Structures algébriques usuelles et groupe symétrique (rappel MPSI)

Binyze Mohamed

MP 2025-2026

Sommaire

2	Structure d'anneau	3
3	Groupe symétrique	4

1 Structure de groupe

Structure de groupe

Groupe et sous-groupe

Définition 1.1.

vocabulaire sur les lois de composition internes

1

Soit E un ensemble. On appelle **loi de composition interne** (l.c.i.) sur E toute application de $E \times E$ dans E, notée : $E \times E \longrightarrow E$. L'élément $x \star y$ est appelé **composé** de x par y via la loi \star . $(x,y) \longmapsto x \star y$

- 1. La loi \star est dite **commutative** si : $\forall (x,y) \in E^2$, $x \star y = y \star x$.
- **2.** La loi \star est dite **associative** si : $\forall (x,y,z) \in E^3$, $x \star (y \star z) = (x \star y) \star z$.
- **3.** Si \top est une autre l.c.i. sur E, on dit que la loi \star est **distributive** sur la loi \top si :

$$\forall (x,y,z) \in E^3, \ x \star (y \top z) = (x \star y) \top (x \star z) \text{ et } (y \top z) \star x = (y \star x) \top (z \star x).$$

- **4.** On dit qu'un élément e de E est **neutre** 1 pour la loi \star si : $\forall x \in E$, $e \star x = x \star e = x$.
- **5.** Lorsque E possède un neutre e, on dit qu'un élément $x \in E$ est *inversible* si : $\exists x' \in E, \ x \star x' = x' \star x = e$. Si de plus la loi \star est associative, x' est *unique* et appelé *l'inverse* de x. On le note souvent x^{-1} ou -x.
 - 1. Lorsqu'un tel élément existe, il est unique.

Proposition 1.1.

inversibilité du produit de deux éléments inversibles

Soit \star une l.c.i. sur un ensemble E associative et possédant un neutre e.

- **1.** Si $x \in E$ est inversible, alors x^{-1} l'est aussi et $(x^{-1})^{-1} = x$.
- **2.** Si $x, y \in E$ sont inversibles, alors $x \star y$ l'est aussi et $(x \star y)^{-1} = y^{-1} \star x^{-1}$.

Définition 1.2.

partie stable par une l.c.i.

Soit \star une l.c.i. sur un ensemble E et $F \subset E$ non vide. On dit que F est stable par \star si : $\forall (x,y) \in F^2$, $x \star y \in F$.

Définition 1.3. groupe

On appelle **groupe** tout couple (G, \star) formé d'un ensemble G et d'une l.c.i. \star sur G vérifiant :

- **1.** \star est associative : $\forall (x, y, z) \in G^3$, $(x \star y) \star z = x \star (y \star z)$.
- **2.** \star possède un élément neutre : $\exists e \in G, \ \forall x \in G, \ x \star e = x = e \star x.$
- **3.** Tout élément de G est inversible pour \star : $\forall x \in G, \exists y \in G, x \star y = e = y \star x$.

Si de plus la loi * est commutative, on parle de groupe commutatif (ou abélien).

- Notations additives et multiplicatives dans un groupe G.
 - Lorsque la loi de G est notée additivement (G, +), l'élément neutre est noté 0_G et l'inverse (opposé) d'un élément x de G est noté -x. Pour $n \in \mathbb{Z}$, on définit la n-ième multiple, nx, de x par :

$$nx = \begin{cases} \underbrace{x + \ldots + x}_{n \text{ fois}} & \text{si } n > 0 \\ 0_G & \text{si } n = 0 \\ \underbrace{(-x) + \ldots + (-x)}_{n \text{ fois}} & \text{si } n < 0 \end{cases}$$

• Lorsque la loi de G est notée multiplicativement (G, \times) , l'élément neutre est noté 1_G et l'inverse d'un élément x de G est noté x^{-1} . Pour $n \in \mathbb{Z}$, on définit la puissance n-ième, x^n , de x par :

$$x^{n} = \begin{cases} \underbrace{x \times \ldots \times x}_{n \text{ fois}} & \text{si } n > 0 \\ 1_{G} & \text{si } n = 0 \\ \underbrace{(x^{-1}) \times \ldots \times (x^{-1})}_{n \text{ fois}} & \text{si } n < 0 \end{cases}$$

Proposition 1.2. propriétés

Soient G un groupe, $x \in G$ et $(m, n) \in \mathbb{Z}^2$.

- 1. Lorsque la loi de G est notée additivement (G, +), on a : (m+n)x = mx + nx et m(nx) = (mn)x.
- **2.** Lorsque la loi de G est notée multiplicativement (G, \times) , on a : $x^{m+n} = x^m x^n$ et $(x^m)^n = x^{mn}$.

Définition 1.4. groupe des permutations d'un ensemble

Soit E un ensemble non vide. On note S_E l'ensemble des **permutations** de E (bijections de E vers lui-même). Le couple (S_E, \circ) forme un groupe de neutre Id_E , appelé **groupe des permutations** de E.

Théorème 1.1. groupe produit

Soient (G, T) et (H, \bot) deux groupes de neutres respectifs e_G et e_H . Soit \star la l.c.i. définie sur $G \times H$ par :

$$\forall (g_1, g_2) \in G^2, \ \forall (h_1, h_2) \in H^2, \ (g_1, h_1) \star (g_2, h_2) \stackrel{\text{def}}{=} (g_1 \top g_2, h_1 \bot h_2).$$

 $(G \times H, \star)$ est un groupe de neutre (e_G, e_H) appelé ¹ groupe produit.

De plus, pour tout $(g,h) \in G \times H$, on a : $(g,h)^{-1} = (g^{-1},h^{-1})$.

1. On définit de même le produit d'un nombre fini de groupes.

Définition 1.5. sous-groupe

Soit (G, \star) un groupe de neutre e.

On appelle **sous-groupe** de (G, \star) toute partie H non vide de G telle que ¹:

- **1.** H est stable par \star : $\forall (x,y) \in H^2$, $x \star y \in H$.
 - 1. La restriction à H de la l.c.i. sur G fait de H un groupe de même élément neutre que G.

Proposition 1.3.

caractérisation d'un sous-groupe

Soit (G, \star) un groupe de neutre e et H une partie de G.

H sous-groupe de $G \iff e \in H$ et $\forall (x,y) \in H^2, x \star y^{-1} \in H$.

Morphisme de groupe

Définition 1.6.

morphisme de groupes, isomorphisme de groupes

Soient (G, \star) , (H, \top) deux groupes et $f: G \longrightarrow H$ une application.

- **1.** On dit que f est un **morphisme de groupes** si : $\forall x, y \in G$, $f(x \star y) = f(x) \top f(y)$.
- 2. On dit que f est un isomorphisme de groupes si f est un morphisme de groupes bijectif.

Proposition 1.4. propriétés

- **1.** Soient G, H deux groupes de neutres respectifs e_G, e_H et $f: G \longrightarrow H$ un morphisme de groupes.
 - **a.** $f(e_G) = e_H$.
 - **b.** Soit $x \in G$. Alors x est inversible si, et seulement si, f(x) est inversible et on a : $(f(x))^{-1} = f(x^{-1})$.
- 2. La composée de morphismes (resp. isomorphismes) de groupes est un morphisme (resp. isomorphisme) de groupes.
- 3. L'application réciproque d'un isomorphisme de groupes est un isomorphisme de groupes.
- 4. L'image directe et l'image réciproque de sous-groupes par un morphisme de groupes sont des sous-groupes.

Définition 1.7.

noyau et image d'un morphisme de groupe

Soient G, H deux groupes de neutres respectifs e_G , e_H et $f: G \longrightarrow H$ un morphisme de groupes.

- **1.** L'ensemble $\ker(f) \stackrel{\text{déf}}{=} f^{-1}(\{e_H\}) = \{x \in G, \ f(x) = e_H\}$ est un sous-groupe de G appelé le **noyau** de f.
- **2.** L'ensemble Im $(f) \stackrel{\text{def}}{=} f(G) = \{ y \in H, \exists x \in G, y = f(x) \}$ est un sous-groupe de H appelé l'**image** de f.

Proposition 1.5.

caractérisation des morphismes injectifs et surjectifs

Soient G, H deux groupes de neutres respectifs e_G , e_H et $f: G \longrightarrow H$ un morphisme de groupes.

1. f injectif \iff $\ker(f) = \{e_G\}.$

2. f surjectif \iff Im (f) = H.

2 Structure d'anneau

Anneau et sous-anneau

Définition 2.1. anneau

Soit A un ensemble non vide muni de deux l.c.i. notées + et \times . On dit que $(A, +, \times)$ est un **anneau** lorsque :

- **1.** (A, +) est un groupe abélien, son neutre est noté 0 (ou 0_A).
- **2.** \times est associative et possède 1 un élément neutre, noté 1 (ou 1_A), appelé *élément unité* de A.
- **3.** \times est distributive sur +: $\forall (a,b,c) \in A^3$, $a \times (b+c) = a \times b + a \times c$ et $(b+c) \times a = b \times a + c \times a$.

Si de plus la loi \times est commutative on dit que $(A, +, \times)$ est un **anneau commutatif**.

- 1. Par convention un anneau est unitaire c-à-d : la loi × admet un élément unité.
- Lorsque $(A, +, \times)$ est un anneau, on note, pour tout $x, y \in A$, xy au lieu de $x \times y$.

Théorème 2.1. calculs dans un anneau

Soit A un anneau et $(a,b) \in A^2$ qui **commutent** c-à-d : ab = ba.

1. Formule du binôme : pour tout $n \in \mathbb{N}$, on a :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

2. Formule de factorisation : pour tout $n \in \mathbb{N}^*$, on a :

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}.$$

Définition 2.2.

On dit qu'un anneau commutatif A est intègre si : $A \neq \{0\}$ et $\forall (a,b) \in A^2$, $ab = 0 \implies a = 0$ ou b = 0.

sous-anneau

Soit A un anneau et B une partie de A. On dit que B est un **sous-anneau** de A si 1 :

- **2.** (B, +) sous-groupe de (A, +). **3.** $\forall (x, y) \in B^2, xy \in B$.
- 1. Ce qui équivalent à : $1_A \in B$ et $\forall (x,y) \in B^2$, $x-y \in B$, $xy \in B$

Définition 2.4. groupe des éléments inversibles

Soit A un anneau. On dit qu'un élément $a \in A$ est **inversible** si $\exists b \in A, ab = ba = 1_A$. L'élément b est unique, noté a^{-1} , et appelé l'inverse de a.

L'ensemble $\mathbb{U}(A)$ des éléments inversibles de A est un **groupe** pour la loi \times .

Définition 2.5. corps

On dit qu'un triplet $(K, +, \times)$ est un corps lorsque :

- **1.** $(K, +, \times)$ anneau commutatif non nul.
- **2.** Tout élément de $K \setminus \{0_K\}$ admet un inverse pour \times dans K.

Morphisme d'anneaux

Définition 2.6. morphisme d'anneaux, isomorphisme d'anneaux

Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux de neutres respectifs $0_A, 0_B$ et d'éléments unités respectifs $1_A, 1_B$. Soit $f: A \longrightarrow B$ une application.

- 1. On dit que f est un morphisme d'anneaux si :
 - **a.** $f(1_A) = 1_B$.
 - **b.** $\forall (a, a') \in A^2$, f(a + a') = f(a) + f(a') et $f(a \times a') = f(a) \times f(a')$.
- **2.** On dit que f est un isomorphisme d'anneaux si f est un morphisme d'anneaux bijectif.

Proposition 2.1. propriétés

- **1.** Soient A, B deux anneaux de neutres respectifs $0_A, 0_B$ et $f: A \longrightarrow B$ un morphisme d'anneaux.
 - **a.** $f(0_A) = 0_B$.

d. $\forall a \in A, \forall n \in \mathbb{N}, f(a^n) = (f(a))^n.$

- **b.** $\forall a \in A, f(-a) = -f(a).$
- **c.** $\forall a \in A, \ \forall n \in \mathbb{Z}, \ f(na) = n f(a).$

- **e.** $\forall a \in A, \ a \in \mathbb{U}(A) \Longrightarrow \begin{cases} f(a) \in \mathbb{U}(B) \\ (f(a))^{-1} = f(a^{-1}) \end{cases}$.
- 2. La composée de deux morphismes (resp. isomorphismes) d'anneaux est un morphisme (resp. isomorphisme) d'anneaux.
- 3. L'application réciproque d'un isomorphisme d'anneaux est un isomorphisme d'anneaux.

3 Groupe symétrique

Permutation de $\{1, \ldots, n\}$

Définition 3.1. permutation de $\{1,\ldots,$

Une *permutation* de $\{1,\ldots,n\}$ est une bijection de $\{1,\ldots,n\}$ vers lui-même. Une permutation σ se note :

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}.$$

Par la bijectivité de σ , les éléments 1,2...,n figurent une fois et une seule sur la seconde ligne.

Définition 3.2. support d'une permutation

On appelle *support* d'une permutation $\sigma \in S_n$ l'ensemble des éléments de $\{1, \ldots, n\}$ non invariants c-à-d :

$$\mathrm{supp}\;(\sigma)=\Big\{i\in[\![1,n]\!],\;\;\sigma(i)\neq i\Big\}.$$

Théorème 3.1. $\mathsf{structure} \ \mathsf{de} \ \mathcal{S}_n$

L'ensemble S_n des permutations de $\{1,\ldots,n\}$ est un *groupe* pour la loi \circ de composition et de neutre la permutation identité Id.

- Le groupe S_n possède n! éléments et n'est pas commutatif dès que $n \ge 3$.
- Pour toute permutation $\sigma \in \mathcal{S}_n$ et tout entier $k \in \mathbb{Z}$, on note σ^k la permutation de \mathcal{S}_n définie par :

$$\sigma^{k} \stackrel{\text{def}}{=} \begin{cases} \text{Id} & \text{si } k = 0 \\ \sigma \circ \dots \circ \sigma & (k \text{ fois}) & \text{si } k \ge 1 \\ \left(\sigma^{-k}\right)^{-1} & \text{si } k \le -1 \end{cases}$$

Définition 3.3. groupe symétrique

Le groupe S_n est appelé $groupe \ symétrique$ d'ordre n.

Cycles, transpositios

Définition 3.4. cycle

Soit $p \ge 2$ un entier et a_1, \ldots, a_p des éléments deux à deux distincts de $\{1, \ldots, n\}$.

Sur $\{1,\ldots,n\}$, on définit une permutation c en posant : $\begin{cases} c(a_i) = a_{i+1} & \text{si} \quad 1 \leq i \leq p-1 \\ c(a_p) = a_1 \\ c(x) = x & \text{si} \quad x \in \{1,\ldots,n\} \setminus \{a_1,\ldots,a_p\} \end{cases}$

On dit que c est un cycle de longueur p (ou encore un p-cycle). On le note c = $(a_1 \ a_2 \ \dots \ a_p)$.

- L'ensemble $\{a_1, \ldots, a_p\}$ constitue le support du cycle c : supp $(c) = \{a_1, \ldots, a_p\}$.
- Un cycle c de longueur p vérifie : c^p = Id. L'inverse d'un cycle est encore un cycle :

$$(a_1 \ a_2 \ \dots \ a_p)^{-1} = (a_p \ a_{p-1} \ \dots \ a_1)$$

■ Soient σ et σ' deux cycles. La composée de σ et σ' est notée : $\sigma \circ \sigma' \stackrel{\text{def}}{=} \sigma \sigma'$. Lorsque les supports sont disjoints, cette composée est $\operatorname{\operatorname{\mathbf{commutative}}}: \left[\operatorname{\operatorname{supp}}(\sigma) \cap \operatorname{\operatorname{\mathbf{supp}}}(\sigma') = \varnothing \implies \sigma \sigma' = \sigma' \sigma\right].$

Théorème 3.2. décomposition d'une permutation en produit de cycles

Toute permutation σ de $\{1,\ldots,n\}$ peut s'écrire comme un produit de cycles à supports disjoints. De plus, cette décomposition est *unique* à l'ordre près des facteurs.

Définition 3.5. transposition

On appelle *transposition* tout cycle de longueur 2.

- Pour $i, j \in \{1, ..., n\}$ distincts, une transposition $\tau = (i \ j)$ a pour **seul effet d'échanger** i et j.
- Une transposition τ vérifie : τ^2 = Id et donc τ^{-1} = τ .

Théorème 3.3.

décomposition d'un cycle en produit de transpositions

Tout cycle de longueur p peut s'écrire comme un produit de p-1 transpositions :

$$(a_1 \ a_2 \ \dots \ a_p) = (a_1 \ a_2)(a_2 \ a_3) \dots (a_{p-1} \ a_p).$$

Corollaire 3.1

décomposition d'une permutation en produit de transpositions

Toute permutation de $\{1,\ldots,n\}$ peut se décomposer en un produit de transpositions.

Signature

Théorème 3.4. signature

Il *existe* un *unique morphisme* 1 de groupes noté ε de (S_n, \circ) vers $(\{-1,1\}, \times)$ tel que :

$$\varepsilon(\tau) = -1$$
 pour toute transposition τ de S_n .

L'application ε est appelée signature.

1. $\varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$ pour toutes permutations σ et σ' de S_n .

Proposition 3.1.

signature d'un cycle et d'une permutation

- **1.** Si c est un cycle de longueur p, alors $\varepsilon(c) = (-1)^{p-1}$.
- **2.** Si une permutation σ s'écrit comme produit de r transpositions, $\sigma = \tau_1 \dots \tau_r$, alors $\varepsilon(\sigma) = (-1)^r$.