Devoir maison Nº2 (correction)

Équivalence des normes en dimension finie.

1. Soit $x \in E$. On écrit x dans la base $\mathcal{B} : x = \sum_{i=1}^{p} x_i e_i$. On a

$$||x|| = \left\| \sum_{i=1}^{p} x_i e_i \right\| \le \sum_{i=1}^{p} |x_i| ||e_i|| \le ||x||_{\infty} \underbrace{\sum_{i=1}^{p} ||e_i||}_{\beta > 0} = \beta ||x||_{\infty}.$$

Donc il existe $\beta > 0$ tel que, pour tout $x \in E$, $||x|| \le \beta ||x||_{\infty}$.

Il reste à montrer qu'il existe $\alpha > 0$ tel que pour tout $x \in E$, $\alpha \|x\|_{\infty} \leq \|x\|$ (*).

Partie I : Première méthode.

2. Soit $(x,y) \in E^2$. On a

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||$$

donc $||x|| - ||y|| \le ||x - y||$ et, de même, on on obtient $||y|| - ||x|| \le ||x - y||$. Par suite, $|||x|| - ||y|| \le ||x - y||$ c-à-d la fonction norme ||.|| est 1-lipschitzienne, donc continue.

- **3.** On pose $S_{\infty} = \{x \in E, \|x\|_{\infty} = 1\}.$
- **4. a.** La fonction norme $\|.\|$ est continue et S_{∞} est un compact car S_{∞} est fermé et borné et l'espace E est de dimension finie, donc par le théorème des bornes atteintes, la fonction norme $\|.\|$ est bornée et atteint ses bornes. Par suite, il existe $x_0 \in S_{\infty}$ tel que pour tout $x \in S_{\infty}$, $\inf_{x \in S_{\infty}} \|x\| = \|x_0\| \le \|x\|$.
 - **b.** Soit $x \in E$ non nul. le vecteur $\frac{x}{\|x\|_{\infty}} \in S_{\infty}$ donc $\|x_0\| \le \left\|\frac{x}{\|x\|_{\infty}}\right\|$ et par suite, $\|x_0\| \|x\|_{\infty} \le \|x\|$. Si x = 0, l'inégalité en question est triviale.

D'où il existe $\alpha = ||x_0|| > 0$ tel que pour tout $x \in E$, $\alpha ||x||_{\infty} \le ||x||$.

5. D'après ce qui précède, il existe $\alpha, \beta > 0$ tels que, pour tout $x \in E$, $\alpha ||x||_{\infty} \le ||x|| \le \beta ||x||_{\infty}$ c-à-d les normes $||.||_{\infty}$ et ||.|| sont équivalentes.

Par transitivite, on peut conclure que les toutes les normes sur E sont équivalentes.

Partie II: Deuxième méthode.

6. Supposons (\star) n'est pas vraie donc $\forall \alpha > 0, \exists x \in E, \ \alpha \|x\|_{\infty} > \|x\|$. Pour $\alpha = \frac{1}{n}, \ n \in \mathbb{N}^*$, il existe $x_n \in E$ tel que

$$\frac{1}{n}||x_n||_{\infty} > ||x_n||$$

Posons alors $y_n = \frac{x_n}{\|x_n\|_{\infty}}$ de sorte que $\|y_n\| < \frac{1}{n}$. On a alors $(y_n)_n \in S_{\infty}$ et $\|y_n\| \xrightarrow[n \to +\infty]{} 0$.

- 7. La suite $(y_n)_n$ est bornée car $(y_n)_n \in S_\infty$ et l'espace E est de dimension finie, donc par le théorème de Bolzano-Weierstrass, la suite $(y_n)_n$ possède au moins une valeur d'adhérence $y \in S_\infty$.
- **8.** Par la question précédente, il existe $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} y$. Par continuité de la norme, $\|y_{\varphi(n)}\| \xrightarrow[n \to +\infty]{} \|y\|$ et, par la question 6, $\|y_{\varphi(n)}\| \xrightarrow[n \to +\infty]{} 0$. Par unicité de la limite, $\|y\| = 0$ et donc y = 0 ce qui est absurde car $y \in S_{\infty}$.

D'où, il existe $\alpha > 0$ tel que pour tout $x \in E$, $\alpha ||x||_{\infty} \le ||x||$ et par suite,

$$\exists \alpha, \beta > 0, \ \forall x \in E, \ \alpha ||x||_{\infty} < ||x|| < \beta ||x||_{\infty}$$

c-à-d les normes $\|.\|_{\infty}$ et $\|.\|$ sont équivalentes.

Par transitivite, on peut conclure que les toutes les normes sur E sont équivalentes.