Devoir maison Nº2

Équivalence des normes en dimension finie.

Soit E un \mathbb{K} -espace vectoriel de dimension finie $p \in \mathbb{N}^*$ muni d'une base $\mathcal{B} = (e_1, \dots, e_p)$ et $\|.\|$ une norme sur E. On considère la norme $\|.\|_{\infty}$ définie sur E par : $\forall x = \sum_{i=1}^p x_i e_i \in E$, $\|x\|_{\infty} = \max_{1 \le i \le p} |x_i|$.

L'objectif est de montrer, par deux méthodes, que toutes les normes sur E sont équivalentes.

1. Montrer qu'il existe $\beta > 0$ tel que pour tout $x \in E$, $||x|| \le \beta ||x||_{\infty}$.

Il reste à montrer qu'il existe $\alpha > 0$ tel que pour tout $x \in E$, $\alpha ||x||_{\infty} \le ||x||$ (*).

Partie I: Première méthode.

- **2.** Montrer que $\|.\|$ est une fonction continue de $(E, \|.\|)$ vers \mathbb{K} .
- **3.** On pose $S_{\infty} = \{x \in E, \|x\|_{\infty} = 1\}.$
- **4. a.** Montrer qu'il existe $x_0 \in S_\infty$ tel que pour tout $x \in S_\infty$, $||x_0|| \le ||x||$.
 - **b.** En déduire qu'il existe $\alpha > 0$ tel que pour tout $x \in E$, $\alpha ||x||_{\infty} \le ||x||$.
- **5.** Conclure.

Partie II: Deuxième méthode.

Ici, on va raisonner par l'absurde en supposant que (\star) n'est pas vraie.

- **6.** Montrer l'existance d'une suite $(y_n)_n$ d'éléments de S_∞ telle que $||y_n|| \xrightarrow[n \to +\infty]{} 0$.
- 7. Justifier que la suite $(y_n)_n$ possède une valeur d'adhérence $y \in S_{\infty}$.
- **8.** Aboutir à une contradiction puis conclure.