Réduction des endomorphismes et des matrices carrées

Binyze Mohamed

MP 2025-2026

Sommaire

-	Complements a algebre infeatre	_
2	Sous-espaces stables, éléments propres	5
3	Polynôme caractéristique	7
4	Diagonalisabilité	9
5	Trigonalisabilité	10
6	Polynômes d'endomorphismes et de matrices carrées	11

Dans ce chapitre et sauf mentionné, la notation \mathbb{K} désigne un sous-corps de \mathbb{C} et E un espace vectoriel sur \mathbb{K} .

1 Compléments d'algèbre linéaire

lompléments d'algèbre linéaire

Somme de sous-espaces vectoriels

Définition 1.1.

somme et somme directe d'une famille finie de sev

1. On appelle somme des sev F_1,\ldots,F_r de E, l'ensemble notée $\sum\limits_{i=1}^r F_i$ définie par :

$$\boxed{ \sum_{i=1}^r F_i \stackrel{\text{def}}{=} \left\{ x \in E, \ x = \sum_{i=1}^r x_i \text{ où } (x_1, \dots, x_r) \in F_1 \times \dots \times F_r \right\} } .$$

2. On dit que les sev F_1, \ldots, F_r de E sont en **somme directe** et on note $\sum_{i=1}^r F_i = \bigoplus_{i=1}^r F_i$ si :

$$\forall (x_1,\ldots,x_r) \in F_1 \times \ldots \times F_r, \quad \sum_{i=1}^r x_i = 0 \implies \forall i \in [[1,r]], \quad x_i = 0.$$

Remarque 1.1.
$$\blacksquare x \in \bigoplus_{i=1}^r F_i \iff \exists ! (x_1, \dots, x_r) \in F_1 \times \dots \times F_r, \quad x = \sum_{i=1}^r x_i.$$
 (La décomposition dans $\bigoplus_{i=1}^r F_i$ est unique)

Proposition 1.1.

somme de sous-espaces et familles de vecteurs

Soient F_1, \ldots, F_r des sev de E et \mathcal{E}_i une famille de vecteurs de F_i , $1 \le i \le r$.

- **1.** Si, chaque \mathcal{E}_i est génératrice de F_i , alors $\bigcup_{i=1}^r \mathcal{E}_i$ est génératrice de $\sum_i F_i$.
- **2.** Supposons que la somme $\sum_{i=1}^{n} F_i$ est directe.
 - Si, chaque \mathcal{E}_i est libre, alors $\bigcup_{i=1}^r \mathcal{E}_i$ est libre dans $\bigoplus_{i=1}^r F_i$.
 - Si, chaque \mathcal{E}_i est une base de F_i , alors $\bigcup_{i=1}^r \mathcal{E}_i$ est une base de $\bigoplus_{i=1}^r F_i$.

Définition 1.2.

base adaptée à une décomposition en somme directe

Soient F_1, \ldots, F_r des sev de E de dimension finie et \mathcal{B}_i une base de F_i , $1 \le i \le r$. La famille $\mathcal{B} = \bigcup_{i=1}^r \mathcal{B}_i$ est une base (la réunion étant « ordonnée ») de $\bigoplus_{i=1}^r F_i$ dite base adaptée à la décomposition $\bigoplus_{i=1}^r F_i$.

Proposition 1.2.

caractérisation d'une somme directe

Soient F_1, \ldots, F_r des sev de E. La somme $\sum_{i=1}^r F_i$ est directe i si, et seulement si, $\forall j \in [[1, r]], F_j \cap (\sum_{i=1}^r F_i) = \{0_E\}.$

1. Lorsque $r \ge 3$, on peut avoir $\bigcap_{i=1}^r F_i = \{0\}$ ou $F_i \cap F_j = \{0\}$ pour tout $i \ne j$ sans que la somme $\sum_{i=1}^r F_i$ soit directe.

Théorème 1.1.

caractérisation des sommes directes en dimension finie

Soient F_1, \ldots, F_r des sev de dimension finie. On a $\left| \dim \left(\sum_{i=1}^r F_i \right) \le \sum_{i=1}^r \dim F_i \right|$, avec égalité si, et seulement si,

la somme est *directe*.

Définition 1.3. sev supplémentaires

On dit que les sev F_1, \ldots, F_r de E sont **supplémentaires dans** E lorsque $\mid E = \bigoplus_{i=1}^r F_i \mid$

Remarque 1.2 (Cas de la somme de deux sev : rappel MPSI).

- $E = F_1 \oplus F_2 \iff \forall x \in E, \exists ! (x_1, x_2) \in F_1 \times F_2, x = x_1 + x_2 \iff \begin{cases} E = F_1 + F_2 \\ F_1 \cap F_2 = \{0\} \end{cases}$
- Supposons E de dimension finie et soient \mathcal{B}_1 (resp. \mathcal{B}_2) une base de F_1 (resp. de F_2). On a :

$$E = F_1 \oplus F_2 \iff \left\{ \begin{array}{l} E = F_1 + F_2 \\ \dim F_1 + \dim F_2 = \dim E \end{array} \right. \iff \left\{ \begin{array}{l} F_1 \cap F_2 = \left\{0\right\} \\ \dim F_1 + \dim F_2 = \dim E \end{array} \right. \iff \mathcal{B}_1 \cup \mathcal{B}_2 \text{ base de } E.$$

Proposition 1.3.

projecteurs associés à une décomposition de l'espace

Soit F_1, \ldots, F_r des sev de E tels que $E = \bigoplus_{i=1}^r F_i$. Posons, pour $j \in [[1, r]], E_j = \bigoplus_{\substack{i=1 \ i \neq j}}^r F_i$.

- **1.** Pour tout $j \in [[1, r]], E = F_j \oplus E_j$.
- **2.** Si p_j est la projection sur F_j parallèlement à E_j , on a : $\begin{cases} p_i \circ p_j = 0 & \text{pour tout} \quad i \neq j \\ p_i \circ p_i = p_i & \text{pour tout} \quad i \in \llbracket 1,r \rrbracket \\ \sum_{i=1}^r p_i = \operatorname{Id}_E \end{cases}.$

Les p_i , $1 \le i \le r$ sont appelés les **projecteurs associés** à la somme directe $E = \bigcap_{i=1}^r F_i$.

Théorème 1.2.

somme directe d'applications linéaires

Soient F_1, \ldots, F_r des sev de E tels que $E = \bigoplus_{i=1}^r F_i$ et pour tout $i \in [[1, r]], u_i \in \mathcal{L}(F_i, F)$. Alors il existe une et une seule application $u \in \mathcal{L}(E, F)$ telle que $u_{|F_i|} = u_i$ pour tout $i \in [[1, r]]$.

Exemple 1.1. \blacksquare Si $E = \bigoplus_{i=1}^r F_i$, alors Id_E est l'unique application linéaire de E dans E dont la restriction à chaque F_i est p_i .

Matrices définies par blocs

Soient:

- $(n,p) \in (\mathbb{N}^*)^2$, $(n_1,\ldots,n_r) \in (\mathbb{N}^*)^r$, $(p_1,\ldots,p_s) \in (\mathbb{N}^*)^s$ tels que $\sum_{i=1}^r n_i = n$ et $\sum_{j=1}^s p_j = p$.
- $(n',p') \in (\mathbb{N}^*)^2$, $(n'_1,\ldots,n'_{r'}) \in (\mathbb{N}^*)^{r'}$, $(p'_1,\ldots,p'_{s'}) \in (\mathbb{N}^*)^{s'}$ tels que $\sum_{i=1}^{r'} n'_i = n'$ et $\sum_{j=1}^{s'} p'_j = p'$.

Définition 1.4. matrice par blocs

- 1. Une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est *écrite par blocs* lorsque $A = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,s} \\ A_{2,1} & A_{2,2} & \dots & A_{2,s} \\ \vdots & \vdots & & \vdots \\ A_{r,1} & A_{r,2} & \dots & A_{r,s} \end{pmatrix}$ avec $A_{i,j} \in \mathcal{M}_{n_i,p_i}(\mathbb{K})$ pour tout $(i,j) \in [[1,r]] \times [[1,s]]$.
- 2. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est *écrite par blocs* lorsque $A = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,r} \\ A_{2,1} & A_{2,2} & \dots & A_{2,r} \\ \vdots & \vdots & & \vdots \\ A_{r,1} & A_{r,2} & \dots & A_{r,r} \end{pmatrix}$

avec

- $A_{i,j} \in \mathcal{M}_{n_i,n_j}(\mathbb{K})$ pour tout $(i,j) \in [[1,r]]^2$.
- Les blocs diagonaux $A_{i,i}$ sont des matrices carrées : $\forall i \in [[1,r]], A_{i,i} \in \mathcal{M}_{n_i}(\mathbb{K})$.

Remarque 1.3 (Interprétation géométrique des blocs).

■ Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on peut considérer que A représente une application linéaire de E (espace de dimension p) dans F (espace de dimension n) relativement à deux bases \mathcal{B} et \mathcal{C} adaptées à deux décompositions en somme directe $E = \bigoplus_{j=1}^{p} E_j$ et $E = \bigoplus_{i=1}^{n} F_i$.

Proposition 1.4.

combinaison linéaire

Soient $\lambda \in \mathbb{K}$ et $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$ décomposées en blocs :

$$A = (A_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le s}} \text{ et } B = (B_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le s}} \text{ où } A_{i,j}, B_{i,j} \in \mathcal{M}_{n_i,p_j}(\mathbb{K}) \text{ (même découpage)}.$$

Alors $\lambda . A + B$ admet la décomposition par blocs (avec même découpage) : $\lambda . A + B = (\lambda . A_{i,j} + B_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le s}}$

Proposition 1.5. produit par blocs

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in \mathcal{M}_{p,q}(\mathbb{K})$ décomposées en blocs :

$$A = (A_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le s}} \text{ et } B = (B_{i,j})_{\substack{1 \le i \le r' \\ 1 \le j \le s'}} \text{ où } r' = s \text{ et } (n'_1, \dots, n'_{r'}) = (p_1, \dots, p_s).$$

Alors AB admet la décomposition en blocs : $AB = (C_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le s'}}$ avec $C_{i,j} = \sum_{k=1}^{r'} A_{i,k} B_{k,j}$.

Exemple 1.2. Soient $(a,b) \in \mathbb{K}^2$, $C_1, C_2 \in \mathcal{M}_{n,1}(\mathbb{K})$, $L \in \mathcal{M}_{1,n}(\mathbb{K})$, $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$.

•
$$\left(a \quad L\right) \begin{pmatrix} b \\ C_1 \end{pmatrix} = \left(ab + LC_1\right) \in \mathcal{M}_1(\mathbb{K}). \text{ (scalaire)}$$
• $\left(A \quad B \\ C \quad D\right) \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} AC_1 + BC_2 \\ CC_1 + DC_2 \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{K}).$

•
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} AC_1 + BC_2 \\ CC_1 + DC_2 \end{pmatrix} \in \mathcal{M}_{2n,1}(\mathbb{K})$$

•
$$\binom{b}{C_1}$$
 $\binom{a}{a}$ $\binom{b}{a}$ $\binom{ba}{aC_1}$ $\binom{bL}{aC_1}$ $\in \mathcal{M}_{n+1}(\mathbb{K}).$

Proposition 1.6.

transposition par blocs

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ décomposée en blocs : $A = (A_{i,j})_{\substack{1 \le i \le r \\ 1 \le i \le s}}$. Alors

$$A^{\top} = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,s} \\ A_{2,1} & A_{2,2} & \dots & A_{2,s} \\ \vdots & \vdots & & \vdots \\ A_{r,1} & A_{r,2} & \dots & A_{r,s} \end{pmatrix}^{\top} = \begin{pmatrix} A_{1,1}^{\top} & A_{2,1}^{\top} & \dots & A_{r,1}^{\top} \\ A_{1,2}^{\top} & A_{2,2}^{\top} & \dots & A_{r,2}^{\top} \\ \vdots & \vdots & & \vdots \\ A_{1,s}^{\top} & A_{2,s}^{\top} & \dots & A_{r,s}^{\top} \end{pmatrix} \in \mathcal{M}_{p,n}(\mathbb{K}).$$

Proposition 1.7.

matrice triangulaire par blocs

Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite **triangulaire supérieure par blocs** lorsque $A = \begin{bmatrix} 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star \\ 0 & 0 & A \end{bmatrix}$

où les blocs diagonaux A_i sont des matrices carrées: $\forall i \in [[1, r]], A_i \in \mathcal{M}_{n_i}(\mathbb{K})$. De plus:

$$\mathbf{1.} \ \forall k \in \mathbb{N}^*, \ A^k = \begin{pmatrix} A_1^k & \star' & \dots & \star' \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star' \\ 0 & \dots & 0 & A_r^k \end{pmatrix}.$$

3. Si
$$A \in \mathcal{GL}_n(\mathbb{K})$$
, alors $A^{-1} = \begin{pmatrix} A_1^{-1} & * & \dots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & A_r^{-1} \end{pmatrix}$.

4. det $A = \prod_{i=1}^r \det A_i$.

2.
$$A \in \mathcal{GL}_n(\mathbb{K}) \iff \forall i \in [[1,r]], \ A_i \in \mathcal{GL}_{n_i}(\mathbb{K}).$$

- 1. Définition analogue pour une une triangulaire inférieure par bloc

Proposition 1.8.

matrice diagonale par blocs

Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite **diagonale par blocs** lorsque $A = \begin{bmatrix} A_1 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \end{bmatrix}$ et on note

 $A = \operatorname{diag}(A_1, \ldots, A_r)$ où les blocs diagonaux A_i sont des matrices **carrées**: $\forall i \in [[1, r]],$

1.
$$\forall k \in \mathbb{N}^*, A^k = \operatorname{diag}(A_1^k, \dots, A_r^k)$$

3.
$$\det A = \prod_{i=1}^r \det A_i$$
.

2.
$$A \in \mathcal{GL}_n(\mathbb{K}) \iff \forall i \in [[1, r]], \ A_i \in \mathcal{GL}_{n_i}(\mathbb{K}).$$

1.
$$\forall k \in \mathbb{N}^*, A^k = \operatorname{diag}(A_1^k, \dots, A_r^k).$$

2. $A \in \mathcal{GL}_n(\mathbb{K}) \iff \forall i \in [[1, r]], A_i \in \mathcal{GL}_{n_i}(\mathbb{K}).$

3. $\det A = \prod_{i=1}^r \det A_i.$

4. Si $A \in \mathcal{GL}_n(\mathbb{K})$, alors $A^{-1} = \operatorname{diag}(A_1^{-1}, \dots, A_r^{-1}).$

Définition 1.5. transvections par blocs

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ décomposée par blocs : $A = (A_{i,j})_{\substack{1 \leq i \leq r \\ 1 \leq i \leq s}}$

- **1.** Soit $(i,j) \in [[1,r]]^2$ tel que $i \neq j$. Pour toute $M \in \mathcal{M}_{n_i,n_j}$, l'opération, codée $L_i \longleftarrow L_i + ML_j$, est valide et appelée une *transvection par blocs sur les lignes*.
- **2.** Soit $(i,j) \in [[1,s]]^2$ tel que $i \neq j$. Pour toute $M \in \mathcal{M}_{p_j,p_i}$, l'opération, codée $C_i \longleftarrow C_i + C_j M$, est valide et appelée une *transvection par blocs sur les colonnes*.

Remarque 1.4 (Invariance du déterminant par des transvections par blocs).

■ Comme les transvections par blocs sont en fait des transvections simultanées sur les lignes ou sur les colonnes, lorsqu'elles portent sur une matrice carrée, *les transvections par blocs conservent le déterminant* de cette matrice carrée.

Exemple 1.3. Soient $A \in \mathcal{M}_{n_1}(\mathbb{K})$, $B \in \mathcal{M}_{n_1,n_2}(\mathbb{K})$ et $C \in \mathcal{M}_{n_2,n_1}(\mathbb{K})$. En appliquant l'opération $L_1 \longleftarrow L_1 - BL_2$, on passe de $\begin{pmatrix} A & B \\ C & I_{n_2} \end{pmatrix}$ à $\begin{pmatrix} A - BC & O_{n_1,n_2} \\ C & I_{n_2} \end{pmatrix}$ et donc

$$\det\begin{pmatrix} A & B \\ C & \mathbf{I}_{n_2} \end{pmatrix} = \det\begin{pmatrix} A - BC & \mathbf{O}_{n_1, n_2} \\ C & \mathbf{I}_{n_2} \end{pmatrix} = \det(A - BC) \det(\mathbf{I}_{n_2}) = \det(A - BC).$$

2 Sous-espaces stables, éléments propres

Sous-espaces stables

Soit $u \in \mathcal{L}(E)$ et F un sous-espace de E.

Définition 2.1. sous-espace stable

On dit que F est stable par u si $u(F) \subset F$ c-à-d : $\forall x \in F, u(x) \in F$.

Proposition 2.1. opérations

L'intersection (resp. la somme) de sous-espaces stables par u est stable par u.

Théorème 2.1. stabilité du noyau et l'image

Si $(u,v) \in (\mathcal{L}(E))^2$ tel que uv = vu, alors $\ker u$ et $\operatorname{Im} u$ sont stables par v. En particulier, $\ker u$ et $\operatorname{Im} u$ sont stables par u.

Définition 2.2. endomorphisme induit

Lorsque F est stable par u, on appelle **endomorphisme induit** par u sur F l'endomorphisme $u_F \in \mathcal{L}(F)$ défini par u: $\forall x \in F, u_F(x) = u(x)$.

1. On distinguera soigneusement l'endomorphisme induit u_F , qui est un endomorphisme F vers F, de la restriction $u_{|F}$ qui est une application linéaire de F vers E.

Proposition 2.2. opérations

Soit $(u,v) \in (\mathcal{L}(E))^2$. Si F est stable par u et v alors, pour tout $\lambda \in \mathbb{K}$, F est stable par λu , u+v et $u \circ v$. De plus : $(\lambda u)_F = \lambda u_F$, $(u+v)_F = u_F + v_F$ et $(u \circ v)_F = u_F \circ v_F$.

Remarque 2.1. L'ensemble $\mathcal{A} = \{u \in \mathcal{L}(F), u(F) \subset F\}$ des endomorphismes stabilisant F est une sous-algèbre de $\mathcal{L}(E)$ et l'application $\varphi : \mathcal{A} \longrightarrow \mathcal{L}(F)$ définie par $\varphi(u) = u_F$ est un morphisme d'algèbres.

Théorème 2.2.

version matricielle de la stabilité

Supposons E est de dimension finie et soit $\mathcal{B}_F = (e_1, \dots, e_p)$ une base de F complétée en une base $\mathcal{B} = (e_1, \dots, e_p, e_{p+1}, \dots, e_n)$ de E. On a équivalence entre :

- (i) F est stable par u;
- (ii) $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$ avec $A = \operatorname{Mat}_{\mathcal{B}_F}(u_F) \in \mathcal{M}_p(\mathbb{K})$ où $p = \dim F$.

Corollaire 2.1.

cas d'une décomposition de l'espace

Supposons E de dimension finie et $E = \bigoplus_{i=1}^r F_i$ tel que chaque sous-espace F_i est stable par u. Soit \mathcal{B} une base de E adaptée à cette décomposition. On a équivalence entre :

- (i) $\forall i \in [[1, r]], F_i \text{ est stable par } u;$
- (ii) $\operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{diag}(A_1, \dots, A_r)$ avec $A_i = \operatorname{Mat}_{\mathcal{B}_{F_i}}(u_{F_i}) \in \mathcal{M}_{\alpha_i}(\mathbb{K})$ où $\alpha_i = \dim F_i$ pour $i \in [[1, r]]$.

Exemple 2.1. Soit $E = \mathcal{M}_n(\mathbb{R})$ et $u \in \mathcal{L}(E)$ définie par $u(M) = M^{\mathsf{T}}$. On a $E = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.

- Les sev $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont stables par u. De plus $u_{\mathcal{S}_n(\mathbb{R})} = \mathrm{Id}_{\mathcal{S}_n(\mathbb{R})}$ et $u_{\mathcal{A}_n(\mathbb{R})} = -\mathrm{Id}_{\mathcal{A}_n(\mathbb{R})}$.
- Dans une base \mathcal{B} adaptée à la somme directe $E = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$, on a

$$\operatorname{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{c|c} I_{\frac{n(n+1)}{2}} & O \\ \hline O & -I_{\frac{n(n-1)}{2}} \end{array}\right) \in \mathcal{M}_{n^2}(\mathbb{R}) \text{ avec } \dim\left(\mathcal{S}_n(\mathbb{R})\right) = \frac{n(n+1)}{2} \text{ et } \dim\left(\mathcal{A}_n(\mathbb{R})\right) = \frac{n(n-1)}{2}.$$

Éléments propres

Soit $u \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$.

Définition 2.3.

1. On dit que $\lambda \in \mathbb{K}$ est valeur propre de u si :

$$\exists x \in E \setminus \{0_E\}, \ u(x) = \lambda x$$

2. On dit que $x \in E$ est vecteur propre de u associé à la valeur propre $\lambda \in \mathbb{K}$ si :

$$x \neq 0_E \text{ et } u(x) = \lambda x$$

3. Si $\lambda \in \mathbb{K}$ est valeur propre de u, le **sous-espace propre de** u associé à la valeur propre λ est :

$$E_{\lambda}(u) \stackrel{\text{déf}}{=} \ker(\lambda \operatorname{Id}_{E} - u)$$

vecteur propre, valeur propre et sous-espace propre

4. On dit que $\lambda \in \mathbb{K}$ est *valeur propre de* A si :

$$\exists X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\}, \ AX = \lambda X$$

5. On dit que $X \in \mathcal{M}_{n,1}(\mathbb{K})$ est *vecteur propre de* A associé à la valeur propre $\lambda \in \mathbb{K}$ si :

$$X \neq 0$$
 et $AX = \lambda X$

6. Si $\lambda \in \mathbb{K}$ est valeur propre de A, le **sous-espace propre de** A associé à la valeur propre λ est :

$$E_{\lambda}(A) \stackrel{\text{déf}}{=} \ker(\lambda \mathbf{I}_n - A)$$

Exemple 2.2. \blacksquare Si $u \in \mathcal{L}(E)$ est une homothétie de rapport λ alors λ est l'unique valeur propre de u et $E_{\lambda}(u) = E$.

Soit u l'endomorphisme de dérivation sur $C^{\infty}(\mathbb{R},\mathbb{R})$. Tout réel est valeur propre de u et, pour tout $\lambda \in \mathbb{R}$, $E_{\lambda}(u) = \text{Vect}(t \mapsto e^{\lambda t})$.

Définition 2.4.

spectre

- **1.** Si E de dimension finie, on appelle **spectre de** u l'ensemble $Sp(u) \stackrel{\text{déf}}{=} \{\lambda \in \mathbb{K}, \lambda \text{ valeur propre de } u\}$
- **2.** On appelle **spectre de** A l'ensemble $Sp(A) \stackrel{\text{def}}{=} \{ \lambda \in \mathbb{K}, \lambda \text{ valeur propre de } A \}$.

Remarque 2.2. \blacksquare Si E est de dimension finie, on a :

$$\lambda \in \operatorname{Sp}(u) \iff \lambda \operatorname{Id}_E - u \text{ non injectif} \iff \lambda \operatorname{Id}_E - u \notin \mathcal{GL}(E).$$

En particulier : $0 \in \operatorname{Sp}(u) \iff u \notin \mathcal{GL}(E)$

- $\lambda \in \operatorname{Sp}(A) \iff \ker(\lambda \operatorname{I}_n A) \neq \{0\} \iff \lambda \operatorname{I}_n A \notin \mathcal{GL}_n(\mathbb{K})$. En particulier : $0 \in \operatorname{Sp}(A) \iff A \notin \mathcal{GL}_n(\mathbb{K})$
- Soit $u_A \in \mathcal{L}(\mathcal{M}_{n,1}(\mathbb{K}))$ l'endomorphisme canoniquement associé à $A: u_A: \mathcal{M}_{n,1}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,1}(\mathbb{K})$.

Alors les éléments propres de A sont respectivement les éléments propres de u_A .

Propriétés des sous-espaces propres

Soit $u \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$.

Proposition 2.3. stabilité

Si $(u, v) \in (\mathcal{L}(E))^2$ tel que uv = vu, alors les sous-espaces propres de l'un sont stables par l'autre. En particulier, les sous-espaces propres de u sont stables par u et $u_{E_{\lambda}(u)} = \lambda \operatorname{Id}_{E_{\lambda}(u)} pour toute valeur propre <math>\lambda$ de u.

Théorème 2.3. somme directe des sous-espaces propres

Si $\lambda_1,\ldots,\lambda_p$ sont des valeurs propres deux à deux distinctes de u, alors les sous-espaces propres associés $E_{\lambda_1}(u), \ldots, E_{\lambda_p}(u)$ sont en somme directe.

Corollaire 2.2. liberté d'une famille de vecteurs propres

Toute famille de vecteurs propres associés à des valeurs propres deux à deux distinctes est libre.

Exemple 2.3. La famille de fonctions $(e_{\lambda})_{\lambda \in \mathbb{R}}$ de l'espace $C^{\infty}(\mathbb{R}, \mathbb{R})$ définie par $\forall t \in \mathbb{R}, e_{\lambda}(t) = e^{\lambda t}$ est libre.

Corollaire 2.3.

- 1. Si E est de dimension finie et $\lambda_1, \ldots, \lambda_p$ sont les $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres deux à deux valeurs propres deux à deux distinctes de u alors 1
 - $\sum_{k=1}^{P} \dim E_{\lambda_k}(u) \le \dim E$
- distinctes de A alors

$$\sum_{k=1}^{p} \dim E_{\lambda_k}(A) \le n$$

1. u (resp. A) a au plus dim E (resp. n) valeurs propres distinctes.

Polynôme caractéristique

Soit E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

Polynôme caractéristique

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Définition 3.1. polynôme caractéristique

- 1. Le polynôme caractéristique de A, noté χ_A , est donné par $\chi_A(X) = \det(XI_n A)$.
- 2. Le polynôme caractéristique de u, noté χ_u , est donné par $1 \left[\chi_u(X) = \det(X \operatorname{Id}_E u) \right]$
 - 1. χ_u est le polynôme caractéristique de toute matrice représentant u.

https://supspé.com

Théorème 3.1.

expression du polynôme caractéristique

- 1. χ_A est un polynôme unitaire de degré n vérifiant $\chi_A = X^n \text{Tr}(A)X^{n-1} + \dots + (-1)^n \det(A)$
- 2. χ_u est un polynôme unitaire de degré $n = \dim E$ vérifiant $| \chi_u = X^n \operatorname{Tr}(u)X^{n-1} + \ldots + (-1)^n \det(u) |$

Exemple 3.1. Si $A \in \mathcal{M}_2(\mathbb{K})$ alors $\chi_A = X^2 - \operatorname{Tr}(A)X + \det(A)$.

Théorème 3.2.

polynôme caractéristique et valeurs propres

1.
$$\operatorname{Sp}(u) = \left\{ \lambda \in \mathbb{K}, \ \lambda \text{ racine de } \chi_u \right\}$$

2.
$$\operatorname{Sp}(A) = \{ \lambda \in \mathbb{K}, \ \lambda \text{ racine de } \chi_A \}$$

Remarque 3.1. \blacksquare Si E est un \mathbb{C} -ev, alors u a au moins une valeur propre complexe.

■ Si $A \in \mathcal{M}_n(\mathbb{C})$, alors A a au moins une valeur propre complexe.

Proposition 3.1.

valeurs propres d'une matrice réelle

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Les valeurs propres complexes de A sont deux à deux conjuguées. De plus

$$X \in E_{\lambda}(A) \iff \overline{X} \in E_{\overline{\lambda}}(A) \mid \text{ et } \mid \dim E_{\lambda}(A) = \dim E_{\overline{\lambda}}(A)$$

Proposition 3.2.

changement de corps

Soit \mathbb{L} un sous-corps de \mathbb{K} et $A \in \mathcal{M}_n(\mathbb{L})$. $|\operatorname{Sp}_{\mathbb{L}}(A) \subset \operatorname{Sp}_{\mathbb{K}}(A)|$

Exemple 3.2. Soit
$$\theta \in \mathbb{R} \setminus \{\pi\mathbb{Z}\}$$
 et $R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$. On a : $\chi_{R_{\theta}} = (X - 1)(X^2 - 2\cos \theta X + 1)$ donc $\chi_{R_{\theta}} = (X - 1)(X - e^{i\theta})(X - e^{-i\theta})$ et $\operatorname{Sp}_{\mathbb{C}}(R_{\theta}) = \{1, e^{i\theta}, e^{-i\theta}\}$, $\operatorname{Sp}_{\mathbb{R}}(R_{\theta}) = \{1\}$.

Proposition 3.3.

polynôme caractéristique de l'endomorphisme induit

Soit F un sous-espace de E stable par u. Alors χ_{u_F} divise χ_u . En particulier, $|\operatorname{Sp}(u_F) \subset \operatorname{Sp}(u)|$

Ordre de multiplicité d'une valeur propre

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Définition 3.2.

ordre de multiplicité

On appelle ordre de multiplicité d'une valeur propre λ de u (resp. de A), son ordre de multiplicité en tant que racine de χ_u (resp. de χ_A). On la note $m_{\lambda}(u)$ (resp. $m_{\lambda}(A)$).

Proposition 3.4.

somme des ordres de multiplicité

- **1.** En général, on a : $\sum_{\lambda \in \operatorname{Sp}(u)} m_{\lambda}(u) \leq \dim E$ **2.** En général, on a : $\sum_{\lambda \in \operatorname{Sp}(A)} m_{\lambda}(A) \leq n$

avec égalité si, et seulement si, χ_u est scindé sur \mathbb{K} . avec égalité si, et seulement si, χ_A est scindé sur \mathbb{K} .

Remarque 3.2. \blacksquare Si E est un \mathbb{C} -ev, alors u admet exactement dim E valeurs propres comptées avec multiplicité.

■ Si $A \in \mathcal{M}_n(\mathbb{C})$, A admet exactement n valeurs propres comptées avec multiplicité.

Proposition 3.5.

encadrement de la dimension d'un espace propre

1. $\forall \lambda \in \operatorname{Sp}(u), 1 \leq \dim E_{\lambda}(u) \leq m_{\lambda}(u).$

2. $\forall \lambda \in \mathrm{Sp}(A), 1 \leq \dim E_{\lambda}(A) \leq m_{\lambda}(A).$

Corollaire 3.1.

cas d'une valeur propre simple

Si λ est une valeur propre simple, alors le sous-espace propre associé est de dimension 1.

Proposition 3.6.

somme et produit des valeurs propres

1. Si χ_u est scindé sur \mathbb{K} , alors

$$\operatorname{Tr}(u) = \sum_{\lambda \in \operatorname{Sp}(u)} m_{\lambda}(u).\lambda \text{ et } \det(u) = \prod_{\lambda \in \operatorname{Sp}(u)} \lambda^{m_{\lambda}(u)}$$

2. Si χ_A est scindé sur \mathbb{K} , alors

$$Tr(A) = \sum_{\lambda \in Sp(A)} m_{\lambda}(A).\lambda \text{ et } det(A) = \prod_{\lambda \in Sp(A)} \lambda^{m_{\lambda}(A)}$$

Remarque 3.3. La trace et le déterminant d'une matrice réelle sont la somme et le produit de ses valeurs propres complexes comptées avec multiplicité.

Diagonalisabilité

Soient E un K-espace vectoriel de dimension finie, $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Définition 4.1.

endomorphisme et matrice diagonalisable

- 1. On dit que u est diagonalisable s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ est diagonale 1.
- **2.** On dit que A est $diagonalisable^2$ s'il existe $D \in \mathcal{M}_n(\mathbb{K})$ diagonale et $P \in \mathcal{GL}_n(\mathbb{K})$ telles que $A = PDP^{-1}$.
 - 1. La base \mathcal{B} est appelée base de diagonalisation de u.
 - 2. A est diagonalisable si, et seulement si, u_A est diagonalisable.

Proposition 4.1.

Une base de diagonalisation de u est une base de E formée de vecteurs propres de u.

Exemple 4.1. \blacksquare Toute homothétie est diagonalisable et n'importe quelle base de E est une base de diagonalisation.

Théorème 4.1.

condition suffisante de diagonalisabilité

Si χ_u (resp. χ_A) est scindé à racines **simples**, alors u (resp. A) est diagonalisable et les sous-espaces propres de u (resp. de A) sont tous des droites vectorielles.

1. La réciproque est fausse : A = diag(1,1,2) est diagonalisable car diagonale pourtant A admet deux valeurs propres distinctes.

Exemple 4.2. Une matrice triangulaire à coefficients diagonaux deux à deux distincts est assurément diagonalisable.

Théorème 4.2.

CNS de diagonalisabilité

- 1. On a équivalence entre :
 - (i) u diagonalisable sur \mathbb{K} ;
- (ii) $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$;
- (iii) dim $E = \sum_{\lambda \in \text{Sp}(u)} \dim E_{\lambda}(u)$;
- tout $\lambda \in \mathrm{Sp}(u)$.
- 2. On a équivalence entre :
 - (i) A diagonalisable sur \mathbb{K} ;
- (ii) $\mathcal{M}_{n,1}(\mathbb{K}) = \bigoplus_{\lambda \in \operatorname{Sp}(A)} E_{\lambda}(A)$;
- (iii) $n = \sum_{\lambda \in \operatorname{Sp}(A)} \dim E_{\lambda}(A)$;
- tout $\lambda \in \mathrm{Sp}(A)$.

Exemple 4.3. Soit
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
. On a :

$$\chi_A(X) = \det(XI_3 - A) = \begin{vmatrix} X - 2 & 1 & -1 \\ 1 & X - 2 & 1 \\ 1 & -1 & X \end{vmatrix} = \begin{vmatrix} X - 1 & 0 & -1 \\ X - 1 & X - 1 & 1 \\ C_1 \leftarrow C_1 + C_2 \\ C_2 \leftarrow C_2 + C_3 \end{vmatrix} = (X - 1)^2 \begin{vmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & X - 1 & X \end{vmatrix} = (X - 1)^2 \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & X \end{vmatrix}$$

$$= \begin{bmatrix} (X - 1)^2 & 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 1 & X \end{vmatrix} = (X - 1)^2 (X - 2). \text{ (développement suivant la première colonne)}.$$

Donc χ_A est scindé sur \mathbb{R} et $\mathrm{Sp}(A) = \{1, 2\}$. Cherchons les sous-espaces propres.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_1(A) \iff AX = X \iff \begin{cases} 2x - y + z = x \\ -x + 2y - z = y \iff x - y + z = 0. \\ -x + y = z \end{cases}$$

Donc
$$X = \begin{pmatrix} y - z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
. Par suite, $E_1(A) = \text{Vect}\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ et dim $E_1(A) = 2 = m_1(A)$.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_2(A) \iff AX = 2X \iff \begin{cases} 2x - y + z = 2x \\ -x + 2y - z = 2y \iff \begin{cases} y = z \\ x = -z \end{cases}.$$

Donc
$$X = \begin{pmatrix} -z \\ z \\ z \end{pmatrix} = z \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$
. Par suite, $E_2(A) = \operatorname{Vect} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ et dim $E_2(A) = 1 = m_2(A)$.

D'où A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et $A = PDP^{-1}$ avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

5 Trigonalisabilité

E désigne un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

Endomorphismes et matrices trigonalisables

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Définition 5.1.

endomorphisme et matrice trigonalisable

- 1. On dit que u est trigonalisable s'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(u)$ est triangulaire supérieure 1.
- 2. On dit que A est 2 trigonalisable s'il existe $T \in \mathcal{M}_n(\mathbb{K})$ triangulaire supérieure et $P \in \mathcal{GL}_n(\mathbb{K})$ telles que $A = PTP^{-1}$.
 - 1. La base $\mathcal B$ est appelée ${\it base \ de \ trigonalisation}$ de u.
 - 2. A est trigonalisable si, et seulement si, u_A est trigonalisable.

Remarque 5.1. \blacksquare Géométriquement, u est trigonalisable si, et seulement si, il existe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E telle que, pour tout $i \in [[1, n]], F_i = \text{Vect}(e_1, \dots, e_i)$ est stable par u.

Proposition 5.1.

premier vecteur d'une base de trigonalisation

Le premier vecteur d'une base de trigonalisation de u est un vecteur propre de u.

Théorème 5.1.

CNS de trigonalisabilité

u (resp. A) est trigonalisable sur \mathbb{K} si, et seulement si, χ_u (resp. χ_A) est scindé sur \mathbb{K} .

Corollaire 5.1.

trigonalisabilité sur C

- 1. Tout endomorphisme d'un C-espace vectoriel de dimension finie est trigonalisable.
- 2. Toute matrice carrée à coefficients dans $\mathbb C$ est trigonalisable.

Corollaire 5.2.

trigonalisabilité de l'endomorphisme induit

Soit F un sous-espace de E stable par u. Si u est trigonalisable alors l'endomorphisme induit u_F l'est aussi.

Nilpotence

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Définition 5.2.

endomorphisme nilpotent, matrice nilpotente

On dit que u est nilpotent (resp. A est nilpotente) s'il existe $k \in \mathbb{N}^*$ tel que $u^k = 0_{\mathcal{L}(E)}$ (resp. $A^k = O_n$). Le plus petit $k \in \mathbb{N}^*$ tel que $u^k = 0_{\mathcal{L}(E)}$ (resp. $A^k = O_n$) est appelé l'indice de nilpotence de u (resp. de A).

Exemple 5.1. Soit u l'endomorphisme de $\mathbb{K}_n[X]$ définie par u(P) = P'.

On a $\forall P \in \mathbb{K}_n[X]$, $u^{n+1}(P) = P^{(n+1)} = 0$ et $u^n(X^n) = (X^n)^{(n)} = n! \neq 0$ donc u est nilpotent d'indice n+1.

Remarque 5.2. Soit $p \in \mathbb{N}^*$ l'indice de nilpotence de u. On a $u^p = 0$ et $u^{p-1} \neq 0$ donc il existe $x_0 \in E$ non nul tel que $u^{p-1}(x_0) \neq 0_E$ et $u^p(x_0) = 0_E$. La famille $(x_0, u(x_0), \dots, u^{p-1}(x_0))$ est libre.

Proposition 5.2.

majoration de l'indice de nilpotence

Si u est nilpotent d'indice $p \in \mathbb{N}^*$, alors $p \le n$. De plus, $u^n = 0_{\mathcal{L}(E)}$.

Théorème 5.2.

trigonalisation des endomorphismes nilpotents

- **1.** u est nilpotent si, et seulement si, u est trigonalisable et $Sp(u) = \{0\}$.
- 2. A est nilpotente si, et seulement si, A est semblable à une matrice triangulaire supérieure stricte.

Exemple 5.2. Soit u l'endomorphisme de $\mathbb{K}_n[X]$ définie par u(P) = P'.

La matrice de u dans la base canonique $\mathcal{B} = (1, X, \dots, X^n)$ de $\mathbb{K}_n[X]$ est $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & 2 & & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & n \\ 0 & \dots & \dots & 0 \end{pmatrix}$.

6 Polynômes d'endomorphismes et de matrices carrées

Généralités

Soient E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$.

- On note $u^0 = \mathrm{Id}_E$, $\forall k \in \mathbb{N}$, $u^{k+1} = u^k \circ u = u \circ u^k$ et $A^0 = \mathrm{I}_n$, $\forall k \in \mathbb{N}$, $A^{k+1} = A^k \cdot A = A \cdot A^k \cdot A$
- Si $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$, on définit l'endomorphisme P(u) de E par $P(u) \stackrel{\text{def}}{=} \sum_{k=0}^{p} a_k u^k \in \mathcal{L}(E)$

- Si $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$, on définit la matrice P(A) de $\mathcal{M}_n(\mathbb{K})$ par $P(A) \stackrel{\text{déf}}{=} \sum_{k=0}^{p} a_k A^k \in \mathcal{M}_n(\mathbb{K})$
- On note $\mathbb{K}[u] \stackrel{\text{déf}}{=} \{P(u), P \in \mathbb{K}[X]\}$ l'ensemble des polynômes en u.
- On note $\mathbb{K}[A] \stackrel{\text{déf}}{=} \{P(A), P \in \mathbb{K}[X]\}$ l'ensemble des polynômes en A.

Théorème 6.1. morphisme $P \mapsto P(u)$

L'application $\varphi_u : \mathbb{K}[X] \longrightarrow \mathcal{L}(E)$ définie par $\varphi_u(P) = P(u)$ est un morphisme de \mathbb{K} -algèbres. En particulier

$$\forall (P,Q) \in (\mathbb{K}[X])^2, (P.Q)(u) = P(u) \circ Q(u)$$

- Im $\varphi_u = \mathbb{K}[u]$ est une sous-algèbre *commutative* de $\mathcal{L}(E)$, appelée *l'algèbre engendrée par* u.
- $\ker \varphi_u = \{ P \in \mathbb{K}[X], P(u) = 0_{\mathcal{L}(E)} \}$ est un idéal de $\mathbb{K}[X]$ appelé *l'idéal annulateur de u*.

Corollaire 6.1. morphisme $P \mapsto P(A)$

L'application $\varphi_A : \mathbb{K}[X] \longrightarrow \mathcal{M}_n(\mathbb{K})$ définie par $\varphi_A(P) = P(A)$ est un morphisme de \mathbb{K} -algèbres. En particulier

$$\forall (P,Q) \in (\mathbb{K}[X])^2, (P,Q)(A) = P(A).Q(A)$$

- Im $\varphi_A = \mathbb{K}[A]$ est une sous-algèbre *commutative* de $\mathcal{M}_n(\mathbb{K})$, appelée *l'algèbre engendrée par* A.
- $\ker \varphi_A = \{ P \in \mathbb{K}[X], P(A) = O_n \}$ est un idéal de $\mathbb{K}[X]$ appelé *l'idéal annulateur de* A.

Définition 6.1. polynôme annulateur

On dit que $P \in \mathbb{K}[X]$ est un **polynôme annulateur** de u (resp. de A) si $P(u) = 0_{\mathcal{L}(E)}$ (resp. $P(A) = O_n$).

Exemple 6.1. $\blacksquare X - \lambda$ est annulateur des homothéties de rapport λ .

Proposition 6.1.

polynôme annulateur et valeurs propres

- **1.** Soient $x \in E$, $\lambda \in \mathbb{K}$ et $P \in \mathbb{K}[X]$.
 - **a.** Si $u(x) = \lambda . x$ alors $P(u)(x) = P(\lambda) . x$.
 - **b.** En particulier, si P est annulateur de u, alors ¹ toute valeur propre de u est racine de P.
- **2.** Soient $X \in \mathcal{M}_{n,1}(\mathbb{K})$, $\lambda \in \mathbb{K}$ et $P \in \mathbb{K}[X]$.
 - **a.** Si $AX = \lambda X$ alors $P(A).X = P(\lambda).X$.
 - **b.** En particulier, si P est annulateur de A, alors toute valeur propre de A est racine de P.
- 1. La réciproque est fausse : $X^2 X$ est annulateur de Id_E , alors que 0 n'est pas valeur propre de Id_E .

Polynômes annulateurs en dimension finie

Ici E est de dimension finie $n \in \mathbb{N}^*$. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Théorème 6.2.

existence de polynôme annulateur en dimension finie

En dimension finie, tout endomorphisme ¹ admet au moins un polynôme annulateur non nul ².

- 1. En dimension infinie, il existe des endomorphismes qui n'admettent pas de polynôme annulateur non nul : $u: P \mapsto P'$.
- 2. De même, toute matrice de $\mathcal{M}_n(\mathbb{K})$ possède au moins un polynôme annulateur non nul.

Théorème 6.3.

Cayley-Hamilton

1. χ_u est annulateur de $u: \chi_u(u) = 0_{\mathcal{L}(E)}$. **2.** χ_A est annulateur de $A: \chi_A(A) = O_n$

Théorème 6.4. polynôme minimal

1. Il existe un *unique* polynôme \prod_u vérifiant :

- **a.** \prod_u est annulateur de u.
- **b.** \prod_u est unitaire.
- **c.** \prod_u divise tout polynôme annulateur de u.

 \prod_{u} est appelé le **polynôme minimal** de u.

2. Il existe un unique polynôme \prod_A vérifiant :

- **a.** \prod_A est annulateur de A.
- **b.** \prod_A est unitaire.
- **c.** \prod_A divise tout polynôme annulateur de A.

 \prod_A est appelé le **polynôme minimal** de A.

Théorème 6.5.

polynôme minimal et valeurs propres

1.
$$\operatorname{Sp}(u) = \left\{ \lambda \in \mathbb{K}, \ \lambda \text{ racine de } \prod_{u} \right\}$$

2.
$$\operatorname{Sp}(A) = \{ \lambda \in \mathbb{K}, \ \lambda \text{ racine de } \prod_A \}$$

Remarque 6.1. \blacksquare \prod_u et χ_u ont exactement les mêmes facteurs irréductibles.

Exemple 6.2. Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. On a $\chi_A = (X-2)^2(X-3)$ et \prod_A divise χ_A , alors $\prod_A = (X-2)(X-3)$ ou

 $\prod_{A} = (X-2)^{2}(X-3)$. Comme $(A-2I_{3})(A-3I_{3}) = O_{3}$, alors $\prod_{A} = (X-2)(X-3)$.

Théorème 6.6.

base de $\mathbb{K}[u]$ en dimension finie

- 1. Soit $d = \deg \prod_{u}$.

 - **a.** $(u^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[u]$. **b.** En particulier, $\dim \mathbb{K}[u] = \deg \prod_u$
- **2.** Soit $d = \deg \prod_A$.
 - **a.** $(A^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[A]$.
 - **b.** En particulier, $\dim \mathbb{K}[A] = \deg \prod_A$

Réduction et polynômes annulateurs

E désigne un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Théorème 6.7.

décomposition des noyaux

Soient $P_1, \ldots, P_r \in \mathbb{K}[X]$ premiers entre eux deux à deux de produit égal à P. On a ¹

1.
$$\ker(P(u)) = \bigoplus_{i=1}^r \ker(P_i(u))$$
.

2. $\ker(P(A)) = \bigoplus_{i=1}^r \ker(P_i(A))$

Exemple 6.3. Pour un projecteur u de E, le polynôme $X^2 - X$ est annulateur de u, donc $E = \ker(u - \operatorname{Id}_E) \oplus \ker u$.

Théorème 6.8.

CNS de diagonalisabilité

- 1. On a équivalence entre :
 - (i) u est diagonalisable;
 - (ii) u annule un polynôme scindé à racines simples;
 - (iii) \prod_u est scindé à racines simples.

- 2. On a équivalence entre :
 - (i) A est diagonalisable;
 - (ii) A annule un polynôme scindé à racines simples;
 - (iii) \prod_A est scindé à racines simples.

Exemple 6.4. Soit u l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ définie par $u(M) = M^{\mathsf{T}}$. On a $u^2 = \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})}$, donc $X^2 - 1$ annule u. Puisque $X^2 - 1$ est scindé à racines simples, u est diagonalisable.

Corollaire 6.2.

diagonalisabilité de l'endomorphisme induit

Si u est diagonalisable et si F est un sous-espace de E stable par u, alors u_F est diagonalisable.

Exemple 6.5. Sans calcul, la matrice $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$ n'est pas diagonalisable car sinon la matrice $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ serait

diagonalisable ce qui est pas le cas.

Proposition 6.2.

décomposition spectrale d'un endomorphisme diagonalisable

Supposons u diagonalisable et soit $\lambda_1, \ldots, \lambda_r$ les valeurs propres deux à deux distinctes de u. Soit p_i la projection $\sup_{i=1}^r E_{\lambda_i}(u)$ parallèlement à $\bigoplus_{\substack{j=1\\j\neq i}}^r E_{\lambda_j}(u)$. On a : $u = \sum_{i=1}^r \lambda_i p_i$ et $\forall P \in \mathbb{K}[X], P(u) = \sum_{i=1}^r P(\lambda_i) p_i$.

1. Les p_i , $1 \le i \le r$ sont appelés les **projecteurs spectraux** de E associés à la somme directe $E = \bigoplus_{i=1}^r E_{\lambda_i}(u)$.

Théorème 6.9.

CNS de trigonalisabilité

- 1. On a équivalence entre :
 - (i) u est trigonalisable sur \mathbb{K} ;
 - (ii) u annule un polynôme scindé sur \mathbb{K} ;
 - (iii) \prod_u est scindé sur \mathbb{K} .

- **2.** On a équivalence entre :
 - (i) A est trigonalisable sur \mathbb{K} ;
 - (ii) A annule un polynôme scindé sur \mathbb{K} ;
 - (iii) \prod_A est scindé sur \mathbb{K} .

Exemple 6.6. Soit $A, B \in \mathcal{M}_n(\mathbb{R})$. On considère l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $u(M) = \operatorname{Tr}(AM)B$. On a $u \circ u(M) = \operatorname{Tr}(AB)u(M)$, donc $u^2 = \operatorname{Tr}(AB)u$. Le polynôme $X^2 - \operatorname{Tr}(AB)X$ est scindé sur \mathbb{R} et annulateur de u donc u est trigonalisable.

Sous-espaces caractéristiques

Ici E est de dimension finie $n \in \mathbb{N}^*$. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Définition 6.2.

sous-espace caractéristique

Supposons χ_u est scindé sur \mathbb{K} : $\chi_u = \prod_{i=1}^r (X - \lambda_i)^{m_i}$ où les $\lambda_i \in \mathbb{K}$ deux à deux distincts.

Le sev $F_{\lambda_i}(u) \stackrel{\text{def}}{=} \ker(u - \lambda_i \operatorname{Id}_E)^{m_i}$, $1 \le i \le r$ est appelé le **sous-espace caractéristique** de u associé à λ_i .

Proposition 6.3.

propriétés des sous-espaces caractéristiques

- 1. $E = \bigoplus_{i=1}^r F_{\lambda_i}(u)$.
- **2.** $F_{\lambda_i}(u)$ est stable par u et dim $F_{\lambda_i}(u) = m_i$.
- **3.** La restriction de u à $F_{\lambda_i}(u)$ induit la somme d'une homothétie et d'un endomorphisme nilpotent.

Théorème 6.10.

réduction et sous-espaces caractéristiques (version vectorielle)

Supposons χ_u est scindé sur \mathbb{K} . Il existe une base de E dans laquelle la matrice de u est semblable à une matrice diagonale par blocs, chaque bloc diagonal étant triangulaire et à termes diagonaux égaux.

Théorème 6.11.

réduction et sous-espaces caractéristiques (version matricielle)

Supposons χ_A est scindé sur \mathbb{K} : $\chi_A = \prod_{i=1}^r (X - \lambda_i)^{m_i}$ où les $\lambda_i \in \mathbb{K}$ deux à deux distincts.

Il existe $P \in \mathcal{GL}_n(\mathbb{K})$ tel que $A = P.\operatorname{diag}(T_1, \dots, T_n).P^{-1}$. De plus, la matrice $T_i \in \mathcal{M}_{m_i}(\mathbb{K})$ est triangulaire supérieure et à termes diagonaux égaux.