Structures algébriques usuelles

Binyze Mohamed

MP 2025-2026

Sommaire

1 Groupes

2 Anneaux

3 Idéal d'un anneau commutatif

5 Anneau des polynômes à une indéterminée

6 Algèbres

7

Dans ce chapitre est sauf indication contraire, la notation \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Groupes

G désigne un groupe multiplicatif de neutre e.

Compléments sur les groupes

Théorème 1.1.

Les sous-groupes de $(\mathbb{Z}, +)$ sont de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$.

Théorème 1.2. groupe $(\mathbb{Z}/n\mathbb{Z},+)$

sous-groupes de $(\mathbb{Z},+)$

Soit $n \in \mathbb{N}^*$. L'ensemble $\mathbb{Z}/n\mathbb{Z}$ des classes de congruences modulo n muni de la l.c.i. notée + définie par : $\boxed{\forall \overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}, \ \overline{a} + \overline{b} = \overline{a+b}}$ est un groupe abélien de neutre $n\mathbb{Z}$. De plus :

1.
$$\forall \ \overline{a} \in \mathbb{Z}/n\mathbb{Z}, \ -\overline{a} = \overline{-a}.$$
 | **2.** $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \dots, \overline{n-1}\}.$

Proposition 1.1. intersection de sous-groupes

Soit $(H_i)_{i \in I}$ une famille de sous-groupes de G. L'ensemble $H = \bigcap_{i \in I} H_i$ est un sous-groupe de G.

https://supspé.com 1 GROUPES

Définition 1.1.

groupe engendré par une partie

Soit A une partie de G. On appelle **groupe engendré** par A l'ensemble, noté A >, défini par

$$< A > \stackrel{\text{déf}}{=} \bigcap_{\substack{H \text{ sous-groupe de } G \\ A \subset H}} H$$

Lorsque $G = \langle A \rangle$, on dit que G est **engendré** par A ou que A est une **partie génératrice** de G.

Théorème 1.3.

caractérisation du sous-groupe engendré par une partie

Soit A une partie de G.

- 1. $\langle A \rangle$ est le plus petit sous-groupe (au sens de l'inclusion) de G contenant A.
- $\textbf{2. Si } A = \varnothing, \text{ alors } < A >= \big\{e\big\}. \text{ Si } A \neq \varnothing, \text{ alors } < A >= \Big\{a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_n^{\varepsilon_n}, \ n \in \mathbb{N}^*, \ \forall i \in \llbracket 1, n \rrbracket, \ \varepsilon_i \in \big\{-1, 1\big\}, \ a_i \in A\Big\}.$

Exemple 1.1. \blacksquare $n\mathbb{Z} = \langle n \rangle$.

- $\blacksquare \mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$ où $\overline{1}$ la classe de 1 modulo n.
- Le groupe symétrique (S_n, \circ) est engendré par les transpositions.

Groupe monogène, groupe cyclique

Définition 1.2.

groupe monogène, groupe cyclique

- **1.** On dit que G est **monogène** lorsqu'il existe $a \in G$ tel que $a \in G$ t
- **2.** On dit que G est cyclique lorsqu'il est monogène et fini.
 - 1. En notation additive, $\langle a \rangle = \{ka, k \in \mathbb{Z}\}.$

Exemple 1.2. \blacksquare $n\mathbb{Z} = \langle n \rangle$, donc $(n\mathbb{Z}, +)$ est monogène.

- $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$, donc $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique.
- $\mathbb{U}_n = \langle \omega_1 \rangle$ où $\omega_1 = e^{2i\pi/n}$, donc (\mathbb{U}_n, \times) est cyclique.

Proposition 1.2.

générateurs de $\mathbb{Z}/n\mathbb{Z}$

Les générateurs de $\mathbb{Z}/n\mathbb{Z}$ sont les \overline{k} , $k \in [1, n-1]$ avec $k \wedge n = 1$.

Théorème 1.4.

classification des groupes monogènes

- 1. Tout groupe monogène infini est isomorphe à $(\mathbb{Z}, +)$.
- **2.** Tout groupe monogène fini (cyclique) de cardinal n est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$.

Ordre d'un élément dans un groupe

Soit G un groupe de neutre e.

Définition 1.3.

ordre d'un groupe, ordre d'un élément

- 1. On dit que G est d'ordre fini si G est fini. On appelle alors ordre de G le cardinal de G.
- **2.** On dit qu'un élément a de G est **d'ordre fini** s'il existe $n \in \mathbb{N}^*$ vérifiant $a^n = e$. le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$ est appelé **l'ordre** de a: l'ordre de $a = \min \{k \in \mathbb{N}^*, a^k = e\}$.

Remarque 1.1. \blacksquare Le neutre e est l'unique élément d'ordre fini égal à 1.

https://supspé.com 2 ANNEAUX

■ Soit $a \in G \setminus \{e\}$. On a a est d'ordre $n \iff (a^n = e \text{ et } \forall k \in [[1, n-1]], a^k \neq e)$.

Exemple 1.3. Dans $(\mathbb{Z}/6\mathbb{Z}, +)$, l'élément $\overline{4}$ est d'ordre 3.

- Dans $(\mathcal{GL}_2(\mathbb{K}), \times)$, l'élément $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ est d'ordre infini.
- Dans (\mathbb{C}^* ,×), l'élément $\omega_1 = e^{2i\pi/n}$ est d'ordre n.
- Dans (S_n, \circ) , toute transposition $\tau \in S_n \setminus \{\text{Id}\}$ est d'ordre 2.

Proposition 1.3.

ordre d'un élément et ordre du sous-groupe engendré cet élément

Soit $a \in G$.

- **1.** a est d'ordre fini d si, et seulement si, $\langle a \rangle$ est d'ordre fini. Dans ce cas, $|\langle a \rangle| = \{e, a, \dots, a^{d-1}\}$
- ${f 2.}$ En particulier, l'ordre de a est l'ordre du sous-groupe engendré par a.

Corollaire 1.1.

éléments et générateurs d'un groupe cyclique

Soit G un groupe cyclique d'ordre n de générateur a.

1.
$$G = \{e, a, a^2, \dots, a^{n-1}\}.$$

2. Les générateurs de G sont les a^k , où $k \wedge n = 1$.

Proposition 1.4.

caractérisation de l'ordre d'un élément

Soit $a \in G$. Alors a est d'ordre n si, et seulement si, $\forall k \in \mathbb{Z}, \ a^k = e \iff n \mid k$.

Théorème 1.5.

ordre d'un élément divise l'ordre du groupe

Soit G un groupe d'ordre fini $n \in \mathbb{N}^*$ et $a \in G$. Alors a est d'ordre fini : $a^n = e$. De plus, l'ordre de a divise n.

2 Anneaux

Compléments sur les anneaux

Théorème 2.1. produit d'anneaux

Soit $(A_i)_{1 \le i \le k}$ une famille d'anneaux. On définit les lois + et × sur $A_1 \times \ldots \times A_k$ en posant :

$$\forall ((a_1, \dots, a_k), (b_1, \dots, b_k)) \in (A_1 \times \dots \times A_k)^2, \begin{cases} (a_1, \dots, a_k) + (b_1, \dots, b_k) &= (a_1 + b_1, \dots, a_k + b_k) \\ (a_1, \dots, a_k) \times (b_1, \dots, b_k) &= (a_1 \times b_1, \dots, a_k \times b_k) \end{cases}$$

Alors $(A_1 \times ... \times A_k, +, \times)$ est un anneau, appelé **anneau produit**, d'élément neutre $(0_{A_1}, ..., 0_{A_k})$ et d'élément unité $(1_{A_1}, ..., 1_{A_k})$.

Proposition 2.1.

les inversibles de l'anneau produit

Si
$$A_1, \ldots, A_k$$
 sont des anneaux, alors $\mathbb{U}(A_1 \times \ldots \times A_k) = \mathbb{U}(A_1) \times \ldots \times \mathbb{U}(A_k)$

1. $\mathbb{U}(A)$ est le groupe des éléments inversibles de l'anneau A.

Définition 2.1.

éléments associés

On dit que deux éléments x et y de A sont **associés** si $\exists a \in \mathbb{U}(A), x = ay$

Anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$

Théorème 2.2.

anneau $(\mathbb{Z}/n\mathbb{Z},+,\times)$

Soit $n \in \mathbb{N}^*$. On muni $\mathbb{Z}/n\mathbb{Z}$ de deux l.c.i. notées + et × définies par :

$$\forall \ \overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}, \ \overline{a} + \overline{b} = \overline{a+b} \ \text{et} \ \overline{a} \times \overline{b} = \overline{a \times b}.$$

Alors $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif d'élément neutre $\overline{0}$ et d'élément unité $\overline{1}$.

Théorème 2.3.

les inversibles de $\mathbb{Z}/n\mathbb{Z}$

Les inversibles de $\mathbb{Z}/n\mathbb{Z}$ sont ¹ les \overline{k} avec $k \wedge n = 1$.

1. Les inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ sont exactement les générateurs du groupe additif $(\mathbb{Z}/n\mathbb{Z}, +)$.

Théorème 2.4.

théorème des restes chinois

Soient n_1, \ldots, n_r des entiers deux à deux premiers entre eux et n leur produit. L'application 1:

$$f : \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_r\mathbb{Z}$$
$$\overline{x}^n \longmapsto (\overline{x}^1, \ldots, \overline{x}^r)$$

est un isomorphisme d'anneaux.

1. où \overline{x}^i est la classe de x modulo n_i

Corollaire 2.1.

système de congruences d'entiers

Soient n_1, \ldots, n_r des entiers strictement positifs premiers entre eux deux à deux, et a_1, \ldots, a_r des entiers quelconques. Le système

(S):
$$\begin{cases} x \equiv a_1 & [n_1] \\ \vdots & \vdots \\ x \equiv a_r & [n_r] \end{cases}$$

admet une unique solution modulo $\prod n_i$.

Définition 2.2.

indicatrice d'Euler

On appelle fonction indicatrice d'Euler l'application $\varphi: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ définie par ¹:

$$\varphi(n) = \operatorname{card} \left\{ k \in [[0, n-1]], \ k \wedge n = 1 \right\}.$$

1. Le nombre des inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est donc $\varphi(n)$.

Proposition 2.2.

multiplicativité de l'indicatrice d'Euler

L'indicatrice d'Euler φ est multiplicative : $\forall p, q \in \mathbb{N}^*, p \land q = 1 \implies \varphi(pq) = \varphi(p)\varphi(q)$

Proposition 2.3.

calcul de $\varphi(n)$

- **1.** Soit p un nombre premier et $\alpha \in \mathbb{N}^*$. $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$
- **2.** Soit $n \ge 2$ et $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ la décomposition de n en facteurs premiers. $\varphi(n) = n \prod_{i=1}^r \left(1 \frac{1}{p_i}\right)$

Théorème 2.5.

théorème d'Euler et le petit théorème de Fermat

- **1.** Soit n un entier supérieur à 2 et k un entier premier avec n. $k^{\varphi(n)} \equiv 1[n]$. (théorème d'Euler)
- **2.** Soit k un entier et p un nombre premier non diviseur de k. $k^{p-1} \equiv 1[p]$. (petit théorème de Fermat)

Proposition 2.4. $\mathbb{C}[\mathbb{Z}/p\mathbb{Z},+, imes)$

 $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ est un corps si, et seulement si, p est un nombre premier.

3 Idéal d'un anneau commutatif

Dans ce paragraphe, $(A, +, \times)$ désigne un anneau commutatif d'élément neutre 0_A et d'élément unité 1_A .

Idéaux

Définition 3.1.

_ _ _ _

idéal

On appelle *idéal* de A toute partie I de A non vide vérifie : $\forall (x,y) \in I^2, \ x+y \in I$ et $\forall x \in I, \ \forall a \in A, \ ax \in I$

Proposition 3.1. caractérisation d'un idéal

I est un idéal de A si, et seulement si, (I, +) est un sous-groupe de (A, +) et $\forall x \in I, \forall a \in A, ax \in I$.

Exemple 3.1. \blacksquare $\{0_A\}$ et A sont des idéaux de A. \blacksquare L'ensemble $n\mathbb{Z}$ est un idéal de \mathbb{Z} .

Théorème 3.1. idéaux de $(\mathbb{Z},+,\times)$

Les idéaux de $(\mathbb{Z}, +, \times)$ sont de la forme $n\mathbb{Z}$ où $n \in \mathbb{N}$.

Proposition 3.2.

Soit $f: A \longrightarrow B$ un morphisme d'anneaux commutatifs et I un idéal de B. Alors $f^{-1}(I)$ est un idéal de A. En particulier, $\ker(f)$ est un idéal de A.

Définition 3.2. idéal engendré par un élément

Soit $x \in A$. On appelle **idéal engendré par** x l'ensemble $xA \stackrel{\text{déf}}{=} \{xa, a \in A\}$ des multiples de x.

Théorème 3.2. caractérisation de xA

Soit $x \in A$. $XA = \bigcap_{\substack{J \text{ idéal de } A \\ x \in J}} J$. Ainsi xA est le plus petit idéal de A contenant x.

Arithmétique et idéaux

Définition 3.3. divisibilité dans un anneau intègre

Supposons A intègre ¹ et soit $(a,b) \in A^2$. On dit que a **divise** b, et on écrit $a \mid b$ si $\exists u \in A, b = au$

1. L'intégrité de A assure que le u ci-dessus est unique si $a \neq 0$.

Proposition 3.3. association et divisibilité en termes d'idéaux

Supposons A intègre et soit $(a, b) \in A^2$.

1. a divise $b \iff bA \subset aA$. **2.** a et b sont associés $\iff aA = bA$

Théorème 3.3. somme d'idéaux

Soient I_1, \ldots, I_k des idéaux de A. L'ensemble $I_1 + \ldots + I_k \stackrel{\text{déf}}{=} \left\{ \sum_{i=1}^k x_i, \ x_i \in I_i, \ 1 \le i \le k \right\}$ est un idéal de A qui contient chaque I_i et est inclus dans tout idéal contenant I_1, \ldots, I_k .

Application 3.1 (Plus grand commun diviseur).

Soit $(a_1, \ldots, a_k) \in \mathbb{Z}^k$ non nuls.

- **1.** Il existe $d \in \mathbb{N}^*$ unique tel que : $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = d\mathbb{Z}$. L'entier d est appelé le plus grand commun diviseur des $a_i, 1 \le i \le k$. On note $d = \operatorname{pgcd}(a_1, \ldots, a_k)$.
 - En effet : $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z}$ est un idéal de \mathbb{Z} donc il existe $d \in \mathbb{N}^*$ tel que $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = d\mathbb{Z}$. S'il existe $\delta \in \mathbb{N}^*$ tel que $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = \delta\mathbb{Z}$ alors d et δ sont associés, par suite $d = \delta$ car $(d, \delta) \in (\mathbb{N}^*)^2$.
- **2.** d est caractérisé par : $\forall i \in [[1, k]], d \mid a_i \text{ et } \forall c \in \mathbb{Z}, (\forall i \in [[1, k]], c \mid a_i \Longrightarrow c \mid d)$
 - On a $\forall i \in [[1, k]]$, $a_i \mathbb{Z} \subset a_1 \mathbb{Z} + \ldots + a_k \mathbb{Z} = d\mathbb{Z}$ donc $d \mid a_i$ pour tout $i \in [[1, k]]$. Soit $c \in \mathbb{Z}$ tel que $c \mid a_i$ pour tout $i \in [[1, k]]$. On a $\forall i \in [[1, k]]$, $a_i \mathbb{Z} \subset c \mathbb{Z}$ donc $d \mathbb{Z} = a_1 \mathbb{Z} + \ldots + a_k \mathbb{Z} \subset c \mathbb{Z}$ et $c \mid d$.
 - Réciproquement soit $\delta \in \mathbb{N}^*$ tel que $a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} = \delta\mathbb{Z}$. On a d divise chaque a_i donc $\delta\mathbb{Z} = a_1\mathbb{Z} + \ldots + a_k\mathbb{Z} \subset d\mathbb{Z}$ et par suite $\delta\mathbb{Z} \subset d\mathbb{Z}$. Or $\forall i \in [1, k]$, $\delta \mid a_i \text{ donc } \delta \mid d$ et par suite $d\mathbb{Z} \subset \delta\mathbb{Z}$. D'où $\delta = d$.

4 Anneau des polynômes à une indéterminée

Dans ce paragraphe, la notation \mathbb{K} désigne un sous-corps de \mathbb{C} et le triplet $(\mathbb{K}[X], +, \times)$ désigne l'anneau des polynômes à une indéterminée à coefficients dans \mathbb{K} .

Arithmétique dans $\mathbb{K}[X]$

Proposition 4.1.

intégrité de $\mathbb{K}[X]$

L'anneau $\mathbb{K}[X]$ est intègre.

Théorème 4.1. idéaux de $\mathbb{K}[X]$

Les idéaux de $\mathbb{K}[X]$ sont de la forme $P.\mathbb{K}[X] \stackrel{\text{déf}}{=} \{PQ, Q \in \mathbb{K}[X]\}$ où $P \in \mathbb{K}[X]$ unique à un coefficient multiplicatif non nul près ¹.

1. Tout idéal de $\mathbb{K}[X]$ non réduit à $\{0\}$ est engendré par un polynôme unitaire unique.

Exemple 4.1. L'idéal $I = \{P \in \mathbb{K}[X], P(0) = P(1) = 0\}$ est engendré par le polynôme X(X - 1).

Application 4.1 (Plus grand commun diviseur).

Soit $(P_1, \ldots, P_k) \in \mathbb{K}[X]^k$.

- 1. Il existe $D \in \mathbb{K}[X]$ unitaire unique tel que : $P_1.\mathbb{K}[X] + \ldots + P_k.\mathbb{K}[X] = D.\mathbb{K}[X]$. Le polynôme D est appelé le plus grand commun diviseur des P_i , $1 \le i \le k$. On note $D = \operatorname{pgcd}(P_1, \ldots, P_k)$.
- **2.** D est caractérisé par : $\forall i \in [[1, k]], D \mid P_i \text{ et } \forall Q \in \mathbb{K}[X], (\forall i \in [[1, k]], Q \mid P_i \Longrightarrow Q \mid D)$

Théorème 4.2.

être premiers entre eux versus avoir des racines dans $\ensuremath{\mathbb{K}}$

Soit $(A, B) \in \mathbb{K}[X]^2$. $A \land B = 1 \iff A$ et B n'ont aucunes racines complexes en commun.

1. $\operatorname{pgcd}(a_1, \ldots, a_k) = 0 \iff a_1 = \ldots = a_k = 0.$

https://supspé.com 5 ALGÈBRES

Polynôme irréductible sur un corps

Définition 4.1.

polynôme irréductible sur un corps

On dit qu'un polynôme $P \in \mathbb{K}[X]$ est *irréductible* 1 sur \mathbb{K} lorsque :

- **1.** P est non constant : $\deg P \ge 1$.
- **2.** Les seuls diviseurs dans $\mathbb{K}[X]$ de P sont les polynômes constants non nuls et les polynômes associés à P.
 - 1. Le polynôme P est dit réductible sur \mathbb{K} , s'il n'est pas irréductible sur \mathbb{K} .

Remarque 4.1.
Attention, cette notion dépend du corps considéré. Ainsi X^2+1 est irréductible sur $\mathbb R$ mais pas sur $\mathbb C$.

■ $P \in \mathbb{K}[X]$ est irréductible si, et seulement si, P est non constant et si A = BC, alors B ou C est constant.

Théorème 4.3.

décomposition en produit d'irréductibles

Soit $P \in \mathbb{K}[X]$ tel que $\deg(P) \geq 1$. Il existe $r \in \mathbb{N}^*$, des polynômes $P_1, \ldots, P_r \in \mathbb{K}[X]$ irréductibles sur \mathbb{K} , unitaires et deux à deux distincts, des entiers naturels non nuls n_1, \ldots, n_r tels que :

$$P = \lambda P_1^{n_1} \dots P_r^{n_r}$$

où λ est le coefficient dominant de P. De plus cette décomposition est unique à l'ordre près des facteurs.

Théorème 4.4.

irréductibles de $\mathbb{C}\left[X\right]$ et de $\mathbb{R}\left[X\right]$

- **1.** P est irréductible sur $\mathbb{C} \iff \deg(P) = 1$.
- **2.** P est irréductible sur $\mathbb{R} \iff \deg(P) = 1$ ou $\deg(P) = 2$ et de discriminant strictement négatif.

Théorème 4.5.

décomposition en produit d'irréductibles dans $\mathbb{C}[X]$

Soit $P \in \mathbb{C}[X]$ tel que $\deg(P) \geq 1$. La décomposition de P en produit de facteurs irréductibles dans $\mathbb{C}[X]$ est de la forme :

$$P = \lambda \prod_{i=1}^{r} (X - \alpha_i)^{n_i}$$

où λ le coefficient dominant de P et $\alpha_1, \ldots, \alpha_r$ sont les racines complexes deux à deux distincts de P.

Théorème 4.6.

décomposition en produit d'irréductibles dans $\mathbb{R}\left[X ight]$

Soit $P \in \mathbb{R}[X]$ tel que $\deg(P) \ge 1$. La décomposition de P en produit de facteurs irréductibles dans $\mathbb{R}[X]$ est de la forme :

$$P = \lambda \prod_{i=1}^{r} (X - \alpha_i)^{n_i} \prod_{j=1}^{s} (X^2 + a_j X + b_j)^{m_j}$$

où λ est le coefficient dominant de P, $\alpha_1, \ldots, \alpha_r$ des réels deux à deux distincts et $(a_1, b_1), \ldots, (a_s, b_s)$ sont des couples deux à deux distincts de réels tels que pour tout $j \in [[1, s]], \ a_j^2 - 4b_j < 0$.

Remarque 4.2. Tout polynôme de $\mathbb{R}[X]$ de degré impair admet au moins une racine réelle.

■ Si $z \in \mathbb{C}$ est une racine d'un polynôme **réel** P, alors \overline{z} est aussi une racine de P.

5 Algèbres

Dans ce paragraphe, la notation \mathbb{K} désigne un sous-corps de \mathbb{C} .

https://supspé.com ALGÈBRES

Définition 5.1.

algèbre

On appelle \mathbb{K} -algèbre un ensemble \mathcal{A} muni de deux lois internes, notées + et \times et une loi externe sur le corps K, notée., telle que:

- 1. (A, +, .) est un espace vectoriel sur \mathbb{K} .
- **2.** $(A, +, \times)$ est un anneau.
- **3.** $\forall \alpha \in \mathbb{K}, \ \forall (x,y) \in \mathcal{A}^2 \ (\alpha.x) \times y = x \times (\alpha.y) = \alpha.(x \times y).$

L'algèbre ¹ est dite *commutative* si \times est commutative. On note usuellement $(A, +, \times, .)$.

1. Les algèbres sont unitaires.

Exemple 5.1 (Exemples de références).

Les exemples suivants sont des K-algèbres usuelles :

- $(\mathbb{K}[X], +, \times, .)$.
- $(\mathcal{L}(E), +, \circ, .)$ où E un \mathbb{K} -ev.

- (M_n(K),+,×,.) où n ≥ 2.
 (F(X,K),+,×,.) où X un ensemble non vide.

Définition 5.2. sous-algèbre

On dit que \mathcal{B} est une **sous-algèbre** de l'algèbre \mathcal{A} si \mathcal{B} est un sous-anneau et un sous-espace vectoriel de \mathcal{A} .

Proposition 5.1. caractérisation d'une sous-algèbre

$$\mathcal{B}$$
 est une sous-algèbre de $\mathcal{A} \iff \begin{cases} 1_{\mathcal{A}} \in \mathcal{B} \\ \forall \lambda \in \mathbb{K}, \ \forall (x,y) \in \mathcal{B}^2, \ x + \lambda.y \in \mathcal{B} \\ \forall (x,y) \in \mathcal{B}^2, \ x \times y \in \mathcal{B} \end{cases}$

Définition 5.3. morphisme d'algèbres

Soit \mathcal{A} et \mathcal{B} deux \mathbb{K} -algèbres. On dit que $f: \mathcal{A} \longrightarrow \mathcal{B}$ est un morphisme d'algèbres si f est un morphisme d'anneaux et un morphisme d'espaces vectoriels ¹.

1. $\forall (x,y) \in \mathcal{A}^2, \ \forall \lambda \in \mathbb{K}, \ f(x+\lambda \cdot y) = f(x) + \lambda \cdot f(y).$

Exemple 5.2. Soit E un \mathbb{K} -ev de dimension n et \mathcal{B} une base de E. L'application qui, à $u \mapsto \operatorname{Mat}_{\mathcal{B}}(u)$ est un morphisme d'algèbres de $(\mathcal{L}(E), +, \circ, .)$ dans $(\mathcal{M}_n(\mathbb{K}), +, \times, .)$.