Chapitre 1

Structures algébriques usuelles

M. BINYZE

https://supspé.com

CPGE Laâyoune

Filière MP

2025-2026

Plan

- Groupes
- 2 Anneaux
- 3 Idéal d'un anneau commutatif
- 4 Anneau des polynômes à une indéterminée
- 6 Algèbres

Plan

- Groupes
- 2 Anneaux
- 3 Idéal d'un anneau commutatif
- 4 Anneau des polynômes à une indéterminée
- 6 Algèbres

Compléments sur les groupes

G désigne un groupe multiplicatif de neutre e.

Théorème 1.1 (sous-groupes de $(\mathbb{Z},+)$).

Les sous-groupes de $(\mathbb{Z},+)$ sont de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$.

Théorème 1.2 (groupe $(\mathbb{Z}/n\mathbb{Z},+)$).

Soit $n \in \mathbb{N}^*$. L'ensemble $\mathbb{Z}/n\mathbb{Z}$ des classes de congruences modulo n muni de la l.c.i. notée + définie par :

$$\forall \overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}, \ \overline{a} + \overline{b} = \overline{a+b}$$

est un groupe abélien de neutre $n\mathbb{Z}$. De plus :

- $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \dots, \overline{n-1}\}.$

Proposition 1.1 (intersection de sous-groupes).

Soit $(H_i)_{i \in I}$ une famille de sous-groupes de G. L'ensemble $H = \bigcap_{i \in I} H_i$ est un sous-groupe de G.

Définition 1.1 (groupe engendré par une partie).

Soit A une partie de G. On appelle **groupe engendré** par A l'ensemble, noté < A >, défini par

$$< A > \stackrel{\mathrm{def}}{=} \bigcap_{\substack{H \text{ sous-groupe de } G \\ A \subset H}} H$$

Lorsque $G = \langle A \rangle$, on dit que G est **engendré** par A ou que A est une **partie génératrice** de G.

Théorème 1.3 (caractérisation du sous-groupe engendré par une partie).

Soit A une partie de G.

- $oxed{1}$ < A > est le plus petit sous-groupe (au sens de l'inclusion) de G contenant A.
- $Si A \neq \emptyset$, alors

$$\left| \langle A \rangle = \left\{ a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_n^{\varepsilon_n}, \ n \in \mathbb{N}^*, \ \forall i \in [[1, n]], \ \varepsilon_i \in \{-1, 1\}, \ a_i \in A \right\} \right|.$$

- 1 $n\mathbb{Z} = \langle n \rangle$.
- $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$ où $\overline{1}$ la classe de 1 modulo n.
- **3** Le groupe symétrique (S_n, \circ) est engendré par les transpositions.

Groupe monogène, groupe cyclique

Définition 1.2 (groupe monogène, groupe cyclique).

1 On dit que G est **monogène** lorsqu'il existe $a \in G$ tel que $a \in G$

$$G = \langle a \rangle = \{a^k, k \in \mathbb{Z}\}.$$

L'élémént a est appelé un $\emph{générateur}$ du groupe G.

2 On dit que G est cyclique lorsqu'il est monogène et fini.

¹En notation additive, $\langle a \rangle = \{ka, k \in \mathbb{Z}\}.$

- 1 $n\mathbb{Z} = \langle n \rangle$, donc $(n\mathbb{Z}, +)$ est monogène.
- $\mathbb{Z}/n\mathbb{Z}=<\overline{1}>$, donc $(\mathbb{Z}/n\mathbb{Z},+)$ est cyclique.
- $\mathbb{J}_n = <\omega_1> \ \, \text{où}\ \, \omega_1=\mathrm{e}^{2i\pi/n}$, donc (\mathbb{U}_n,\times) est cyclique.

Proposition 1.2 (générateurs de $\mathbb{Z}/n\mathbb{Z}$).

Les générateurs de $\mathbb{Z}/n\mathbb{Z}$ sont les \overline{k} , $k \in [1, n]$ avec $k \wedge n = 1$.

Théorème 1.4 (classification des groupes monogènes).

- **1** Tout groupe monogène infini est isomorphe à $(\mathbb{Z},+)$.
- 2 Tout groupe monogène fini (cyclique) de cardinal n est isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$.

Ordre d'un élément dans un groupe

Soit G un groupe de neutre e.

Définition 1.3 (ordre d'un groupe, ordre d'un élément).

- **1** On dit que G est **d'ordre fini** si G est fini. On appelle alors **ordre** de G le cardinal de G.
- 2 On dit qu'un élément a de G est **d'ordre fini** s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$ est appelé **l'ordre** de a:

l'ordre de
$$a = \min \left\{ k \in \mathbb{N}^*, \ a^k = e \right\}$$

- f 1 Le neutre e est l'unique élément d'ordre fini égal à 1.
- 2 Soit $a \in G \setminus \{e\}$. On a

$$a \text{ est d'ordre } n \iff \begin{cases} a^n = e \\ \forall k \in [[1, n-1]], \ a^k \neq e \end{cases}.$$

- **1** Dans $(\mathbb{Z}/6\mathbb{Z}, +)$, l'élément $\overline{4}$ est d'ordre 3.
- 2 Dans $(\mathcal{GL}_2(\mathbb{K}), \times)$, l'élément $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ est d'ordre infini.
- 3 Dans (\mathbb{C}^* , ×), l'élément $\omega_1 = e^{2i\pi/n}$ est d'ordre n.
- 4 Dans (S_n, \circ) , toute transposition $\tau \in S_n \setminus \{\mathrm{Id}\}$ est d'ordre 2.

Proposition 1.3 (ordre d'un élément et ordre du sous-groupe engendré cet élément).

Soit $a \in G$.

1 a est d'ordre fini d si, et seulement si, < a > est d'ordre fini. Dans ce cas,

$$| < a > = \{e, a, \dots, a^{d-1}\} |$$

f 2 En particulier, l'ordre de a est l'ordre du sous-groupe engendré par a.

Corollaire 1.1 (éléments et générateurs d'un groupe cyclique).

Soit G un groupe cyclique d'ordre n de générateur a.

$$G = \{e, a, a^2, \dots, a^{n-1}\}.$$

2 Les générateurs de G sont les a^k , où $k \wedge n = 1$.

Proposition 1.4 (caractérisation de l'ordre d'un élément).

Soit $a \in G$. Alors

a est d'ordre n si, et seulement si, $\forall k \in \mathbb{Z}, a^k = e \iff n \mid k$.

Théorème 1.5 (ordre d'un élément divise l'ordre du groupe).

Soit G un groupe d'ordre fini $n \in \mathbb{N}^*$ et $a \in G$. Alors

- 1 a est d'ordre fini : $a^n = e$.
- 2 L'ordre de a divise n.

Plan

- Groupes
- 2 Anneaux
- 3 Idéal d'un anneau commutatif
- 4 Anneau des polynômes à une indéterminée
- 6 Algèbres

Compléments sur les anneaux

Théorème 2.1 (produit d'anneaux).

Soit $(A_i)_{1 \le i \le k}$ une famille d'anneaux. On définit les lois + et \times sur $A_1 \times \ldots \times A_k$ en posant, pour tout $(a_1, \ldots, a_k) \in A_1 \times \ldots \times A_k$ et $(b_1, \ldots, b_k) \in A_1 \times \ldots \times A_k$:

$$\begin{cases} (a_1, \dots, a_k) + (b_1, \dots, b_k) &= (a_1 + b_1, \dots, a_k + b_k) \\ (a_1, \dots, a_k) \times (b_1, \dots, b_k) &= (a_1 \times b_1, \dots, a_k \times b_k) \end{cases}$$

Alors $(A_1 \times \ldots \times A_k, +, \times)$ est un anneau, appelé **anneau produit**, d'élément neutre $(0_{A_1}, \ldots, 0_{A_k})$ et d'élément unité $(1_{A_1}, \ldots, 1_{A_k})$.

On note $\mathbb{U}(A)$ le groupe des éléments inversibles de l'anneau A.

Proposition 2.1 (les inversibles de l'anneau produit).

Si A_1, \ldots, A_k sont des anneaux, alors

$$| \mathbb{U}(A_1 \times \ldots \times A_k) = \mathbb{U}(A_1) \times \ldots \times \mathbb{U}(A_k) |.$$

Définition 2.1 (éléments associés).

Soit x et y dans A. On dit que x et y sont **associés** si

$$\exists a \in \mathbb{U}(A), \ x = ay$$

Anneau $(\mathbb{Z}/n\mathbb{Z},+,\times)$

Théorème 2.2 (anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$).

Soit $n \in \mathbb{N}^*$. On muni $\mathbb{Z}/n\mathbb{Z}$ de deux l.c.i. notées + et × définies par :

$$\forall \overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}, \ \overline{a} + \overline{b} = \overline{a+b} \quad \text{et} \quad \overline{a} \times \overline{b} = \overline{a \times b}.$$

Alors $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif d'élément neutre $\overline{0}$ et d'élément unité $\overline{1}$.

Théorème 2.3 (les inversibles de $\mathbb{Z}/n\mathbb{Z}$).

Les inversibles de $\mathbb{Z}/n\mathbb{Z}$ sont les \overline{k} avec $k \wedge n = 1$.

Les inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ sont exactement les générateurs du groupe additif $(\mathbb{Z}/n\mathbb{Z}, +)$.

Théorème 2.4 (restes chinois).

Soient n_1, \ldots, n_r des entiers deux à deux premiers entre eux et n leur produit. L'application¹ :

$$f : \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_r\mathbb{Z}$$
$$\overline{x}^n \longmapsto (\overline{x}^1, \ldots, \overline{x}^r)$$

est un isomorphisme d'anneaux.

 $[\]stackrel{1}{\circ}$ où \overline{x}^i est la classe de x modulo n_i

Corollaire 2.1 (système de congruences d'entiers).

Soient n_1, \ldots, n_r des entiers strictement positifs premiers entre eux deux à deux, et a_1, \ldots, a_r des entiers quelconques. Le système

(S):
$$\begin{cases} x \equiv a_1 & [n_1] \\ x \equiv a_2 & [n_2] \\ \vdots & \vdots \\ x \equiv a_r & [n_r] \end{cases}$$

admet une **unique solution modulo** $\prod_{i=1}^{r} n_i$.

Définition 2.2 (indicatrice d'Euler).

On appelle *fonction indicatrice d'Euler* l'application $\varphi: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ définie par :

$$\varphi(n) = \operatorname{Card} \left\{ k \in [[0, n-1]], \ k \wedge n = 1 \right\}$$

Le nombre des inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est $\varphi(n)$.

Proposition 2.2 (multiplicativité de l'indicatrice d'Euler).

L'indicatrice d'Euler φ est multiplicative :

$$\forall p, q \in \mathbb{N}^*, \ p \land q = 1 \implies \varphi(pq) = \varphi(p)\varphi(q)$$

Proposition 2.3 (calcul de $\varphi(n)$).

- **I** Soit p un nombre premier et $\alpha \in \mathbb{N}^*$. $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$.
- 2 Soit $n \ge 2$ et $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ la décomposition de n en facteurs premiers.

$$\varphi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right).$$

Théorème 2.5 (théorème d'Euler et le petit théorème de Fermat).

1 Soit n un entier supérieur à 2 et k un entier premier avec n.

$$k^{\varphi(n)} \equiv \mathbb{1}[n]$$
 . (théorème d'Euler)

2 Soit k un entier et p un nombre premier non diviseur de k.

$$k^{p-1} \equiv 1 [p]$$
 . (petit théorème de Fermat)

Proposition 2.4 (corps $(\mathbb{Z}/p\mathbb{Z}, +, \times)$).

 $(\mathbb{Z}/p\mathbb{Z},+,\times)$ est un corps si, et seulement si, p est un nombre premier.

Plan

- Groupes
- 2 Anneaux
- 3 Idéal d'un anneau commutatif
- 4 Anneau des polynômes à une indéterminée
- 6 Algèbres

Idéaux

Dans ce paragraphe, $(A,+,\times)$ désigne un anneau commutatif d'élément neutre 0_A et d'élément unité 1_A .

Définition 3.1 (idéal).

On appelle idéal de A toute partie I de A non vide vérifie :

$$\left\{ \begin{array}{l} \forall (x,y) \in I^2, \ x+y \in I \\ \forall x \in I, \ \forall a \in A, \ ax \in I \end{array} \right..$$

- 2 L'ensemble $n\mathbb{Z}$ est un idéal de \mathbb{Z} .

Proposition 3.1 (caractérisation d'un idéal).

$$I \text{ est un id\'eal de } A \iff \left\{ \begin{array}{l} (I,+) \text{ sous-groupe de } (A,+) \\ \\ \forall x \in I, \ \forall a \in A, \quad ax \in I \end{array} \right.$$

Théorème 3.1 (idéaux de $(\mathbb{Z}, +, \times)$).

Les idéaux de $(\mathbb{Z}, +, \times)$ sont de la forme $n\mathbb{Z}$ où $n \in \mathbb{N}$.

Proposition 3.2.

Soit $f: A \longrightarrow B$ un morphisme d'anneaux commutatifs et I un idéal de B. Alors $f^{-1}(I)$ est un idéal de A.

En particulier, ker(f) est un idéal de A.

Définition 3.2 (idéal engendré par un élément).

Soit $x \in A$. On appelle *idéal engendré par* x l'ensemble

$$xA \stackrel{\mathsf{déf}}{=} \{xa, \ a \in A\}$$

des multiples de x.

Théorème 3.2 (caractérisation de xA).

Pour tout $x \in A$, on a :

$$xA = \bigcap_{\substack{J \text{ id\'eal de } A \\ x \in J}} J.$$

Ainsi xA est le plus petit idéal de A contenant x.

Arithmétique et idéaux

Définition 3.3 (divisibilité dans un anneau intègre).

Supposons A intègre¹ et soit $(a,b) \in A^2$.

On dit que a divise b, et on écrit $a \mid b$ si $\exists u \in A, b = au$.

Proposition 3.3 (association et divisibilité en termes d'idéaux).

Supposons A intègre et soit $(a,b) \in A^2$.

- a et b sont associés $\iff aA = bA$.

 $^{^{1}}$ L'intégrité de A assure que le u ci-dessus est unique si $a \neq 0$.

Théorème 3.3 (somme d'idéaux).

Soient I_1, \ldots, I_k des idéaux de A. L'ensemble

$$I_1 + \ldots + I_k \stackrel{\text{déf}}{=} \left\{ \sum_{i=1}^k x_i, \ x_i \in I_i, \ 1 \le i \le k \right\}$$

est un idéal de A qui contient chaque I_i et est inclus dans tout idéal contenant I_1, \ldots, I_k .

Plus grand commun diviseur

- Soit $(a_1,\ldots,a_k)\in\mathbb{Z}^k$ non nuls.
 - Il existe $d \in \mathbb{N}^*$ unique tel que : $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = d\mathbb{Z}$. L'entier d est appelé le plus grand commun diviseur des $a_i, \ 1 \le i \le k$. On note $d = \operatorname{pgcd}(a_1, \ldots, a_k)$.
 - ${f 2}$ d est caractérisé par :

```
 \left\{ \begin{array}{l} \forall i \in [\![1,k]\!], \quad d \mid a_i \\ \text{et} \\ \forall \ c \in \mathbb{Z}, \quad \left( \forall i \in [\![1,k]\!], \quad c \mid a_i \implies c \mid d \right) \end{array} \right. .
```


- I En effet : $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z}$ est un idéal de \mathbb{Z} donc il existe $d \in \mathbb{N}^*$ tel que $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = d\mathbb{Z}$. S'il existe $\delta \in \mathbb{N}^*$ tel que $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = \delta\mathbb{Z}$ alors d et δ sont associés, par suite $d = \delta$ car $(d, \delta) \in (\mathbb{N}^*)^2$.
- 2 On a $\forall i \in [\![1,k]\!]$, $a_i\mathbb{Z} \subset a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = d\mathbb{Z}$ donc $d \mid a_i$ pour tout $i \in [\![1,k]\!]$. Soit $c \in \mathbb{Z}$ tel que $c \mid a_i$ pour tout $i \in [\![1,k]\!]$. On a $\forall i \in [\![1,k]\!]$, $a_i\mathbb{Z} \subset c\mathbb{Z}$ donc $d\mathbb{Z} = a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} \subset c\mathbb{Z}$ et $c \mid d$. Réciproquement soit $\delta \in \mathbb{N}^*$ tel que $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = \delta\mathbb{Z}$. On a d divise chaque a_i donc $\delta\mathbb{Z} = a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} \subset d\mathbb{Z}$ et par suite $\delta\mathbb{Z} \subset d\mathbb{Z}$. Or $\forall i \in [\![1,k]\!]$, $\delta \mid a_i$ donc $\delta \mid d$ et par suite $d\mathbb{Z} \subset \delta\mathbb{Z}$. D'où $\delta = d$.

Plan

- Groupes
- 2 Anneaux
- Idéal d'un anneau commutatif
- 4 Anneau des polynômes à une indéterminée
- 6 Algèbres

Arithmétique dans $\mathbb{K}[X]$

Dans ce paragraphe, la notation \mathbb{K} désigne un sous-corps de \mathbb{C} et le triplet $(\mathbb{K}[X],+,\times)$ désigne l'anneau des polynômes à une indéterminée à coefficients dans \mathbb{K} .

Proposition 4.1 (intégrité de $\mathbb{K}[X]$).

L'anneau $\mathbb{K}[X]$ est intègre.

Théorème 4.1 (idéaux de $\mathbb{K}[X]$).

Les idéaux de $\mathbb{K}[X]$ sont de la forme

$$P.\mathbb{K}[X] \stackrel{\text{def}}{=} \{PQ, \ Q \in \mathbb{K}[X]\}$$

où $P \in \mathbb{K}[X]$ unique à un coefficient multiplicatif non nul près.

Tout idéal de $\mathbb{K}[X]$ non réduit à $\big\{0\big\}$ est engendré par un polynôme *unitaire unique*.

L'idéal $I=\left\{P\in\mathbb{K}\left[X\right],\;P(0)=P(1)=0\right\}$ est engendré par le polynôme X(X-1).

Plus grand commun diviseur

- Soit $(P_1,\ldots,P_k)\in\mathbb{K}[X]^k$.
 - I Il existe $D \in \mathbb{K}[X]$ unitaire unique tel que : $P_1.\mathbb{K}[X] + \ldots + P_k.\mathbb{K}[X] = D.\mathbb{K}[X].$ Le polynôme D est appelé le plus grand commun diviseur des $P_i, \ 1 \le i \le k.$ On note $D = \operatorname{pgcd}(P_1, \ldots, P_k).$
 - $\mathbf{2}$ D est caractérisé par :

```
 \begin{cases} \forall i \in [[1, k]], & D \mid P_i \\ \text{et} \\ \forall \ Q \in \mathbb{K}[X], & \left( \forall i \in [[1, k]], \ Q \mid P_i \implies Q \mid D \right) \end{cases} .
```

Théorème 4.2 (être premiers entre eux versus avoir des racines dans K).

Soit $(A,B) \in \mathbb{K}[X]^2$.

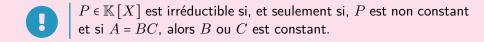
 $A \wedge B = 1 \iff A \text{ et } B \text{ n'ont aucunes racines complexes en commun}$

Polynôme irréductible sur un corps

Définition 4.1 (polynôme irréductible sur un corps).

On dit qu'un polynôme $P \in \mathbb{K}[X]$ est $\mathit{irréductible}^1$ sur \mathbb{K} lorsque

- **1** P est non constant : $\deg P \ge 1$.
- 2 Les seuls diviseurs dans $\mathbb{K}[X]$ de P sont les polynômes constants non nuls et les polynômes associés à P.



 $^{^1}$ Le polynôme P est dit réductible sur \mathbb{K} , s'il n'est pas irréductible sur \mathbb{K} .

Attention, cette notion dépend du corps considéré. Ainsi X^2 + 1 est irréductible sur $\mathbb R$ mais pas sur $\mathbb C$.

Théorème 4.3 (décomposition en produit d'irréductibles).

Soit $P \in \mathbb{K}[X]$ tel que $\deg(P) \geq 1$. Il existe $r \in \mathbb{N}^*$, des polynômes $P_1, \ldots, P_r \in \mathbb{K}[X]$ irréductibles sur \mathbb{K} , unitaires et deux à deux distincts, des entiers naturels non nuls n_1, \ldots, n_r tels que :

$$P = \lambda P_1^{n_1} \dots P_r^{n_r}$$

où λ est le coefficient dominant de P. De plus cette décomposition est unique à l'ordre près des facteurs.

Théorème 4.4 (irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$).

- **1** P est irréductible sur \mathbb{C} si, et seulement si, deg(P) = 1.
- 2 P est irréductible sur \mathbb{R} si, et seulement si, $\deg(P) = 1$ ou $\deg(P) = 2$ et de discriminant strictement négatif.

Théorème 4.5 (décomposition en produit d'irréductibles dans $\mathbb{C}[X]$).

Soit $P \in \mathbb{C}[X]$ tel que $\deg(P) \ge 1$. La décomposition de P en produit de facteurs irréductibles dans $\mathbb{C}[X]$ est de la forme :

$$P = \lambda \prod_{i=1}^{r} (X - \alpha_i)^{n_i}$$

où λ le coefficient dominant de P et $\alpha_1, \ldots, \alpha_r$ sont les racines complexes deux à deux distincts de P.

Théorème 4.6 (décomposition en produit d'irréductibles dans $\mathbb{R}[X]$).

Soit $P \in \mathbb{R}[X]$ tel que $\deg(P) \ge 1$. La décomposition de P en produit de facteurs irréductibles dans $\mathbb{R}[X]$ est de la forme :

$$P = \lambda \prod_{i=1}^{r} (X - \alpha_i)^{n_i} \prod_{j=1}^{s} (X^2 + a_j X + b_j)^{m_j}$$

où λ est le coefficient dominant de $P, \alpha_1, \ldots, \alpha_r$ sont des réels deux à deux distincts et $(a_1, b_1), \ldots, (a_s, b_s)$ sont des couples deux à deux distincts de réels tels que pour tout $j \in [\![1,s]\!], \ a_j^2 - 4b_j < 0$.

- 1 Tout polynôme de $\mathbb{R}\left[X\right]$ de degré impair admet au moins une racine réelle.
- 2 Si $z \in \mathbb{C}$ est une racine d'un polynôme réel P, alors \overline{z} est aussi une racine de P.

Plan

- Groupes
- 2 Anneaux
- 3 Idéal d'un anneau commutatif
- Anneau des polynômes à une indéterminée
- 6 Algèbres

Algèbres

Dans ce paragraphe, la notation $\mathbb K$ désigne un sous-corps de $\mathbb C.$

Définition 5.1 (algèbre).

On appelle \mathbb{K} -algèbre un ensemble \mathcal{A} muni de deux lois internes, notées + et \times et une loi externe sur le corps \mathbb{K} , notée \cdot , telle que :

- \blacksquare $(\mathcal{A},+,.)$ est un espace vectoriel sur \mathbb{K} .
- $(A, +, \times)$ est un anneau.
- $\forall \alpha \in \mathbb{K}, \ \forall (x,y) \in \mathcal{A}^2 \ (\alpha.x) \times y = x \times (\alpha.y) = \alpha.(x \times y).$

L'algèbre¹ est dite *commutative* si \times est commutative. On note usuellement $(A, +, \times, .)$.

¹Les algèbres sont unitaires.

Les exemples suivants sont des K-algèbres usuelles :

- **1** $(\mathbb{K}[X], +, \times, .)$ est une algèbre commutative.
- 2 Si E est un \mathbb{K} -espace vectoriel, $(\mathcal{L}(E), +, \circ, .)$ est une algèbre non commutative.
- Pour $n \ge 2$, $(\mathcal{M}_n(\mathbb{K}), +, \times, .)$ est une algèbre non commutative.
- 4 Soit X un ensemble non vide. $(\mathcal{F}(X,\mathbb{K}),+,\times,.)$ est une algèbre commutative.

Définition 5.2 (sous-algèbre).

On dit que \mathcal{B} est une **sous-algèbre** de l'algèbre \mathcal{A} si \mathcal{B} est un sous-anneau et un sous-espace vectoriel de \mathcal{A} .

Proposition 5.1 (caractérisation d'une sous-algèbre).

$$\mathcal{B} \text{ est une sous-algèbre de } \mathcal{A} \iff \left\{ \begin{array}{l} 1_{\mathcal{A}} \in \mathcal{B} \\ \forall \lambda \in \mathbb{K}, \ \forall (x,y) \in \mathcal{B}^2, \ x + \lambda.y \in \mathcal{B} \\ \forall (x,y) \in \mathcal{B}^2, \ x \times y \in \mathcal{B} \end{array} \right.$$

Définition 5.3 (morphisme d'algèbres).

Soit \mathcal{A} et \mathcal{B} deux \mathbb{K} -algèbres. On dit que $f:\mathcal{A}\longrightarrow\mathcal{B}$ est un **morphisme d'algèbres** si f est un morphisme d'anneaux et un morphisme d'espaces vectoriels¹.

$$1 \forall (x,y) \in \mathcal{A}^2, \ \forall \lambda \in \mathbb{K}, \ f(x+\lambda \cdot y) = f(x) + \lambda \cdot f(y).$$

Soit E un espace vectoriel sur \mathbb{K} de dimension n et \mathcal{B} une base de E. L'application qui, à $u \longmapsto \operatorname{Mat}_{\mathcal{B}}(u)$ est un morphisme d'algèbres de $(\mathcal{L}(E),+,\circ,.)$ dans $(\mathcal{M}_n(\mathbb{K}),+,\times,.)$.

Merci pour votre attention!