1,1\} \times \{-1,1\}, \times)$ et $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$ sont isomorphes et déterminer explicitement l'isomorphisme. **Indication :** commencer par dresser la table de multiplication de chaque groupe.

Exercice 7. Sous-groupe engendré par deux éléments. Soient a,b deux éléments d'un groupe G et

$$H = \left\{ a^{i_1} b^{j_1} a^{i_2} b^{j_2} \dots a^{i_n} b^{j_n}, \ n \in \mathbb{N}^*, i_1, j_1, i_2, j_2, \dots, i_n, j_n \in \mathbb{Z} \right\}.$$

- 1. Montrer que H est le sous-groupe engendré par a et b.
- **2.** Simplifier la description de H lorsque a et b commutent.

Binyze Mohamed $1 \ / \ 4$

- **3.** Quel est le sous-groupe de $(\mathcal{GL}_3(\mathbb{R}), \times)$ engendré par $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$?
- **Exercice 8.** Montrer que $\frac{1}{3}\mathbb{Z} + \frac{3}{5}\mathbb{Z}$ est un sous-groupe monogène de $(\mathbb{Q}, +)$.

Exercice 9. Montrer que le groupe additif $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$ n'est pas cyclique. **Indication :** raisonner par l'absurde.

Exercice 10. Parties génératrices de S_n . Soit r un entier compris entre 2 et n, $\sigma = (x_1 \ x_2 \ \dots \ x_r) \in S_n$ un cycle de longueur r et τ une permutation de S_n .

- 1. Montrer $\tau \circ \sigma \circ \tau^{-1} = (\tau(x_1) \ \tau(x_2) \ \dots \ \tau(x_r)).$
- **2.** En déduire que S_n est engendré par :
 - **a.** les n-1 transpositions (1 k) avec $2 \le k \le n$.
 - **b.** les n-1 transpositions (k k+1) avec $1 \le k \le n-1$. Indication: calculer $(k-1 k)(1 k-1)(k-1 k)^{-1}$ pour $k \ge 3$.
 - **c.** (12) et (12... n). **Indication**: calculer (12... n)(k k + 1)(12... n)⁻¹ pour $1 \le k \le n 1$.

Exercice 11. Propriétés d'isomorphismes. Soit $\varphi:(G,\star)\longrightarrow (H,\intercal)$ un isomorphisme de groupes.

- 1. Montrer que G est abélien si, et seulement si, H est abélien.
- 2. Montrer que G est monogène de générateur a si, et seulement si, H est monogène de générateur $\varphi(a)$.
- 3. En déduire que G est cyclique si, et seulement si, H est cyclique.
- **4.** Soit $(k,b) \in \mathbb{Z} \times G$ fixé. Montrer que l'équation $x^k = b$ a le même nombre de solutions dans G que $x^k = \varphi(b)$ dans H.
- **5.** Les groupes suivants sont-ils isomorphes : $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$ et $(\mathbb{Z}/4\mathbb{Z}, +)$; $(\mathbb{Z}/6\mathbb{Z}, +)$ et (\mathcal{S}_3, \circ) ; (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ?

2 Ordre d'un élément dans un groupe

Exercice 12. Pour commencer.

- **1.** Quel est l'ordre de $\overline{3}$ dans $(\mathbb{Z}/12\mathbb{Z}, +)$?
- 2. Soit j le complexe $e^{2i\pi/3}$. Dans le groupe $(\mathcal{GL}_3(\mathbb{C}), \times)$, quel est l'ordre de la matrice diag $(1, j, j^2)$.

Exercice 13. Éléments ayant même ordre. Soient a,b deux éléments d'un groupe G.

- 1. Montrer que b et aba^{-1} ont même ordre. Même question pour a et a^{-1} .
- **2.** On suppose ab d'ordre fini égal à n. Quel est l'ordre de ba?

Exercice 14. Ordre d'une rotation plane. Soit $\theta \in \mathbb{R}$. On pose $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \mathcal{GL}_2(\mathbb{R})$.

- 1. Montrer que R_{θ} est d'ordre fini si, et seulement si, $\frac{\theta}{2\pi} \in \mathbb{Q}$.
- 2. Si $\frac{\theta}{2\pi} = \frac{p}{q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tels que $p \wedge q = 1$. Déterminer l'ordre de R_{θ} .

Exercice 15. Calcul de l'ordre dans un groupe.

- 1. Soit G un groupe et a un élément de G d'ordre fini égal à n.
 - **a.** Soit $m \in \mathbb{N}^*$. Montrer que l'ordre de a^m est égal à $\frac{n}{m \wedge n}$.
 - **b.** En déduire l'ordre de \overline{m} dans $\mathbb{Z}/n\mathbb{Z}$.
- **2.** Soient G, H deux groupes et $a \in G$, $b \in H$ d'ordres respectifs p et q.
 - **a.** Montrer que l'ordre de (a,b) dans $G \times H$ est égal à $p \vee q$.
 - **b.** Déterminer les éléments d'ordre 3 dans le groupe $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}, +)$.

Exercice 16. Produit de groupes cycliques. Soit G et H deux groupes cycliques.

Démontrer que $G \times H$ est cyclique si, et seulement si, les ordres de G et H sont premiers entre eux.

Exercice 17. Signature et ordre d'un cycle. Soit $n \ge 2$ et $\sigma = (i_1 \ i_2 \ \dots \ i_r) \in \mathcal{S}_n$ un cycle de longeur r avec $2 \le r \le n$.

1. Démontrer que la signature de σ est égale à $(-1)^{r-1}$.

Binyze Mohamed $2 \ / \ 4$

2. Montrer que l'ordre de σ est égal à r.

Exercice 18. Ordre d'un élément et isomorphisme. Soit $f:G\longrightarrow H$ un morphisme de groupes.

- 1. Soit $a \in G$ d'ordre fini. Comparer l'ordre de a et celui de f(a). Que peut-on dire si f est injectif?
- 2. Supposons f bijectif et G est fini. Montrer que G et H ont exactement le même nombre d'éléments de chaque ordre.
- **3. Application :** les groupes $\mathbb{Z}/12\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ sont-ils isomorphes?

Exercice 19. Ordre du produit d'éléments dans un groupe. Soit a et b deux éléments d'un groupe G tels que ab = ba. Soit p l'ordre de a et q l'ordre de b.

- 1. Montrer que l'ordre de ab est fini et divise $p \vee q$. Le résultat est-il vrai si a et b ne commutent pas?
- **2.** Supposons $p \wedge q = 1$. Montrer que l'ordre de ab est égal à $p \vee q$. Le résultat est-il vrai si p et q ne sont pas premiers entre eux?
- **3.** Soit $k \ge 3$. Généraliser le résultat de la question précédente au produit des a_i , $1 \le i \le k$ avec $a_i a_j = a_j a_i$ pour tout $i \ne j$.
- **4. Application :** décomposer en cycles disjoints la permutation suivante : $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 2 & 7 & 4 & 6 & 5 & 8 & 1 & 3 & 13 & 9 & 12 & 10 & 11 \end{pmatrix}$. Calculer son ordre, sa signature.

Exercice 20. Groupe d'ordre un nombre premier.

- 1. Soit G un groupe d'ordre p un nombre premier. Montrer que G est cyclique.
- 2. Soit H un groupe non trivial d'élément neutre e. On suppose que H n'admet pas de sous-groupes non triviaux.
 - **a.** Soit $a \in H \setminus \{e\}$. Justifier que $H = \langle a \rangle$.
 - b. Montrer que H est cyclique d'ordre un nombre premier. Indication : utiliser le théorème de classification des groupes monogènes.

3 Anneaux, corps et algèbres

Exercice 21. Pour commencer.

- 1. Montrer que l'ensemble $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + \sqrt{2}b, (a,b) \in \mathbb{Z}^2\right\}$ est un sous-anneau de $(\mathbb{R}, +, \times)$.
- 2. Montrer que l'ensemble $\mathcal{A} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}$ est un corps isomorphe à \mathbb{C} .

Exercice 22. Anneau des entiers de Gauss. Montrer que $\mathbb{Z}[i] = \{a + ib, (a,b) \in \mathbb{Z}^2\}$ est un sous-anneau de $(\mathbb{C}, +, \times)$ et préciser ses éléments inversibles.

Exercice 23. Élément nilpotent dans un anneau. Soit A un anneau et $a \in A$.

- **1.** On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $(1-a)^p = 0$.
 - **a.** Montrer que a est inversible, puis calculer son inverse.
 - **b.** Montrer que $(1 a^{-1})^p = 0$.
- **2. Application :** montrer que la matrice $M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ est inversible, puis calculer son inverse.
- **3.** Supposons A commutatif et posons $\mathcal{N} = \{ a \in A, \exists p \in \mathbb{N}^* \text{ tel que } a^p = 0 \}$ l'ensemble des éléments nilpotents de A.
 - a. Montrer que $\mathcal N$ est un idéal de A. Le résultat reste vrai si A n'est pas commutatif?
 - **b.** Déterminer \mathcal{N} lorsque $A = \mathbb{Z}/n\mathbb{Z}$ avec $n \geq 2$.

Exercice 24. Morphismes d'anneaux de \mathbb{R} . Soit $f:\mathbb{R} \longrightarrow \mathbb{R}$ un morphisme d'anneaux.

- **1.** Démonter que, pour tout $n \in \mathbb{Z}$, f(n) = n. En déduire que f(r) = r pour tout $r \in \mathbb{Q}$.
- 2. Démonter que f est croissante.
- **3.** En déduire que $f = \mathrm{Id}_{\mathbb{R}}$. Indication : pour $x \in \mathbb{R}$, utiliser l'encadrement : $\forall n \in \mathbb{N}^*$, $\frac{\lfloor x.10^n \rfloor}{10^n} \le x < \frac{\lfloor x.10^n \rfloor + 1}{10^n}$.

Exercice 25. Les inversibles de $\mathbb{Z}/8\mathbb{Z}$ et $\mathbb{Z}/11\mathbb{Z}$.

Binyze Mohamed $3 \ / \ 4$

- 1. Déterminer les inversibles de le l'anneau $\mathbb{Z}/8\mathbb{Z}$. Le groupe des inversibles de l'anneau $\mathbb{Z}/8\mathbb{Z}$ est-il cyclique?
- 2. Montrer que les inversibles de l'anneau $\mathbb{Z}/11\mathbb{Z}$ forment un groupe cyclique. Indication : calculer les puissances de $\overline{2}$.

Exercice 26. Idéaux d'un corps / Cas d'égalité : anneau - idéal. Soit A un anneau commutatif non nul.

- 1. Soit I un idéal de A. Démontrer que : $I \cap \mathbb{U}(A) \neq \emptyset \implies I = A$.
- 2. On suppose que A n'admet que les idéaux triviaux $\{0\}$ et A. Démontrer que A est un corps.
- 3. On suppose que A est intègre et qu'il n'admet qu'un nombre fini d'idéaux. Démontrer que A est un corps.
- **4.** Montrer que les seuls idéaux d'un corps K sont $\{0_K\}$ et lui-même.

Exercice 27. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On note $\mathscr{C}_A = \{ M \in \mathcal{M}_n(\mathbb{R}), AM = MA \}$. Montrer que \mathscr{C}_A est une algèbre.

Exercice 28. Montrer que l'ensemble $\mathcal{A} = \left\{ \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}, (a,b,c) \in \mathbb{R}^3 \right\}$ est une algèbre, et en donner une base en tant qu'espace vectoriel.

Exercice 29. Résoudre les systèmes de congruence suivants : $\begin{cases} x = 1[6] \\ x = 2[7] \end{cases}, \begin{cases} 3x = 2[5] \\ 5x = 1[6] \end{cases} \text{ et } \begin{cases} x = 3[4] \\ x = 4[5] \\ x = 1[3] \end{cases}$

Exercice 30. Résoudre l'équation $x^2 - \overline{4}x + \overline{3} = \overline{0}$ dans $\mathbb{Z}/11\mathbb{Z}$ et dans $\mathbb{Z}/8\mathbb{Z}$.

Exercice 31. Théorème de Wilson. Soit $n \ge 2$ un entier. Le but est de montrer le théorème de Wilson :

$$n \text{ premier} \iff (n-1)! \equiv -1[n].$$

- 1. Soit p un nombre premier. Combien de solutions l'équation $x^2 = \overline{1}$ admet-elle dans $\mathbb{Z}/p\mathbb{Z}$. En déduire que $(p-1)! \equiv -1[p]$.
- **2.** Supposons n divise (n-1)!+1. Montrer que $\forall k \in [[1,n-1]], k$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$. En déduire que n est premier.

Exercice 32. Calculer le pgcd et les coefficients de Bézout des pôlynomes $A = X^4 - 4X^3 + 2X^2 + X + 6$ et $B = X^4 - 3X^3 + 2X^2 + X + 5$.

Exercice 33. Soit $P \in \mathbb{C}[X]$. Montrer P est à racines simples si, et seulement si, $P \wedge P' = 1$.

Exercice 34. Irréductible versus avoir une racine. Soit $P \in \mathbb{K}[X]$.

- 1. Montrer que, si P admet une racine dans \mathbb{K} alors P n'est pas irréductible sur \mathbb{K} .
- ${\bf 2.}\,$ Supposons $\deg P=2$ ou 3. Démontrer la réciproque de la question précédente.
- **3.** La réciproque de la première question reste vraie pour deg $P \ge 4$? Indication : considérons $P = X^4 + 1$ dans $\mathbb{R}[X]$.
- **4.** Montrer que les polynômes $X^2 X 1$ et $X^3 X 1$ sont irréductibles sur \mathbb{Z} .
- **5.** Montrer que $8X^3 6X 1$ est irréductible sur \mathbb{Q} . En déduire que $\cos\left(\frac{\pi}{9}\right)$ est irrationnel.

Exercice 35. Soit $n \in \mathbb{N}^*$. On considère le polynôme $P = \prod_{k=1}^n (X^k - 1)^{\alpha_k}$. Soit $q \in [[1, n]]$ et $\omega_q = e^{2i\pi/q}$.

Montrer que la multiplicité de ω_q en tant que racine de P vaut $\sum_{\substack{k=1\\ a \mid k}}^n \alpha_k$.

Exercice 36. Trouver tous les polynômes $P \in \mathbb{C}[X]$ tels que P' divise P.

Exercice 37. Décomposer en facteurs du premier degré le polynôme $P = (1 + X)^m - e^{2i\pi\alpha}(1 - X)^m$, $\frac{\alpha}{\pi} \in \mathbb{R} \setminus \mathbb{Q}$.

Exercice 38. Factoriser dans $\mathbb{C}[X]$ le polynôme $X^n - 1$, puis calculer $\prod_s = \prod_{k=0}^{n-1} \sin\left(x + \frac{k\pi}{n}\right)$ et $\prod_c = \prod_{k=0}^{n-1} \cos\left(x + \frac{k\pi}{n}\right)$, $x \in \mathbb{R}$.

Exercice 39. On considère l'équation $(\star): a_n x^n + \ldots + a_1 x + a_0 = 0$ où les coefficients sont dans \mathbb{Z} . Montrer que si $\frac{p}{q}$ est racine de (\star) avec $p \wedge q = 1$ alors $p \mid a_0$ et $q \mid a_n$.

Binyze Mohamed $4 \ / \ 4$