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Devoir surveillé N°1 MP Laayoune

Probleme 1

Notations et rappels

 Soit n un entier > 2. On note Z/nZ P'anneau des classes d’entiers modulo n, et U(Z/nZ) le groupe multi-

plicatif des éléments inversibles de Z/nZ.
e Pour n > 1, on note &, = {k €fo,n—1], kAnn= 1} et ¢ lindicatrice d’Euler : ¢(n) = Card &,.

o On rappelle que, si G est un groupe (multiplicatif) d’ordre n et de neutre e, alors
pour tout @ € G, a™ = e. En particulier, 'ordre de a divise n.

e On rappelle aussi le théoréme des restes chinois : Si m,n sont deux entiers > 2 premiers entre eux, alors

I’application :

f + Z/mnZ — Z/mZxZ/nZ

T (z™, ")
est un isomorphisme d’anneaux.

e Pour n entier > 2, on note D,, I’ensemble des diviseurs poritifs de n.
Partie | : Questions préliminaires.

Q1. Soit G un groupe et a € G d’ordre fini m.

1. Soit k € N*. Montrer que I'ordre de a* est égal & m_
mAk
2. En déduire l'ordre de k dans le groupe additif (Z/nZ, +).

Q2. Soient m,n deux entiers > 2. Montrer que U(Z/mZ x Z/nZ) = U(Z/mZ) x U(Z/nZ).
Partie Il : Arithmétiques dans I'anneau Z/n’Z.

Q3. Soit n un entier > 2.
1. Montrer 'équivalence : k € U(Z/nZ) <= kAn=1.
2. En déduire l'ordre du groupe U(Z/nZ).
3. En déduire le théoreme d’Euler :
VEEN, knn=1 = k*" = 1[n).
4. Ecrire une fonction InvPhi(n) en language Python qui renvoie la liste des inversibles de 'anneau Z /nZ et
qui calcul le nombre ¢(n).
Q4. Soit p un nombre premier.
1. Déterminer ¢(p). En déduire oJpax o(k).
2. En déduire le petit théoréeme de Fermat : Si k est un entier et p un nombre premier non diviseur de k, alors

kPl = 1p].
Partie 11l : Calcul de ¢(n).

Q5. Soit p un nombre premier et r un entier > 1.
1. Soit k € [0,p" — 1]. Montrer I’équivalence : k ¢ £, <= p| k.
2. Montrer que Card ([0,p" — 1]\ &) = p" L.

T r—1

3. En déduire que ¢(p") =p" —p
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Q6. Soient m,n deux entiers > 2 premiers entre eux.
1. Montrer que ’application
g : U(Z/mnZ) — U(Z/mZ x Z/nZ)
zmn — (™, z")
est bijective. Indication : on pourra utiliser le théoreme des restes chinois.

2. En déduire que p(mn) = p(m)e(n). Indication : on pourra utiliser la question Q2.

Q7. En déduire que, si n est un entier > 2 et n = p{* ... p¢ la décomposition de n en facteurs premiers,

p(n) :ni:f[l (1 —;)

Partie IV : L'identité n = Y ¢(d).
deDy,

Dans cette partie, on va établir par deux méthodes différentes, I'identité n = Z o(d).
deDy,

Premiéere méthode
On se place dans le groupe additif (Z/nZ,+). Soit d € D,, et Oy = {E € Z/nZ, k est d’ordre d}.

Q8. On considere lapplication h : & — Oy

n —
k — =k
d
1. Montrer que h est bien définie. Indication : on pourra utiliser la question Q1. 2.

N

. Montrer que h est injective.

3. Montrer que h est surjective.

H

. Justifier que (Oq) forme une partition de Z/nZ.

d€Dp

Q9. En déduire que, pour tout entier n > 1, on a 1’égalité n = Z o(d).
deDy,

Deuxiéme méthode

On pose, pour n > 1, O(n) = Z o(d).
deDy,
Q10. Soit p un nombre premier. Montrer que, pour tout entier  non nul, O(p") = p".

Indication : on pourra utiliser la question Q5. 3.

Q11. Soient mq,mo deux entiers naturels premiers entre eux. On considére I'application

@ : Dpy XDpmy — Dpymy
(di,d2) —  didy

[ay

. Vérifier que ¢ est bien définie.

N

. Montrer que ¢ est injective.

w

. Montrer que ¢ est surjective.

4. En déduire la relation ©(m1)0(mg) = ©(m1ms). Indication : on pourra utiliser la question Q6.

Q12. Montrer que pour tout entier n > 1, on a ’égalité n = Z o(d).
deDy,

2.
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Probleme 2

Notations et rappels

e On appelle forme linéaire sur un R-ev E toute application linéaire de E a valeurs dans R.
e Un hyperplan H d’'un R-ev F est le noyau d’une forme linéaire non nulle sur F.

o On rappelle la décomposition E = H @ Vect (a) pour tout a € E'\ H.
Partie | :

Q1. Dans cette question, (E, ||.||) est un R-espace vectoriel normé de dimension finie, 2o un vecteur de E et H

un hyperplan de E.
1. On note d(zg, H) la distance de x¢ a 'hyperplan H : d(xo, H) = inEon -yl
ye

Justifier I’existence d’une suite (yn)n>0 d’éléments de H tels que
120 = ynll ———— d(@o, H).

2. Montrer que la suite (yn)n>0 possede une valeur d’adhérence dans H.
3. En déduire qu’il existe y € H tel que
d(zo, H) = [lzo — yl|.
On dit que la distence de z¢ a H est atteinte en y.
Q2. Dans cette question, (E, ||.||) est un R-espace vectoriel normé de dimension quelconque.
1. Montrer que si h est une forme linéaire continue sur E alors le noyau, ker h, est fermé dans F.
2. Soit h une forme linéaire sur F telle que ker h est fermé dans E. Suspposons h n’est pas continue sur F.
a. Construire une suite (t,) ., € EN telle que :

lim t, =0 et h(t,) =1 pour tout n € N.

n——+00

b. En considérant la suite (¢, — to) aboutir a une contradiction, puis conclure.

n>0’
3. Montrer que si H est un hyperplan de FE, alors H est un sous-espace vectoriel de E.

4. En déduire que tout hyperplan de E est fermé ou dense dans F c-a-d H = H ou H = E.
Indication : on pourra utiliser la décomposition E = H @ Vect (a) pour tout a € E'\ H.

Partie Il :

On suppose dans cette partie que H est un hyperplan fermé d’un R-espace vectoriel (E, ||.||) de dimension quel-

conque. H est le noyau de la forme linéaire h, continue non nulle sur FE.

On rappelle que la norme de 'application A subordonnée a la norme de E est définie par :

|h(2)]
[ A [f]= sup ==
20 |2
Q3. Soit zp € F fixé.
1. Montrer que, pour tout y de H, on a :
(o)
lzo — yll>
[1FAl]
h
2. En déduire que d(xo, H) > ‘IH(zO\T!‘

3. Montrer que d(zg, H) =0 <= x9€ H.

Binyze Mohamed [https://supspé.com] 3/ 4 Tournez la page S.V.P.


https://supsp%C3%A9.com

Devoir surveillé N°1 MP Laayoune

Q4. On considére dans cette question xzo ¢ H.
1. Montrer qu'’il existe une suite (wy,),>0 d’éléments de £\ {0} vérifiant :

15 1=t 1202

notoo [lwall

2. Justifier que, pour tout entier n, il existe un réel A\, et un vecteur y, de H tel que : w, = ATy + Yn-
3. Prouver que, pour tout entier n :
[(wn) _ h(@0)|
lwnl " d(zo, H)
Q5. En déduire que, pour tout vecteur xg € F, on a :

d(ZL'(),H) _ |h(.%'0)’
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