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Devoir surveillé No1 (correction)

Problème 1
Partie I : Questions préliminaires.

Q1. Soit G un groupe et a ∈ G d’ordre fini m.
1. Soit k ∈ N∗. On note d = m ∧ k. Il existe m′, k′ ∈ N∗ tels que m = m′d, k = k′d et m′ ∧ k′ = 1.

Pour tout ℓ ∈ Z, on a(
ak
)ℓ = e ⇐⇒ akℓ = e ⇐⇒ m | kℓ ⇐⇒ m′ | k′ℓ

Gauss⇐⇒ m′ | ℓ.

Donc ak est d’ordre m′ = m

d
= m

m ∧ k
.

2. Dans le groupe additif
(
Z/nZ, +

)
, on a k = k.1 et 1 est d’ordre n donc d’apès la question précédente, k est

d’ordre n

n ∧ k
.

Q2. Soit (x, y) ∈ Z/mZ × Z/nZ. On a

(x, y) ∈ U
(
Z/mZ × Z/nZ

)
⇐⇒ ∃(k, ℓ) ∈ Z/mZ × Z/nZ, (x, y).(k, ℓ) = (1, 1)
⇐⇒ ∃(k, ℓ) ∈ Z/mZ × Z/nZ, (xk, yℓ) = (1, 1)
⇐⇒ ∃(k, ℓ) ∈ Z/mZ × Z/nZ, xk = 1 et yℓ = 1
⇐⇒ (x, y) ∈ U

(
Z/mZ

)
× U

(
Z/nZ

)
Ainsi, U

(
Z/mZ × Z/nZ

)
= U

(
Z/mZ

)
× U

(
Z/nZ

)
.

Partie II : Arithmétiques dans l’anneau Z/nZ.

Q3. Soit n un entier ≥ 2.
1. On a

k ∈ U
(
Z/nZ

)
⇐⇒ ∃u ∈ Z/nZ, ku = 1
⇐⇒ ∃u ∈ Z/nZ, ku − 1 = 0
⇐⇒ ∃(u, v) ∈ Z2, ku + nv = 1

Bézout⇐⇒ k ∧ n = 1

2. On a U
(
Z/nZ

)
=
{

k ∈ Z/nZ, k ∧ n = 1
}

donc

CardU
(
Z/nZ

)
= Card

{
k ∈ Z/nZ, k ∧ n = 1

}
= Card En = φ(n).

Ainsi, l’ordre du groupe U
(
Z/nZ

)
est φ(n).

3. Si k ∈ N tel que k ∧ n = 1 alors k ∈ U
(
Z/nZ

)
et par suite, k

φ(n) = 1 i.e. kφ(n) ≡ 1 [n].
4. Liste des inversibles de l’anneau Z/nZ.

def pgcd(a,b):
while b!=0:

a, b = b, a % b
return a

def InvPhi(n):
if n == 1:

return 1
else:

L = [k for k in range(1,n) if pgcd(n,k)==1]
return L, len(L)
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Q4. Soit p un nombre premier.

1. Comme p est premier alors Ep =
{
1, . . . , p − 1

}
donc φ(p) = p − 1. Par ailleurs, φ(n) ≤ n − 1 pour tout

n ≥ 2. Ainsi, max
0≤k≤n−1

φ(k) = n − 1.

2. Si k est un entier et p un nombre premier non diviseur de k, alors k ∧ p = 1 et d’après le théorème d’Euler,
kφ(p) ≡ 1 [p]. Or φ(p) = p − 1, donc kp−1 ≡ 1 [p].

Partie III : Calcul de φ(n).

Q5. Soit r un entier ≥ 1.

1. Si k /∈ Epr alors k ∧ pr = d ≥ 2 donc d | k et d | pr i.e. d | k et d = ps avec s ≥ 1. On a alors ps | k et par
suite, p | k.
Inversement, si p | k alors k ∧ pr ≥ p ≥ 2 donc k ∧ pr ̸= 1 i.e. k /∈ Epr .

2. D’après la question précédente,

k ∈ [[0, pr − 1]] \ Epr ⇐⇒ p | k

⇐⇒ 0 ≤ k ≤ pr − 1 et ∃q ∈ N, k = pq

⇐⇒ 0 ≤ q ≤
⌊

pr − 1
p

⌋
⇐⇒ 0 ≤ q ≤ pr−1 − 1.

Il y a donc pr−1 éléments de [[0, pr −1]] qui ne sont pas premiers avec pr. D’où Card
(
[[0, pr −1]]\Epr

)
= pr−1.

3. On a : Card [[0, pr − 1]] = Card
(
[[0, pr − 1]] \ Epr

)
+ Card Epr donc

φ(pr) = Card Epr = Card [[0, pr − 1]] − Card
(
[[0, pr − 1]] \ Epr

)
= pr − pr−1.

Q6. Soient m, n deux entiers ≥ 2 premiers entre eux.

1. Soit
(
am, b

n) ∈ U
(
Z/mZ × Z/nZ

)
. Il existe

(
k

m
, ℓ

n) ∈ Z/mZ × Z/nZ tel que(
am, b

n)
.
(
k

m
, ℓ

n) =
(
1m

, 1n).
D’après le théorème des restes chinois, il existe cmn ∈ Z/mnZ unique et d

mn ∈ Z/mnZ unique tels que :

f
(
cmn

)
=
(
cm, cn

)
=
(
am, b

n) et f
(
d

mn) =
(
d

m
, d

n) =
(
k

m
, ℓ

n).
Pour conclure, il suffit de vérifier que cmn ∈ U

(
Z/mnZ

)
. On a :

(
cm, cn

)
.
(
k

m
, ℓ

n) =
(
1m

, 1n). Ainsi,(
1m

, 1n) = f
(
cmn

)
f
(
d

mn) = f
(
cd

mn) =
(
cd

m
, cd

n)
i.e. cd

m = 1m et cd
n = 1n. Les entiers m et n sont premiers entre eux, donc cmnd

mn = 1mn et par suite,
cmn ∈ U

(
Z/mnZ

)
. Ainsi, on a montrer que :

∀
(
am, b

n) ∈ U
(
Z/mZ × Z/nZ

)
, ∃! cmn ∈ U

(
Z/mnZ

)
tel que g

(
cmn

)
=
(
am, b

n).
Finalement, g est bijective.

2. D’après la question précédente et la question Q2 :

φ(mn) = CardU
(
Z/mnZ

)
= CardU

(
Z/mZ × Z/nZ

)
= CardU

(
Z/mZ

)
× CardU

(
Z/nZ

)
= φ(m)φ(n).

Q7. Soit n est un entier ≥ 2 et n = pα1
1 . . . pαr

r la décomposition de n en facteurs premiers. (les pi sont distincts
deux à deux). Les entiers pαi

i , 1 ≤ i ≤ r sont premiers entre eux deux à deux donc d’après la question
précédente,

φ(n) = φ
(
pα1

1 . . . pαr
r

)
=

r∏
i=1

φ
(
pαi

i

) question Q5.3=
r∏

i=1

(
pαi

i − pαi−1
i

)
=

r∏
i=1

pαi
i

r∏
i=1

(
1 − 1

pi

)
= n

r∏
i=1

(
1 − 1

pi

)
.
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D’où φ(n) = n
r∏

i=1

(
1 − 1

pi

)
.

Partie IV : L’identité n =
∑

d∈Dn

φ(d).

Q8. 1. Soit k ∈ Ed. On a k ∧ d = 1 et d’après la question Q1. 2, on a n

d
.k = n

d
.k est d’ordre n

n ∧ n

d
.k

. Or

n

n ∧ n

d
.k

= dn

dn ∧ kn
= dn

n(d ∧ k) = dn

n
= d.

Ainsi, si k ∈ Ed alors h(k) ∈ Od et par suite, h est bien définie.

2. Soit
(
k, ℓ
)

∈ E2
d . On a

h(k) = h(ℓ) =⇒ n

d
.k = n

d
.ℓ =⇒ k = ℓ =⇒ n divise k − ℓ.

Si k ̸= ℓ alors n ≤ |k − ℓ| mais 0 ≤ k, ℓ ≤ d − 1 donc |k − ℓ| ≤ d − 1 ≤ n − 1 et donc n ≤ |k − ℓ| ≤ n − 1 ce
qui est absurde. Ainsi, k = ℓ et h est injective.

3. Soit ℓ ∈ Od. On a d.ℓ = 0 donc il existe k′ ∈ N tel que dℓ = k′n. La division euclidienne de k′ par d donne
k′ = dq + k avec 0 ≤ k ≤ d − 1. Donc ℓ = nq + n

d
.k et par suite, ℓ = n

d
k = h(k).

Il reste à vérifier que k ∈ Ed. On a k ∈ [[0, d − 1]] et ℓ est d’ordre d. D’après la question Q1. 2, d = n

n ∧ ℓ
.

Aussi,

n
(
d ∧ k

)
= n

(
k′ ∧ d

)
= nk′ ∧ nd = ℓd ∧ nd = d

(
n ∧ ℓ

)
= n

donc d ∧ k = 1. Ainsi, on a montrer que :

∀ℓ ∈ Od, ∃k ∈ Ed tel que h(k) = ℓ.

Finalement, h est surjective.

4. Si k ∈ Od
⋂

Od′ alors k est d’ordre d et d′ donc d = d′ puisque l’ordre d’un élément dans un groupe est
unique. Ainsi, les Od pour d ∈ Dn sont disjoints deux à deux. Aussi, un élément k du groupe Z/nZ est
d’ordre fini d car le groupe Z/nZ est d’ordre fini, et on sait que, dans un groupe, l’ordre d’un éléments
divise d’ordre du groupe donc d ∈ Dn i.e. k ∈ Od. D’où

(
Od

)
d∈Dn

forme une partition de Z/nZ.

Q9. On a

n = CardZ/nZ = Card ⋃
d∈Dn

Od =
∑

d∈Dn

Card Od =
∑

d∈Dn

Card Ed =
∑

d∈Dn

φ(d).

D’où n =
∑

d∈Dn

φ(d).

Q10. Les diviseurs de pr sont les pi pour i allant de 0 à r donc

Θ(pr) =
r∑

i=0
φ(pi) question Q5.3= φ(1)︸ ︷︷ ︸

=1

+
r∑

i=1

(
pi − pi−1) = 1 + pr − p0 = pr

donc Θ(pr) = pr.

Q11. 1. Soient (d1, d2) ∈ Dm1 ×Dm2 . Si d1 divise m1 et d2 divise m2, alors d1d2 divise m1m2 donc d1d2 ∈ Dm1m2

et l’application ϕ est bien définie.

2. Considérons
(
(d1, d2), (d′

1, d′
2)
)

∈
(
Dm1 , Dm2

)2 tel que d1d2 = d′
1d′

2. Comme d1 divise m1 qui est premier
avec m2 et d′

2 divise m2, d1 est premier avec d′
2. D’après le théorème de Gauss, d1 divise d′

1. De même d′
1

divise d1 donc d1 = d′
1 (on ne s’interesse aux diviseurs positifs). On obtient alors d2 = d′

2 ce qui permet de
conclure que ϕ est injective.
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3. Soit d ∈ Dm1m2 . On décompose d en un produits de facteurs premiers distincts : d =
r∏

i=1
pαi

i . Pour tout

i ∈ [[1, r]], pi divise m1m2 et pi est premier donc pi divise m1 ou p divise m2 mais pi ne peut pas diviser m1

et m2. On peut donc écrire

[[1, r]] =
{

i ∈ [[1, r]], pi | m1
}

︸ ︷︷ ︸
=I1

⋃{
i ∈ [[1, r]], pi | m2

}
︸ ︷︷ ︸

=I2

= I1
⋃

I2.

I1 et I2 forment une partition de [[1, r]]. Par conséquent, si on pose d1 =
∏
i∈I1

pαi
i et d2 =

∏
i∈I2

pαi
i , on a

(d1, d2) ∈ Dm1 × Dm2 et d = ϕ(d1, d2). Ceci nous permet de conclure que ϕ est surjective.

4. On a

Θ(m1)Θ(m2) =

 ∑
d1∈Dm1

φ(d1)

 ∑
d2∈Dm2

φ(d2)


=

∑
(d1,d2)∈Dm1 ×Dm2

φ(d1)φ(d2)

=
∑

(d1,d2)∈Dm1 ×Dm2

φ(d1d2)

car m1 ∧ m2 = 1 et donc d1 ∧ d2 = 1 et d’après la question Q6.2. φ(d1)φ(d2) = φ(d1d2).
=

∑
d∈Dm1m2

φ(d) question précèdente

= Θ(m1m2).

Ainsi, Θ(m1)Θ(m2) = Θ(m1m2).

Q12. Pour n = 1 la relation est vraie. Supposons n ≥ 2, on ecrit la décomposition de n en facteurs premiers

distincts : n =
r∏

i=1
pαi

i . Les entiers pαi
i , 1 ≤ i ≤ r sont premiers entre eux deux à deux donc d’après la question

précédente,

Θ(n) = Θ
(

r∏
i=1

pαi
i

)
=

r∏
i=1

Θ (pαi
i ) question Q10.=

r∏
i=1

pαi
i = n.

Finalement, pour tout entier n ≥ 1, n =
∑

d∈Dn

φ(d).

Problème 2
Partie I :

Q1. 1. On a d(x0, H) = inf
y∈H

∥x0 − y∥, donc par la caractérisation séquentielle de la borne inférieure, il existe une

suite
(
yn
)

n≥0 d’éléments de H tels que ∥x0 − yn∥ −−−−−→
n→+∞

d(x0, H).

2. En particulier, la suite
(
∥x0 − yn∥

)
n≥0 est bornée : il existe M > 0 tel que ∥x0 − yn∥ ≤ M pour tout n ∈ N.

Par suite :

∀n ∈ N, ∥yn∥ = ∥x0 − yn − x0∥ ≤ ∥x0 − yn∥ + ∥x0∥ ≤ M + ∥x0∥

et la suite
(
yn
)

n≥0 est bornée. Par le théorème de Bolzano-Weierstrass en dimension finie (E est de dimension
finie), il existe φ : N −→ N strictement croissante telle que yφ(n) −−−−−→

n→+∞
y ∈ E.

Aussi, H est le noyau d’une forme linéaire h non nulle sur E, donc h est continue car E est de dimension
finie, donc H = ker h = h−1({0

})
est un fermé de E comme image réciproque du fermé

{
0
}

par l’application
continue h et par suite, y ∈ H. Ainsi, la suite

(
yn
)

n≥0 possède une valeur d’adhérence dans H.
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3. On a ∥x0 − yφ(n)∥ −−−−−→
n→+∞

d(x0, H) et ∥x0 − yφ(n)∥ −−−−−→
n→+∞

∥x0 − y∥ donc par unicité de la limite,

∥x0 − y∥ = d(x0, H) avec y ∈ H.

Ainsi, ∀x ∈ E, ∃y ∈ H, d(x0, H) = ∥x0 − y∥.

Q2. 1. On a ker h = h−1({0
})

est un fermé de E comme image réciproque du fermé
{
0
}

par l’application
continue h.

2. a. Par hypothèse, h n’est pas continue donc ∀M > 0, ∃x ∈ E tel que |h(x)| > M∥x∥. Pour M = n + 1, il
existe xn ∈ E tel que |h(xn)| > (n + 1)∥xn∥. En particulier,

(
xn
)

n≥0 /∈ ker h = H.
Posons alors tn = xn

h(xn) . On a

∥tn∥ <
1

n + 1 donc tn −−−−−→
n→+∞

0 et h(tn) = h

(
xn

h(xn)

)
= h(xn)

h(xn) = 1.

Ainsi, il existe une suite
(
tn
)

n≥0 ∈ EN telle que :

lim
n→+∞

tn = 0 et h(tn) = 1 pour tout n ∈ N.

b. Pour chaque n on a alors h(tn − t0) = h(tn) − h(t0) = 1 − 1 = 0. Par suite, pour chaque n le vecteur
tn − t0 est dans H ou encore la suite

(
tn − t0

)
n≥0 est une suite d’éléments de H. Cette suite est de plus

convergente vers −t0. Mais le vecteur −t0 n’est pas dans H car h(−t0) = −h(t0) = −1 ̸= 0.
En résumé, la suite

(
tn − t0

)
n≥0 est une suite convergente d-éléments de H dont la limite n’est pas dans

H ce qui montre que H n’est pas fermé. Par contraposition, on a montré que si H est fermé alors h est
continue sur E.

3. Tout d’abord, 0 ∈ H ⊂ H donc H ̸= ∅. Soient (x, y) ∈ H et λ ∈ R. Il existe (xn)n ∈ HN et (yn)n ∈ HN

telles que xn −−−−−→
n→+∞

x et yn −−−−−→
n→+∞

y. La suite
(
xn + λyn

)
n

est une suite d’éléments de H (car H est un
sev de E) et converge vers x + λy, donc x + λy ∈ H. Par suite, H est un sev de E.

4. Soient H un hyperplan de E puis h une forme linéaire non nulle telle que H = ker h.

• Si h est continue sur E, alors H est fermé et donc H = H.

• Si h n’est pas continue, H est un sev de E contenant strictement l’hyperplan H. Soit a ∈ H \ H. On a

E = H ⊕ Vect (a) ⊂ H ⊕ H ⊂ H

donc H = E.

Partie II :

Q3. Soit x0 ∈ E fixé.

1. Pour tout y ∈ H, on a

|h(x0)| = |h(x0) − h(y)| = |h(x0 − y)| ≤||| h ||| ∥x0 − y∥

donc ∥x0 − y∥≥ |h(x0)|
||| h |||

.

2. D’après la question précédente, |h(x0)|
||| h |||

est un minorant de l’ensemble
{

∥x0 − y∥, y ∈ H
}

donc

d(x0, H) = inf
y∈H

∥x0 − y∥≥ |h(x0)|
||| h |||

.

Ainsi, d(x0, H) ≥ |h(x0)|
||| h |||

.
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3. Par la caractérisation séquentielle de la borne inférieure,

d(x0, H) = 0 ⇐⇒ ∃(yn)n ∈ HN, ∥x0 − yn∥−−−−−→
n→+∞

0

⇐⇒ ∃(yn)n ∈ HN, yn −−−−−→
n→+∞

x0

⇐⇒ x0 ∈ H

⇐⇒ x0 ∈ H car H est fermé puisque h est continue

donc d(x0, H) = 0 ⇐⇒ x0 ∈ H.

Q4. On considère dans cette question x0 /∈ H.

1. Puisque ||| h |||= sup
x ̸=0

|h(x)|
∥x∥

, par la caractérisation séquentielle de la borne supérieure, il existe une suite

(wn)n≥0 d’éléments de E \
{
0
}

vérifiant :

||| h |||= lim
n→+∞

|h(wn)|
∥wn∥

.

2. Soit n ∈ N. Puisque x0 ∈ E \ H, on a E = H ⊕ Vect (x0) donc il existe un réel λn et un vecteur yn de H

tel que : wn = λnx0 + yn.

3. L’inégalité est vraie si wn ∈ H. Sinon, λn est non nul et donc
|h(wn)|
∥wn∥

= |h(λnx0)|
∥λnx0 + yn∥

= |λn| |h(x0)|
∥λnx0 + yn∥

= |h(x0)|∥∥∥∥x0 + 1
λn

yn

∥∥∥∥
et puisque 1

λn
yn ∈ H, on a

∥∥∥∥x0 + 1
λn

yn

∥∥∥∥ ≥ d(x0, H) > 0. Finalement,

|h(wn)|
∥wn∥

≤ |h(x0)|
d(x0, H) .

Q5. Soit x0 ∈ E.

• Si x0 ∈ H, le résultat est valable puisque d’après la question Q3.3, on a d(x0, H) = h(x0) = 0.

• Si x0 /∈ H alors, quand n tend vers +∞ dans l’inégalité précédente et d’après la question Q4.1, on obtient
||| h |||≤ |h(x0)|

d(x0, H) ou encore d(x0, H) ≤ |h(x0)|
||| h |||

donc (question Q3.2) d(x0, H) = |h(x0)|
||| h |||

. D’où :

∀x0 ∈ H, d(x0, H) = |h(x0)|
||| h |||

.
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