201011 20 201011 20 201011 20 201011 20 201011 20 201011 20 20 20 20 20 20 20 20 20 20 20 20 20	Nom et prénom :	Devoir de contrôle Nº2	MP Laâyoune
---	-----------------	------------------------	-------------

Devoir de contrôle Nº2

Q 1.	Répondez par V (vrai) ou par F (faux) aux affirmations suivantes.		
1.	Dans un evn, toute suite convergente possède une unique valeur d'adhérence.		
2.	Dans un evn, toute suite possède une unique valeur d'adhérence est convergente.		
3.	Toute suite bornée de réels ou de complexes possède une unique valeur d'adhérence.		
4.	Une intersection quelconque d'ouverts est un ouvert.		
5.	Une intersection quelconque de fermés est un fermé.		
6.	Une partie ne peut pas être à la fois ouverte et fermée.		
7.	Une partie est ouverte ou fermée.		
8.	$[0,1[$ est un ouvert relatif à \mathbb{R}_+ .		
9.	Toute application continue est uniformément continue.		
10.	Toute application continue sur un compact est uniformément continue.		
11.	Toute application linéaire sur un evn est continue		
12.	Tout compact est fermée et bornée.		
13.	En dimension finie, les boules fermées sont compacts.		
14.	Une partie fermée et bornée est compacte.		
15.	En dimension finie, toute suite bornée possède au moins une valeur d'adhérence.		
16.	Une suite est convergente si, et seulement si, elle admet une unique valeur d'adhérence.		
17.	7. Toute partie étoilée est connexe par arcs.		
18.	. Toute partie convexe est connexe par arcs.		
19.	. Toute partie connexe par arcs est convexe.		
20.	. Toute partie qui possède deux composantes connexes par arcs est connexe par arcs.		
Q2 .	On pose $E = \mathcal{C}^2([0,1], \mathbb{R})$. Pour $f \in E$, on définit :		
	$N_1(f) = \int_0^1 f(t) dt, N_2(f) = f(0) + \int_0^1 f'(t) dt, N_3(f) = f(0) + f'(0) + \int_0^1 f''(t) dt.$		
1.	Montrer que N_2 est une norme sur E .		
		• • •	

Q3. On fixe un réel $a\in [0,1]$ et on considère l'espace vectoriel $E=\mathcal{C}([0,a],\mathbb{R})$ muni de la norme N_∞ définie par $N_\infty(f)=\sup_{t\in [0,a]} f(t) $. 1. On pose, pour $t\in [0,a]$, $f_n(t)=\sum_{k=0}^n t^k$, $(n\in\mathbb{N})$ et $f(t)=\frac{1}{1-t}$. Montrer que, pour tout $n\in\mathbb{N}$, $N_\infty(f_0-f)\leq \frac{a^{n+1}}{1-a}$. 2. En déduire que $f_0=\frac{1}{n\to+\infty}$ f pour la norme N_∞ . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_∞) ? justifier votre véponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2=\sqrt{x^2+y^2}$. Soit $A=\left\{(x,y)\in\mathbb{R}^2,\ x=-y\right\}$ et $b=(0,-1)\in\mathbb{R}^2$. Montrer que $d(b,A)=\frac{1}{\sqrt{2}}$.	Nom et prénom :	Devoir de contrôle Nº2	MP Laâyoune
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$ 1. On pose, pour $t \in [0,a]$, $f_n(t) = \sum_{k=0}^n t^k$, $(n \in \mathbb{N})$ et $f(t) = \frac{1}{1-t}$. Montrer que, pour tout $n \in \mathbb{N}$, $N_{\infty}(f_n - f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme N_{∞} . 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $ (x,y) _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, \ x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
 On pose, pour t ∈ [0, a], f_n(t) = ∑_{k=0}ⁿ t^k, (n ∈ N) et f(t) = 1/(1-t). Montrer que, pour tout n ∈ N, N_∞(f_n − f) ≤ aⁿ⁺¹/(1-a). N_∞(f_n − f) ≤ aⁿ⁺¹/(1-a). En déduire que f_n → f pour la norme N_∞. On note F l'espace vectoriel des fonctions polynômes sur [0, a]. F est-il un fermé de (E, N_∞)? justifier votre réponse. Q4. On muni R² par la norme (x, y) ₂ = √x² + y². Soit A = {(x, y) ∈ R², x = −y} et b = (0, −1) ∈ R². 	Q3. On fixe un réel $a \in]0,1[$ et on considèr	e l'espace vectoriel $E = \mathcal{C}([0, a], \mathbb{R})$ m	nuni de la norme N_{∞} définie par
$N_{\infty}(f_n-f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme $N_{\infty}.$ 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a].$ F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $\ (x,y)\ _2 = \sqrt{x^2+y^2}.$ Soit $A = \left\{(x,y) \in \mathbb{R}^2, \ x = -y\right\}$ et $b = (0,-1) \in \mathbb{R}^2.$		$N_{\infty}(f) = \sup_{t \in [0,a]} f(t) .$	
$N_{\infty}(f_n-f) \leq \frac{a^{n+1}}{1-a}.$ 2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la norme $N_{\infty}.$ 3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a].$ F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. Q4. On muni \mathbb{R}^2 par la norme $\ (x,y)\ _2 = \sqrt{x^2+y^2}.$ Soit $A = \left\{(x,y) \in \mathbb{R}^2, \ x = -y\right\}$ et $b = (0,-1) \in \mathbb{R}^2.$	1. On pose, pour $t \in [0, a]$, $f_n(t) = \sum_{k=0}^{n} t$	$k, (n \in \mathbb{N}) \text{ et } f(t) = \frac{1}{1-t}. \text{ Montrer } t$	que, pour tout $n \in \mathbb{N}$,
 2. En déduire que f_n → f pour la norme N_∞. 3. On note F l'espace vectoriel des fonctions polynômes sur [0, a]. F est-il un fermé de (E, N_∞)? justifier votre réponse. Q4. On muni R² par la norme (x, y) ₂ = √x² + y². Soit A = {(x, y) ∈ R², x = -y} et b = (0, -1) ∈ R². 			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$		$N_{\infty}(f_n - f) \le \frac{1 - a}{1 - a}.$	
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$			
3. On note F l'espace vectoriel des fonctions polynômes sur $[0,a]$. F est-il un fermé de (E,N_{∞}) ? justifier votre réponse. $\mathbf{Q4.} \text{ On muni } \mathbb{R}^2 \text{ par la norme } \ (x,y)\ _2 = \sqrt{x^2+y^2}. \text{ Soit } A = \left\{(x,y) \in \mathbb{R}^2, \ x=-y\right\} \text{ et } b = (0,-1) \in \mathbb{R}^2.$	2. En déduire que $f_n \xrightarrow[n \to +\infty]{} f$ pour la n	orme N_{∞} .	
 3. On note F l'espace vectoriel des fonctions polynômes sur [0, a]. F est-il un fermé de (E, N_∞)? justifier votre réponse. Q4. On muni R² par la norme (x, y) ₂ = √x² + y². Soit A = {(x, y) ∈ R², x = -y} et b = (0, -1) ∈ R². 			
 3. On note F l'espace vectoriel des fonctions polynômes sur [0, a]. F est-il un fermé de (E, N_∞)? justifier votre réponse. Q4. On muni R² par la norme (x, y) ₂ = √x² + y². Soit A = {(x, y) ∈ R², x = -y} et b = (0, -1) ∈ R². 			
réponse. Q4. On muni \mathbb{R}^2 par la norme $\ (x,y)\ _2=\sqrt{x^2+y^2}.$ Soit $A=\left\{(x,y)\in\mathbb{R}^2,\ x=-y\right\}$ et $b=(0,-1)\in\mathbb{R}^2.$			
Q4. On muni \mathbb{R}^2 par la norme $\ (x,y)\ _2=\sqrt{x^2+y^2}$. Soit $A=\left\{(x,y)\in\mathbb{R}^2,\ x=-y\right\}$ et $b=(0,-1)\in\mathbb{R}^2$.		ons polynômes sur $[0,a]$. F est-il un fe	ermé de (E, N_{∞}) ? justifier votre
Q4. On muni \mathbb{R}^2 par la norme $\ (x,y)\ _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
Q4. On muni \mathbb{R}^2 par la norme $\ (x,y)\ _2 = \sqrt{x^2 + y^2}$. Soit $A = \{(x,y) \in \mathbb{R}^2, x = -y\}$ et $b = (0,-1) \in \mathbb{R}^2$.			
·			
·	Q4. On muni \mathbb{R}^2 par la norme $\ (x,y)\ _2 =$	$=\sqrt{x^2+y^2}$. Soit $A=\left\{(x,y)\in\mathbb{R}^2\right\}$.	$x = -y$ et $b = (0, -1) \in \mathbb{R}^2$.
Montrer que $\mathbf{d}(b,A) = \frac{1}{\sqrt{2}}$.	4	$V^{\omega} + y^{-1} = U^{\omega}$	$(0, 1) \subseteq \mathbb{R}^{n}$
	Montrer que $d(b, A) = \frac{1}{\sqrt{2}}$.		
			•••••
			•••••

3/8

Tournez la page S.V.P.

Binyze Mohamed [https://supspé.com]

	. Soit $\alpha \in \mathbb{R}$ et $A = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$. Donner une condition nécessaire et suffisante sur α pour que la suite $(A^n)_{n \in \mathbb{N}}$ converge.
Q5	. Soit $\alpha \in \mathbb{R}$ et $A = \begin{bmatrix} 0 & \alpha & 0 \end{bmatrix}$. Donner une condition nécessaire et suffisante sur α pour que la suite $(A^n)_{n \in \mathbb{N}}$
	$\begin{pmatrix} 0 & 0 & \frac{1}{3} \end{pmatrix}$
(converge.
Q6	. Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$. Montrer que son graphe $G=\left\{(x,f(x)),\;x\in\mathbb R\right\}$ est un fermé de
	$\mathbb{R}^2.$
ე7	. Soit I un intervalle de \mathbb{R} et $f:I\longrightarrow\mathbb{R}$ dérivable.
-	1. Donner une condition nécessaire et suffisante sur f pour quelle soit lipschitzienne.
2	2. Montrer alors que la fonction $t \mapsto \frac{t}{1+t}$ est lipschitzienne sur $[0, +\infty[$.
	1+t

Devoir de contrôle Nº2

Nom et prénom :

MP Laâyoune

Non	m et prénom : Devoir de co	ntrôle №2	MP Laâyoune
Q 8.	. Montrer que l'ensemble $K = \{(x,y) \in \mathbb{R}^2, x + y^2 \le x\}$	≤ 1 est un compact de \mathbb{R}^2 .	
Q9 .	. On pose $X = \{ M \in \mathcal{M}_n(\mathbb{R}), M^2 - M^{\intercal} = I_n \}.$		
	1. Justifier soigneusement que les applications :		
	• $\varphi_1: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}), \ A \longmapsto A^{T};$		
	• $\varphi_2: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}), A \longmapsto (A, A)$	n) :	
	• $\varphi_3: \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}), \ (A, B) \longmapsto A$		
		, iD ,	
	sont continues.		
			• • • • • • • • • • • • • • • • • • • •
2	2. En déduire que X est fermé.		
Q10	0. Soient $(E, \ .\)$ un evn et K un compact de E .		

Q1 3	3. Soit $\ \cdot\ $ une norme sur $\mathcal{M}_n(\mathbb{K})$. Prouver :
	$\exists k \in \mathbb{R}_+, \ \forall (A,B) \in \mathcal{M}_n(\mathbb{K})^2, \ \ AB\ \le k\ A\ \ \ B\ .$
Q14	4. Soit E un evn et C une partie convexe de E . Montrer que \overline{C} est convexe.
•	
	5. Soient E un evn de dimension finie, K un compact de E et λ un scalaire non nul.
N	Montrer que $\lambda.K$ est un compact de E . (on rappelle que $\lambda.K = \{\lambda.x, x \in K\}$)
•	
•	
•	
•	
•	

Devoir de contrôle Nº2

Nom et prénom :

MP Laâyoune

Q16. Soient $E = \mathcal{C}^0([0,1], \mathbb{R})$ muni de la norme $\|.\|_2$ et $\varphi : E \longrightarrow \mathbb{R}$. $f \longmapsto \int_0^1 \mathrm{e}^t f(t) \mathrm{d}t$

-	1 Months and a set linéaire et continue	
1.	1. Montrer que φ est linéaire et continue.	
		• • • • • • • • • • • • • • • • • • • •
2.	2. Montrer que $ \varphi = \sqrt{\frac{1}{2}(e^2 - 1)}$.	
	V 2	
		• • • • • • • • • • • • • • • • • • • •
Q17.	17. Montrer que l'ensemble $A = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \ \theta \in \mathbb{R} \right\}$ est connexe pa	r arcs.
4	$\left(\left\langle \sin \theta - \cos \theta \right\rangle \right)^{\frac{1}{2}}$ as common points	
• •		
• •		
• •		
• •		• • • • • • • • • • • • • • • • • • • •
• •		