TD Nº3

Réduction des endomorphismes et des matrices carrées (correction)

1 Compléments d'algèbre linéaire

Corrigé de l'exercice 1. 1. Soit $M \in \mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R})$ donc $M = M^{\top} = -M^{\top}$ donc $M = O_n$ c-à-d $\mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R}) = \{O_n\}$. Soit $M \in \mathcal{M}_n(\mathbb{R})$. On écrit

$$M = \underbrace{\frac{1}{2}(M + M^{\mathsf{T}})}_{=S} + \underbrace{\frac{1}{2}(M - M^{\mathsf{T}})}_{=A}$$

avec $S \in \mathcal{S}_n(\mathbb{R})$ et $A \in \mathcal{A}_n(\mathbb{R})$ donc $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) + \mathcal{A}_n(\mathbb{R})$. D'où $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.

- **2.** Soient φ une forme linéaire non nulle sur E telle que H = ker φ et $a \in E \setminus H$.
 - Soit $x \in H \cap \text{Vect}(a)$ donc il existe $\lambda \in \mathbb{K}$ tel que $x = \lambda a$ et $\varphi(x) = 0$. On a $0 = \varphi(\lambda a) = \lambda \varphi(a)$ mais, $\varphi(a) \neq 0$ car $a \in E \setminus H$ donc $\lambda = 0$ et par suite $x = 0_E$ donc $H \cap \text{Vect}(a) = \{0_E\}$.
 - Soit $x \in E$. On écrit

$$x = x - \frac{\varphi(x)}{\varphi(a)} \cdot a + \frac{\varphi(x)}{\varphi(a)} \cdot a$$

on a
$$\frac{\varphi(x)}{\varphi(a)}$$
. $a \in \text{Vect }(a)$ et $\varphi\left(x - \frac{\varphi(x)}{\varphi(a)}.a\right) = \varphi(x) - \frac{\varphi(x)}{\varphi(a)}\varphi(a) = \varphi(x) - \varphi(x) = 0$ donc $x - \frac{\varphi(x)}{\varphi(a)}.a \in H$. Ainsi, $E = H + \text{Vect }(a)$.

D'où $E = H \oplus \text{Vect}(a)$ pour tout $a \in E \setminus H$.

Corrigé de l'exercice 2. Soit $i \in [0, n]$. On a $0 \in F_i$. Soient $P, Q \in F_i$ et $\lambda \in \mathbb{K}$. On a, pour tout $j \in [0, n] \setminus \{i\}$,

$$(P + \lambda Q)(j) = P(j) + \lambda Q(j) = 0$$

donc $P + \lambda Q \in F_i$. Ainsi, F_i est un sev de E.

Montrons que $E = F_0 \oplus \ldots \oplus F_n$.

• Soit $P_i \in F_i$, $0 \le i \le n$ tel que $\sum_{i=0}^n P_i = 0$. On a P(j) = 0 pour tout $j \in [[0,n]] \setminus \{i\}$ donc P_i possède n racines. Par ailleurs,

$$\forall k \in [[0, n]], \quad 0 = \sum_{i=0}^{n} P_i(k) = P_i(i) + \sum_{\substack{i=0 \ i \neq k}}^{n} P_i(k) = P_i(i).$$

Donc P_i possède n+1 racines et comme deg $P_i \le n$ alors $P_i = 0$ pour tout $0 \le i \le n$. Ainsi, la somme $\sum_{i=0}^n P_i$ est directe.

• On a $F_0 \oplus \ldots \oplus F_n \subset E$ donc dim $F_0 \oplus \ldots \oplus F_n \leq \dim E = n+1$. Par ailleurs, pour $i \in [[0,n]]$, le polynôme $P_i = \prod_{\substack{j=0 \ j \neq i}}^n (X-j) \in F_i$ donc dim $F_i \geq 1$ et par suite,

$$\dim F_0 \oplus \ldots \oplus F_n = \sum_{i=0}^n \dim F_i \ge n+1 = \dim E$$

donc dim $F_0 \oplus \ldots \oplus F_n = \dim E$.

D'où $E = F_0 \oplus \ldots \oplus F_n$.

Corrigé de l'exercice 3. Montrons par sur $k \in \mathbb{N}^*$, que $M^k = \begin{pmatrix} A^k & kA^k \\ O_n & A^k \end{pmatrix}$.

Initialisation: Pour k = 1, on a $M^1 = M = \begin{pmatrix} A & A \\ O_n & A \end{pmatrix}$.

 $H\acute{e}ridit\acute{e}: Soit \ k \in \mathbb{N}^*. Supposons \ M^k = \begin{pmatrix} A^k & kA^k \\ O_n & A^k \end{pmatrix}$ et montrons $M^{k+1} = \begin{pmatrix} A^{k+1} & (k+1)A^{k+1} \\ O_n & A^{k+1} \end{pmatrix}$. On a

$$M^{k+1} = M^k.M = \begin{pmatrix} A^k & kA^k \\ \mathcal{O}_n & A^k \end{pmatrix} \begin{pmatrix} A & A \\ \mathcal{O}_n & A \end{pmatrix} = \begin{pmatrix} A^{k+1} & A^k.A + kA^k.A \\ \mathcal{O}_n & A^{k+1} \end{pmatrix} = \begin{pmatrix} A^{k+1} & (k+1)A^{k+1} \\ \mathcal{O}_n & A^{k+1} \end{pmatrix}.$$

Binyze Mohamed $1 \ / \ 22$

Conclusion: Par le principe de récurrence, $k \in \mathbb{N}^*$, $M^k = \begin{pmatrix} A^k & kA^k \\ O_n & A^k \end{pmatrix}$.

Si $A \in \mathcal{GL}_n(\mathbb{K})$, alors $M \in \mathcal{GL}_{2n}(\mathbb{K})$ et M^{-1} est de la forme $M^{-1} = \begin{pmatrix} A^{-1} & B \\ O_n & A^{-1} \end{pmatrix}$ avec $B \in \mathcal{M}_n(\mathbb{K})$.

Par ailleurs, le calcul $M^{-1}.M = I_{2n} = \begin{pmatrix} I_n & O_n \\ O_n & I_n \end{pmatrix}$ donne $A^{-1}A + BA = O_n$ donc $B = -A^{-1}$. D'où $M^{-1} = \begin{pmatrix} A^{-1} & -A^{-1} \\ O_n & A^{-1} \end{pmatrix}$.

Corrigé de l'exercice 4. En appliquant l'opération $C_2 \longleftarrow C_2 - \overline{C_1 B}$, on obtient

$$\det\begin{pmatrix} \mathbf{I}_{n_2} & B \\ C & A \end{pmatrix} = \det\begin{pmatrix} \mathbf{I}_{n_2} & \mathbf{O}_{n_2, n_1} \\ C & A - CB \end{pmatrix} = \det(\mathbf{I}_{n_2}) \det(A - CB) = \det(A - CB).$$

Corrigé de l'exercice 5. En appliquant succésivement les opérations $C_2 \leftarrow C_2 + iC_1$ et $L_1 \leftarrow L_1 - iL_2$, on obtient

$$\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \begin{vmatrix} A & B+iA \\ -B & A-iB \end{vmatrix} = \begin{vmatrix} A+iB & \mathcal{O}_n \\ -B & A-iB \end{vmatrix} = \det(A+iB)\det(A-iB) = \det(A+iB)\det(\overline{A+iB}).$$

Comme l'application déterminant est continue, on obtient $\det \begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \det(A+iB)\overline{\det(A+iB)} = |\det(A+iB)|^2 \ge 0.$

Corrigé de l'exercice 6. 1. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$. On a

$$AD = DA \iff \forall (i,j) \in [[1,n]]^2, \ (AD)_{i,j} = (DA)_{i,j}$$

$$\iff \forall (i,j) \in [[1,n]]^2, \ a_{i,j}\lambda_j = \lambda_i a_{i,j}$$

$$\iff \forall (i,j) \in [[1,n]]^2, \ a_{i,j}(\lambda_i - \lambda_j) = 0$$

$$\iff \forall (i,j) \in [[1,n]]^2, \ i \neq j \implies a_{i,j} = 0. \ (\operatorname{car} \lambda_i \neq \lambda_j \text{ pour } i \neq j)$$

donc A est une matrice diagonale.

- **2.** Soient $D = \operatorname{diag} \left(\lambda_1 \mathbf{I}_{n_1}, \dots, \lambda_r \mathbf{I}_{n_r} \right)$ et $A = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,r} \\ A_{2,1} & A_{2,2} & \dots & A_{2,r} \\ \vdots & \vdots & & \vdots \\ A_{r,1} & A_{r,2} & \dots & A_{r,r} \end{pmatrix}$ écrite par blocs avec :
 - $A_{i,j} \in \mathcal{M}_{n_i,n_j}(\mathbb{K})$ pour tout $(i,j) \in [1,r]^2$.
 - Les blocs diagonaux $A_{i,i}$ sont des matrices carrées : $\forall i \in [[1,r]], A_{i,i} \in \mathcal{M}_{n_i}(\mathbb{K})$.

Par un calcul par blocs on a:

$$AD = DA \iff \forall (i,j) \in [[1,r]]^2, \ (AD)_{i,j} = (DA)_{i,j}$$

$$\iff \forall (i,j) \in [[1,r]]^2, \ A_{i,j}\lambda_j = \lambda_i A_{i,j}$$

$$\iff \forall (i,j) \in [[1,r]]^2, \ A_{i,j}(\lambda_i - \lambda_j) = 0$$

$$\iff \forall (i,j) \in [[1,r]]^2, \ i \neq j \implies A_{i,j} = 0. \ (\operatorname{car} \lambda_i \neq \lambda_j \text{ pour } i \neq j)$$

donc A est diagonale par blocs de la forme A = diag $(A_{1,1}, \ldots, A_{r,r}) \in \mathcal{M}_n(\mathbb{K})$ avec $A_{i,i} \in \mathcal{M}_{n_i}(\mathbb{K}), 1 \le i \le r$.

2 Sous-espaces stables, éléments propres

Corrigé de l'exercice 7. Supposons F stable par u. Pour tout $x \in F$, $u(x) \in F$, en particulier, $\forall i \in I$, $u(e_i) \in F$. Inversement, supposons $\forall i \in I$, $u(e_i) \in F$. Soit $x \in F$ donc $x = \sum_{\substack{i \in J \\ J \text{ fini } \in I}} \alpha_i e_i$ avec $\alpha_i \in \mathbb{K}$. On a

$$u(x) = u\left(\sum_{\substack{i \in J \\ J \text{ fini } \subset I}} \alpha_i e_i\right) = \sum_{\substack{i \in J \\ J \text{ fini } \subset I}} \alpha_i \underbrace{u(e_i)}_{\in F} \in F.$$

Donc F est stable par u.

Corrigé de l'exercice 8. Vect (x) est stable par u si, et seulement si, $u(x) \in \text{Vect }(x)$ si, et seulement si, il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$ si, et seulement si, x est vecteur propre de x.

Binyze Mohamed 2 / 22

Corrigé de l'exercice 9. On a rg u = dim Im u = 1 donc Im u est une droite vectorielle. D'après le cours, Im u est stable par u donc Im u est engendré par un vecteur propre de u. Notons λ la valeur propre associée et on a Im $u \in \ker(u - \lambda \operatorname{Id}_E)$ donc $(u - \lambda \operatorname{Id}_E) \circ u = 0$ c-à-d $u^2 = \lambda u$.

Corrigé de l'exercice 10. 1. Soit $x \in E$ non nul. L'ensemble $\Omega_x = \{k \in \mathbb{N}^*, (x, u(x), \dots, u^{p-1}(x)) \text{ est libre}\}$ est une partie non vide de N^* (car $1 \in \Omega_x$ puisque x est non nul) et majorée (par $n = \dim E$) donc Ω_x admet un plus grand élément noté $p \in \mathbb{N}^*$. Ainsi, $p \in \Omega_x$ et $p + 1 \notin \Omega_x$ c-à-d la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre et la famille $(x, u(x), \dots, u^{p-1}(x), u^p(x))$ est liée.

2. Soit $y \in F_x$ donc $y = \sum_{k=0}^{p-1} \lambda_k u^k(x)$ et on a

$$u(y) = u\left(\sum_{k=0}^{p-1} \lambda_k u^k(x)\right) = \sum_{k=0}^{p-1} \lambda_k u^{k+1}(x) = \sum_{k=1}^{p} \lambda_k u^k(x) = \underbrace{\sum_{k=1}^{p-1} \lambda_k u^k(x)}_{\in F_x} + \underbrace{u^p(x)}_{\in F_x} \in F_x$$

 $u^p(x) \in F_x$ car la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre et la famille $(x, u(x), \dots, u^{p-1}(x), u^p(x))$ est liée. Ainsi, $u(y) \in F_x$ et par suite, F_x est stable par u.

3. Soit v l'endomorphisme induit par u sur F_x . Notons $\mathcal{B}_x = (x, u(x), \dots, u^{p-1}(x))$ la base de F_x (elle est libre et génératrice). On écrit $u^p(x) = \sum_{k=0}^{p-1} a_k u^k(x)$ et on a $v(u^{p-1}(x)) = u(u^{p-1}(x)) = u^p(x)$. Ainsi, la matrice de v dans la base \mathcal{B}_n est de la forme

$$\operatorname{Mat}_{\mathcal{B}_{x}}(v) = \begin{pmatrix} 0 & 0 & 0 & \dots & a_{0} \\ 1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 & a_{p-2} \\ 0 & \dots & 0 & 1 & a_{p-1} \end{pmatrix} \in \mathcal{M}_{p}(\mathbb{K})$$

Corrigé de l'exercice 11. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables, il existe $P \in \mathcal{GL}_n(\mathbb{K})$ telle que $A = PBP^{-1}$. Soit $\lambda \in \mathbb{K}$. On a :

$$\lambda \in \operatorname{Sp}(A) \iff \exists X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{O_{n,1}\}, \quad AX = \lambda X$$

$$\iff \exists X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{O_{n,1}\}, \quad PBP^{-1}X = \lambda X$$

$$\iff \exists X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{O_{n,1}\}, \quad BP^{-1}X = \lambda P^{-1}X$$

$$\iff \exists Y = P^{-1}X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{O_{n,1}\}, \quad BY = \lambda Y$$

$$\iff \lambda \in \operatorname{Sp}(B).$$

Notons que, $P^{-1}X \neq O_{n,1} \iff X \neq O_{n,1}$ car P est inversible.

Ainsi $\operatorname{Sp}(A) = \operatorname{Sp}(B)$. Par ailleurs, pour $\lambda \in \operatorname{Sp}(A)$, l'application $\Theta_P : E_{\lambda}(A) \longrightarrow E_{\lambda}(B)$ est linéaire et bijective. $X \longmapsto P^{-1}X$

Par suite, dim $E_{\lambda}(A)$ = dim $E_{\lambda}(B)$.

Corrigé de l'exercice 12. Soit $u \in \mathcal{L}(E)$ bijectif. Soit $\lambda \in \mathbb{K}$. On a

$$\lambda$$
 valeur propre de $u \iff \exists x \in E \setminus \{0_E\}, \ u(x) = \lambda x$

$$\iff \exists x \in E \setminus \{0_E\}, \ x = u^{-1}(\lambda x)$$

$$\iff \exists x \in E \setminus \{0_E\}, \ x = \lambda u^{-1}(x)$$

$$\iff \lambda^{-1} \text{ valeur propre de } u^{-1}.$$

Ainsi, λ est une valeur propre de u si, et seulement si, λ^{-1} est une valeur propre de u^{-1} .

Corrigé de l'exercice 13. 1.
$$\ker u_F = \left\{x \in F, \ u_F(x) = 0\right\} = \left\{x \in F, \ u(x) = 0\right\} = \left\{x \in E, \ u(x) = 0\right\} \cap F = \ker u \cap F \text{ et } \lim u_F = \left\{y \in F, \ \exists x \in F, \ y = u_F(x)\right\} = \left\{y \in F, \ \exists x \in F, \ y = u(x)\right\} \cap F \subset \operatorname{Im} u \cap F.$$

L'inclusion ci-dessus est stricte. En effet : soit $u \in \mathcal{L}(\mathbb{K}[X])$ définie par u(P) = P' et $F = \mathbb{K}_n[X]$. On a

Binyze Mohamed 3 / 22

- pour tout $P \in F$, $u(P) = P' \in \mathbb{K}_{n-1}[X] \subset F$, donc F est stable par u.
- Im $u = \mathbb{K}[X]$ donc Im $u \cap F = \mathbb{K}[X] \cap \mathbb{K}_n[X] = \mathbb{K}_n[X]$ et Im $u_F = \mathbb{K}_{n-1}[X]$.

Donc l'inclusion est stricte.

- **2.** u est injectif si, et seulement si, $\ker u = \{0\}$. On a $\ker u_F = \ker u \cap F = \{0\} \cap F = \{0\}$ donc u_F est injectif.
- 3. Soit λ une valeur propre de u_F . On a $E_{\lambda}(u_F) = \ker(\lambda \operatorname{Id}_F u_F) = \ker((\lambda \operatorname{Id}_E u)_F)$. Or F est stable par l'endomorphisme $\lambda \operatorname{Id}_E u$ donc d'après la première question,

$$\ker((\lambda \operatorname{Id}_E - u)_F) = F \cap \ker(\lambda \operatorname{Id}_E - u) = F \cap E_\lambda(u).$$

Ainsi, $E_{\lambda}(u_F) = F \cap E_{\lambda}(u)$.

3 Polynôme caractéristique

Corrigé de l'exercice 14. 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a

$$\chi_A = \det(XI_n - A) = \det((XI_n - A)^{\mathsf{T}}) = \det(XI_n - A^{\mathsf{T}}) = \chi_{A^{\mathsf{T}}}.$$

D'où $\chi_A = \chi_{A^{\mathsf{T}}}$.

2. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables. Il existe $P \in \mathcal{GL}_n(\mathbb{K})$ telle que $A = PBP^{-1}$. On a

$$\chi_A = \det(XI_n - A)$$

$$= \det(XI_n - PBP^{-1})$$

$$= \det(XPP^{-1} - PBP^{-1})$$

$$= \det(P(XI_n - B)P^{-1})$$

$$= \det P \det(XI_n - B) \det P^{-1}$$

$$= \det(XI_n - B) \cot P \det P^{-1} = 1$$

$$= \chi_B.$$

D'où $\chi_A = \chi_B$. La réciproque n'est pas vraie. En effet : considérons, pour $n \ge 2$, les matrices $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. On a $\chi_A = \chi_B = X^2$ pourtant A et B ne sont pas semblables car elles n'ont pas le même rang.

Corrigé de l'exercice 15. Soit $A \in \mathcal{GL}_n(\mathbb{K})$. Soit $\lambda \in \mathbb{K}^*$. On a :

$$\chi_{A^{-1}}(\lambda) = \det(\lambda I_n - A^{-1})$$

$$= \det(-\lambda A^{-1} \left(\frac{1}{\lambda} I_n - A\right))$$

$$= \det(-\lambda A^{-1}) \det\left(\frac{1}{\lambda} I_n - A\right)$$

$$= \frac{(-\lambda)^n}{\det A} \chi_A \left(\frac{1}{\lambda}\right).$$

En conclusion, $\chi_{A^{-1}}(X) = \frac{(-1)^n}{\det A} X^n \chi_A \left(\frac{1}{X}\right)$.

Corrigé de l'exercice 16. Soit \mathcal{B} une base de E adaptée à la décomposition $E = \bigoplus_{i=1}^r F_i$. Notons $n_i = \dim F_i$ pour tout $i \in [[1, r]]$. On sait, d'après le cours que :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{diag}(A_1, \dots, A_r) \text{ avec } A_i = \operatorname{Mat}_{\mathcal{B}_{F_i}}(u_{F_i}) \in \mathcal{M}_{n_i}(\mathbb{K}).$$

$$\operatorname{Donc} \, \chi_u = \operatorname{det} \big(X \operatorname{I}_n - \operatorname{Mat}_{\mathcal{B}} (u) \big) = \operatorname{det} \big(\operatorname{diag} \big(X \operatorname{I}_{n_1} - A_1, \dots, X \operatorname{I}_{n_r} - A_r \big) \big) = \prod_{i=1}^r \operatorname{det} \big(X \operatorname{I}_{n_i} - A_i \big) = \prod_{i=1}^r \operatorname{det} \big(X \operatorname{Id}_{F_i} - u_{F_i} \big) = \prod_{i=1}^r \chi_{u_{F_i}}.$$

Corrigé de l'exercice 17. 1. Le polynôme caractéristique χ_u est dans $\mathbb{R}[X]$. La décomposition dans $\mathbb{R}[X]$ de χ_u est de la forme

$$\chi_u = \prod_{i=1}^r (X - \lambda_i)^{\alpha_i} \prod_{j=1}^s (X^2 + b_j X + c_j)^{\beta_j}$$

Binyze Mohamed $4 \ / \ 22$

 $\text{avec } \lambda_i \in \mathbb{R} \text{ pour tout } 1 \leq i \leq r \text{ } \text{ et } \ b_j, c_j \in \mathbb{R} \text{ avec } b_i^2 - 4c_j < 0 \text{ pour tout } 1 \leq j \leq s.$

On a deg $\chi_u = \sum_{i=1}^r \alpha_i + 2\sum_{j=1}^s \beta_j$. Or le polynôme χ_u est de degré impair, donc nécessairement il existe $i_0 \in [[1, r]]$ tel que $\alpha_{i_0} \neq 0$ et par suite, λ_{i_0} est une racine réelle de χ_u qui est une valeur propre réelle de u.

2. Soit u l'endomorphisme canoniquement associé à A. On a $\chi_u = \chi_A$ donc d'après la question précédente, A a au moins une valeur propre réelle.

Corrigé de l'exercice 18. 1. On écrit $AB = ABAA^{-1}$ donc AB et BA sont semblebles donc ont même polynôme caractéristique.

2. On a
$$\begin{pmatrix} \lambda \mathbf{I}_{n} - BA & B \\ \mathbf{O} & \lambda \mathbf{I}_{n} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{n} & \mathbf{O} \\ A & \mathbf{I}_{n} \end{pmatrix} = \begin{pmatrix} \lambda \mathbf{I}_{n} - BA + BA & B \\ \lambda A & \lambda \mathbf{I}_{n} \end{pmatrix} = \begin{pmatrix} \lambda \mathbf{I}_{n} & B \\ \lambda A & \lambda \mathbf{I}_{n} \end{pmatrix} \text{ et}$$

$$\begin{pmatrix} \mathbf{I}_{n} & \mathbf{O} \\ A & \mathbf{I}_{n} \end{pmatrix} \begin{pmatrix} \lambda \mathbf{I}_{n} & B \\ \mathbf{O} & \lambda \mathbf{I}_{n} - AB \end{pmatrix} = \begin{pmatrix} \lambda \mathbf{I}_{n} & B \\ \lambda A & AB + \lambda \mathbf{I}_{n} - AB \end{pmatrix} = \begin{pmatrix} \lambda \mathbf{I}_{n} & B \\ \lambda A & \lambda \mathbf{I}_{n} \end{pmatrix}.$$

3. on prent le déterminant dans l'égalité précédente, on obtient

$$\det\left(\begin{pmatrix} \lambda \mathbf{I}_{n} - BA & B \\ O & \lambda \mathbf{I}_{n} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{n} & O \\ A & \mathbf{I}_{n} \end{pmatrix}\right) = \begin{vmatrix} \lambda \mathbf{I}_{n} - BA & B \\ O & \lambda \mathbf{I}_{n} \end{vmatrix} \begin{vmatrix} \mathbf{I}_{n} & O \\ A & \mathbf{I}_{n} \end{vmatrix} = \lambda^{n} \det(\lambda \mathbf{I}_{n} - BA)$$
et $\det\left(\begin{pmatrix} \mathbf{I}_{n} & O \\ A & \mathbf{I}_{n} \end{pmatrix} \begin{pmatrix} \lambda \mathbf{I}_{n} & B \\ O & \lambda \mathbf{I}_{n} - AB \end{pmatrix}\right) = \begin{vmatrix} \mathbf{I}_{n} & O \\ A & \mathbf{I}_{n} \end{vmatrix} \begin{vmatrix} \lambda \mathbf{I}_{n} & B \\ O & \lambda \mathbf{I}_{n} - AB \end{vmatrix} = \lambda^{n} \det(\lambda \mathbf{I}_{n} - AB).$ Donc
$$\forall \lambda \in \mathbb{C}, \quad \lambda^{n} \chi_{AB}(\lambda) = \lambda^{n} \det(\lambda \mathbf{I}_{n} - AB) = \lambda^{n} \det(\lambda \mathbf{I}_{n} - BA) = \lambda^{n} \chi_{BA}(\lambda).$$

Ainsi, $X^n \chi_{AB}(X) = X^n \chi_{BA}(X)$ et par suite, $\chi_{AB} = \chi_{BA}$.

4. On a $(AB)^p = ABAB...AB = A(BA)^{p-1}B$ donc d'après la question précédente, $\chi_{(AB)^p} = \chi_{BA(BA)^{p-1}} = \chi_{(BA)^p}$.

Corrigé de l'exercice 19. rg u=1 donc dim $\ker u=\dim E_0(u)=n-1$ donc 0 est une valeur propre de u de multiplicité au moins égale à n-1. Le polynôme caractéristique χ_u est donc de la forme $\chi_u=X^{n-1}\big(X-\alpha\big)$. Or $\chi_u=X^n-\mathrm{Tr}\,(u)X^{n-1}+\ldots+(-1)^n\det(u)$ donc nécessairement $\alpha=\mathrm{Tr}\,(u)$. Ainsi, $\chi_u=X^{n-1}\big(X-\mathrm{Tr}\,u\big)$.

Corrigé de l'exercice 20. 1. Comme u est une projection vectorielle, on a $E = \ker u \oplus \operatorname{Im} u$ avec $\operatorname{Im} u = \ker(u - \operatorname{Id}_E)$. Soit \mathcal{B} une base adaptée à la décomposition $E = \ker u \oplus \ker(\operatorname{Id}_E - u) = E_0(u) \oplus E_1(u)$. La matrice de u dans \mathcal{B} est de la forme

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \operatorname{O}_{n-r,n-r} & \operatorname{O}_{n-r,r} \\ \operatorname{O}_{r,n-r} & \operatorname{I}_{r,r} \end{pmatrix} \text{ avec } r = \operatorname{rg} u.$$

Donc

$$\chi_u = \det \left(X \operatorname{Id}_E - u \right) = \det \left(X \operatorname{I}_n - \operatorname{Mat}_{\mathcal{B}}(u) \right) = \begin{vmatrix} X \operatorname{I}_{n-r,n-r} - \operatorname{O}_{n-r,n-r} & \operatorname{O}_{n-r,r} \\ \operatorname{O}_{r,n-r} & X \operatorname{I}_{r,r} - \operatorname{I}_{r,r} \end{vmatrix} = \begin{vmatrix} X \operatorname{I}_{n-r,n-r} & \operatorname{O}_{n-r,r} \\ \operatorname{O}_{r,n-r} & (X-1) \operatorname{I}_{r,r} \end{vmatrix} = (X-1)^r X^{n-r}.$$

2. Comme u est une symétrie vectorielle, on a $E = \ker(u - \operatorname{Id}_E) \oplus \ker(u + \operatorname{Id}_E)$. Soit \mathcal{B} une base adaptée à la décomposition $E = \ker(u - \operatorname{Id}_E) \oplus \ker(u + \operatorname{Id}_E) = E_1(u) \oplus E_{-1}(u)$. La matrice de u dans \mathcal{B} est de la forme

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \operatorname{I}_{r,r} & \operatorname{O}_{r,n-r} \\ \operatorname{O}_{n-r,r} & -\operatorname{I}_{n-r,n-r} \end{pmatrix} \text{ avec } r = \dim \ker (u - \operatorname{Id}_E).$$

Donc

$$\chi_{u} = \det(X \operatorname{Id}_{E} - u) = \det(X \operatorname{I}_{n} - \operatorname{Mat}_{\mathcal{B}}(u))$$

$$= \begin{vmatrix} X \operatorname{I}_{r,r} - \operatorname{I}_{r,r} & \operatorname{O}_{r,n-r} \\ \operatorname{O}_{n-r,r} & X \operatorname{I}_{n-r,n-r} + \operatorname{I}_{n-r,n-r} \end{vmatrix}$$

$$= \begin{vmatrix} (X - 1) \operatorname{I}_{r,r} & \operatorname{O}_{r,n-r} \\ \operatorname{O}_{n-r,r} & (X + 1) \operatorname{I}_{n-r,n-r} \end{vmatrix} = (X - 1)^{r} (X + 1)^{n-r}.$$

Corrigé de l'exercice 21. On commence par calculer $\chi_A.$ On a

Binyze Mohamed $5 \ / \ 22$

$$\chi_{A} = \begin{vmatrix} X+2 & 2 & -2 \\ 3 & X+1 & -3 \\ 1 & -1 & X-1 \end{vmatrix} \stackrel{C_{1} \leftarrow C_{1} + C_{2}}{\stackrel{C_{2} \leftarrow C_{2} + C_{3}}{=}} \begin{vmatrix} X+4 & 0 & -2 \\ X+4 & X-2 & -3 \\ 0 & X-2 & X-1 \end{vmatrix} = (X+4)(X-2) \begin{vmatrix} 1 & 0 & -2 \\ 1 & 1 & -3 \\ 0 & 1 & X-1 \end{vmatrix} \stackrel{L_{2} \leftarrow L_{2} - L_{1}}{\stackrel{C_{2} \leftarrow C_{2} + C_{3}}{=}} (X+4)(X-2) \begin{vmatrix} 1 & 0 & -2 \\ 0 & 1 & X-1 \end{vmatrix}.$$

On développe selon la première colonne, on obtient $\chi_A = X(X+4)(X-2)$. Donc Sp $A = \{0, -4, 2\}$. Cherchons les sous-espaces propres de A.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On a

$$X \in E_0(A) \iff AX = O_{3,1} \iff \begin{cases} -2x - 2y + 2z &= 0 \\ -3x - y + 3z &= 0 \\ -x + y + z &= 0 \end{cases} \iff \begin{cases} y = 0 \\ x = z \end{cases}$$

donc
$$E_0(A) = \text{Vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
.

$$X \in E_{-4}(A) \iff AX = -4X \iff \begin{cases} -2x - 2y + 2z & = & -4x \\ -3x - y + 3z & = & -4y \\ -x + y + z & = & -4z \end{cases} \iff \begin{cases} x - y + z & = & 0 \\ -x + y + z & = & 0 \\ -x + y + 5z & = & 0 \end{cases} \iff \begin{cases} z = & 0 \\ x = & y \end{cases}$$

donc
$$E_{-4}(A) = \text{Vect} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
.

$$X \in E_2(A) \iff AX = 2X \iff \begin{cases} -2x - 2y + 2z & = & 2x \\ -3x - y + 3z & = & 2y \\ -x + y + z & = & 2z \end{cases} \iff \begin{cases} -2x - y + z & = & 0 \\ -x - y + z & = & 0 \\ -x + y - z & = & 0 \end{cases} \iff \begin{cases} x = & 0 \\ y = & z \end{cases}$$

donc
$$E_2(A) = \text{Vect} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

Corrigé de l'exercice 22.

$$\chi_{A}(X) = \det(XI_{n} - A) = \begin{vmatrix} X - a & -b & \dots & -b \\ -b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -b \\ -b & \dots & -b & X - a \end{vmatrix}_{[n]}$$

$$= \begin{vmatrix} X - (a + (n-1)b) & -b & \dots & \dots & -b \\ X - (a + (n-1)b) & X - a & -b & \dots & -b \\ \vdots & \vdots & \ddots & \ddots & -b \\ X - (a + (n-1)b) & -b & \dots & -b & X - a \end{vmatrix}_{[n]}$$

$$= \begin{vmatrix} X - (a + (n-1)b) & -b & \dots & -b \\ 0 & X - a + b & (0) \\ \vdots & \ddots & \ddots & \vdots \\ 0 & (0) & X - a + b \end{vmatrix}_{[n]}$$

$$= \left(X - (a + (n-1)b)\right) \left(X - (a-b)\right)^{n-1}. \text{ (développement suivant la première colonne)}$$

Binyze Mohamed 6 / 22

Corrigé de l'exercice 23.

$$\chi_{C_{P}}(X) = \begin{vmatrix} X & -1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & X & -1 \\ a_{0} & \dots & \dots & a_{n-2} & X + a_{n-1} |_{[n]} \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -1 & 0 & \dots & 0 \\ 0 & X & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & X & -1 \\ P(X) & \dots & \dots & a_{n-2} & X + a_{n-1} |_{[n]} \end{vmatrix} C_{1} \leftarrow C_{1} + XC_{2} + X^{2}C_{3} + \dots + X^{n-1}C_{n}$$

$$= (-1)^{n+1}P(X) \begin{vmatrix} -1 & 0 & \dots & 0 \\ X & \ddots & \ddots & \vdots \\ \ddots & \ddots & 0 \\ (0) & X & -1 |_{[n-1]} \end{vmatrix}$$
 (développement suivant la première ligne)
$$= (-1)^{n+1}P(X)(-1)^{n-1} = P(X).$$

Diagonalisabilité

Corrigé de l'exercice 24. 1. Supposons u diagonalisable. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E formée de vecteurs propres de u. Comme $\operatorname{Sp} u = \{\lambda\}$ alors $u(e_i) = \lambda . e_i$ pour tout $1 \leq i \leq n$. Ainsi, u et $\lambda . \operatorname{Id}_E$ coïncident sur la base \mathcal{B} donc coïncident partout. D'où $u = \lambda . \mathrm{Id}_E$.

Inversement, supposons $u = \lambda. \mathrm{Id}_E$. La matrice de u dans n'importe quelle base de E est diagonale de la forme diag $(\lambda, \ldots, \lambda)$ donc u est diagonalisable.

2. Soit u lendomorphisme de $\mathcal{M}_{n,1}(\mathbb{K})$ canoniquement associé à A. Les éléments propres de u sont exactement les éléments propres de A. Ainsi, A est diagonalisable si, et seulement si, u est diagonalisable si, et seulement si, $A = \lambda I_n$.

Corrigé de l'exercice 25. 1. A est triangulaire supérieure stricte donc Sp $A = \{\alpha, \beta\}$. Comme $\alpha \neq \beta$ alors A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.

2. Si $\alpha = \beta$ alors Sp $A = \{\alpha\}$ donc A est diagonalisable si, et seulement si, $A = \alpha.I_2$. Mais $A = \begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix} \neq \alpha.I_2$ et par suite, An'est pas diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.

Corrigé de l'exercice 26. On écrit $A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$. On a A est triangulaire supérieure stricte donc $\operatorname{Sp} A = \{0\}$.

Comme A est non nulle alors A n'est jamais diagonalis

Corrigé de l'exercice 27. 1. a. On a
$$PQ = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & -2 \\ -3 & -1 & 5 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I_3.$$

b. On a $P \cdot \frac{1}{4}Q = I_3$ donc P est inversible et $P^{-1} = \frac{1}{4}Q$.

2. a. On a $A.u = \frac{1}{2} \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = u \text{ donc } A.u = u \text{ c-à-d } u \text{ est un vecteur propre de } A \text{ associ\'e à la valeur propre}$ α = 1.

b. On a $A.v = \frac{1}{2} \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ donc A.v = 2v c-à-d v est un vecteur propre de A associé à la valeur

7 / 22 Binyze Mohamed

On a $A.w = \frac{1}{2} \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ donc A.w = 2w c-à-d w est un vecteur propre de A associé à la même valeur propre $\beta = 2$.

c. La famille (u, v, w) est libre dans $\mathcal{M}_{3,1}(\mathbb{R})$ puisque $\begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} = \det P \neq 0$ donc (u, v, w) constitue une famille libre

dans $\mathcal{M}_{3,1}(\mathbb{R})$ formée de vecteurs propres de A. Par suite, A est diagonalisable et on peut écrire $A = PDP^{-1}$ avec

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

3. a. Récurrence sur $n \in \mathbb{N}$.

Initialisation: Pour n=0 et n=1 la propriété est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $n\in\mathbb{N}^*.$ Supposons la propriété est vraie au rang n et montrons le au rang n+1. On a

$$A^{n+1} = A^n.A = PD^nP^{-1}.PDP^{-1} = PD^{n+1}P^{-1}.$$

Donc la propriété est vraie au rang n + 1.

Conclusion : Par le principe de récurrence, pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

- **b.** D est une matrice diagonale donc, pour tout $n \in \mathbb{N}$, $D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{pmatrix}$.
- **c.** Pour tout $n \in \mathbb{N}$, on a

$$\begin{split} A^n &= PD^nP^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{pmatrix} \begin{pmatrix} 2 & 2 & -2 \\ -3 & -1 & 5 \\ 1 & -1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1/2 + 2^{n-1} & 1/2 - 2^{n-1} & -1/2 + 2^{n-1} \\ 1 - 2^n & 1 & -1 + 2^n \\ 1/2 - 2^{n-1} & 1/2 - 2^{n-1} & -1/2 + 3.2^{n-1} \end{pmatrix}. \end{split}$$

Corrigé de l'exercice 28. On commence par calculer χ_A . On a

$$\chi_{u} = \begin{vmatrix} X & -3 & -3 \\ 1 & X - 1 & 1 \\ -1 & 0 & X - 2 \end{vmatrix} \xrightarrow{L_{3} \leftarrow L_{3} + L_{2}} \begin{vmatrix} X & -3 & -3 \\ 1 & X - 1 & 1 \\ 0 & X - 1 & X - 1 \end{vmatrix} = (X - 1) \begin{vmatrix} X & -3 & -3 \\ 1 & X - 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{C_{2} \leftarrow -C_{2} - C_{3}} (X - 1) \begin{vmatrix} X & 0 & -3 \\ 1 & X - 2 & 1 \\ 0 & 0 & 1 \end{vmatrix}.$$

On développe selon la troisième ligne, on obtient $\chi_A = X(X-1)(X-2)$. Le polynôme χ_u est scindé à racines simples donc u est diagonalisable et $\operatorname{Sp} u = \{0,1,2\}$. Cherchons les sous-espaces propres de u.

Soit $x \in E_0(u)$ avec $x = x_1e_1 + x_2e_2 + x_3e_3$. On écrit $X = \operatorname{Mat}_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On a

$$x \in E_0(u) \iff AX = O_{3,1} \iff \begin{cases} 3x_2 + 3x_3 & = 0 \\ -x_1 + x_2 - x_3 & = 0 \\ x_1 + 2x_3 & = 0 \end{cases} \iff \begin{cases} x_1 = -2x_3 \\ x_2 = -x_3 \end{cases}$$

donc $x = -2x_3e_1 - x_3e_2 + x_3e_3$ et par suite, $E_0(u) = \text{Vect}(-2e_1 - e_2 + e_3)$.

Soit $x \in E_1(u)$ avec $x = x_1e_1 + x_2e_2 + x_3e_3$. On écrit $X = \operatorname{Mat}_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On a

$$x \in E_1(u) \iff AX = X \iff \begin{cases} 3x_2 + 3x_3 & = x_1 \\ -x_1 + x_2 - x_3 & = x_2 \\ x_1 + 2x_3 & = x_3 \end{cases} \iff \begin{cases} x_1 = -x_3 \\ x_2 = -\frac{4}{3}x_3 \end{cases}$$

Binyze Mohamed $8 \ / \ 22$

donc $x = -x_3e_1 - \frac{4}{3}x_3e_2 + x_3e_3$ et par suite, $E_1(u) = \text{Vect}(-3e_1 - 4e_2 + 3e_3)$.

Soit $x \in E_2(u)$ avec $x = x_1e_1 + x_2e_2 + x_3e_3$. On écrit $X = \operatorname{Mat}_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On a

$$x \in E_2(u) \iff AX = 2X \iff \begin{cases} 3x_2 + 3x_3 & = 2x_1 \\ -x_1 + x_2 - x_3 & = 2x_2 \\ x_1 + 2x_3 & = 2x_3 \end{cases} \iff \begin{cases} x_1 = 0 \\ x_2 = -x_3 \end{cases}$$

donc $x = x_2e_2 - x_2e_3$ et par suite, $E_2(u) = \text{Vect}(e_2 - e_3)$.

Finalement, la famille $(-2e_1 - e_2 + e_3, -3e_1 - 4e_2 + 3e_3, e_2 - e_3)$ est une base de diagonalisation de l'endomorphisme u.

Corrigé de l'exercice 29. 1. A est la matrice du système (Σ) donc $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}$ de sorte que : $X_{n+1} = AX_n$.

2. Récurrence sur $n \in \mathbb{N}$.

Initialisation: Pour n=0 et n=1 la propriété est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $n\in\mathbb{N}^*$. Supposons la propriété est vraie au rang n et montrons le au rang n+1. On a

$$X_{n+1} = A.X_n = A.A^n.X_0 = A^{n+1}.X_0.$$

Donc la propriété est vraie au rang n+1.

Conclusion : Par le principe de récurrence, pour tout $n \in \mathbb{N}, X_n = A^n.X_0.$

3. On a:

$$\chi_A(X) = \det(X\mathbf{I}_3 - A) = \begin{vmatrix} X - 2 & 1 & -1 \\ 1 & X - 2 & 1 \\ 1 & -1 & X \end{vmatrix} = \begin{bmatrix} X - 1 & 0 & -1 \\ -1 & X - 2 & 1 \\ -1 & X \end{vmatrix} = \begin{bmatrix} X - 1 & 0 & -1 \\ -1 & X - 1 & 1 \\ 0 & X - 1 & X \end{vmatrix} = (X - 1)^2 \begin{vmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 1 & X \end{vmatrix}$$

$$= \begin{bmatrix} (X - 1)^2 & 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 1 & X \end{vmatrix} = (X - 1)^2 (X - 2). \text{ (développement suivant la première colonne)}.$$

Donc χ_A est scindé sur \mathbb{R} et $Sp(A) = \{1, 2\}$. Cherchons les sous-espaces propres.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_1(A) \iff AX = X \iff \begin{cases} 2x - y + z = x \\ -x + 2y - z = y \iff x - y + z = 0 \\ -x + y = z \end{cases}$$

donc
$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}\right)$$
 et $\dim E_1(A) = 2 = m_1(A)$.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_2(A) \iff AX = 2X \iff \begin{cases} 2x - y + z = 2x \\ -x + 2y - z = 2y \\ -x + y = 2z \end{cases} \iff \begin{cases} y = z \\ x = -z \end{cases}$$

donc
$$E_2(A) = \operatorname{Vect} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$
 et $\dim E_2(A) = 1 = m_2(A)$.

Ainsi, A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et $A = PDP^{-1}$ avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

4. Récurrence sur $n \in \mathbb{N}$.

Initialisation: Pour n=0 et n=1 la propriété est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $n\in\mathbb{N}^*.$ Supposons la propriété est vraie au rang n et montrons le au rang n+1. On a

$$A^{n+1} = A^n . A = PD^n P^{-1} . PDP^{-1} = PD^{n+1} P^{-1}$$
.

Binyze Mohamed $9 \ / \ 22$

Donc la propriété est vraie au rang n + 1.

Conclusion : Par le principe de récurrence, pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

5. On a $X_n = A^n X_0 = PD^n P^{-1} X_0$ donc il reste à calculer P^{-1} . Pour cela, on va utiliser la méthode des systèmes linéaires.

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
 et $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$ tels que $PX = Y$. On a :

$$PX = Y \iff \begin{cases} x_1 - x_2 - x_3 &= y_1 \\ x_1 + x_3 &= y_2 \\ x_2 + x_3 &= y_3 \end{cases} \iff \begin{cases} x_1 = y_1 + y_3 \\ x_2 = y_1 - y_2 + 2y_3 \\ x_3 = -y_1 + y_2 - y_3 \end{cases}$$

donc
$$P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$
 et par suite

$$X_n = PD^nP^{-1}X_0 = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \begin{pmatrix} 2^nx_0 + (1-2^n)y_0 + (2^n-1)z_0 \\ (1-2^n)x_0 + 2^ny_0 + +(1-2^n)z_0 \\ (1-2^n)x_0 + (2^n-1)y_0 + (2-2^n)z_0 \end{pmatrix}.$$

Finalement,
$$\forall n \in \mathbb{N}$$
,
$$\begin{cases} x_n = 2^n x_0 + (1-2^n) y_0 + (2^n - 1) z_0 \\ y_n = (1-2^n) x_0 + 2^n y_0 + + (1-2^n) z_0 \\ z_n = (1-2^n) x_0 + (2^n - 1) y_0 + + (2-2^n) z_0 \end{cases} \text{ avec } (x_0, y_0, z_0) \in \mathbb{R}^3.$$

Corrigé de l'exercice 30. 1. La matrice A est triangulaire supérieure à coefficients diagonaux deux à deux distints donc A est diagonalisable et $\operatorname{Sp} A = \{-1, 3, 0\}$. Les sous-espaces propres associés sont :

$$E_{-1} = \operatorname{Vect}\begin{pmatrix} 1\\0\\0 \end{pmatrix}, E_3 = \operatorname{Vect}\begin{pmatrix} 1\\-4\\0 \end{pmatrix} \text{ et } E_0 = \operatorname{Vect}\begin{pmatrix} 1\\-1\\3 \end{pmatrix}.$$

Par suite, $A = PDP^{-1}$ avec $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -4 & -1 \\ 0 & 0 & 3 \end{pmatrix}$.

- **2.** a. On a $M^2 = (P^{-1}XP)^2 = P^{-1}X^2P$ donc $M^2 + M = P^{-1}X^2P + P^{-1}XP = P^{-1}(X^2 + X) = P^{-1}AP = D$.
 - **b.** On a $DM = (M^2 + M)M = M(M^2 + M) = MD$.
 - c. Posons $M = (m_{i,j})_{1 \le i,j \le 3}$. L'égalité DM = MD entraı̂ne que $m_{i,j} = 0$ pour tout $i \ne j$ et la matrice M est diagonale.

3. Soit
$$M = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$
 où $(a, b, c) \in \mathbb{R}^3$. On a

$$M^{2} + 2M = D \iff \begin{cases} a^{2} + 2a & = -1 \\ b^{2} + 2b & = 3 \\ c^{2} + 2c & = 0 \end{cases} \iff \begin{cases} a = -1 \\ b \in \{-3, 1\} \\ c \in \{-2, 0\} \end{cases}$$

D'où les solutions de (\mathcal{E}) sont les (quatre) matrices PMP^{-1} avec M = diag(-1, b, c) où $b \in \{-3, 1\}, c \in \{-2, 0\}.$

Corrigé de l'exercice 31. 1. Le polynôme caractéristique de u est donné par $\chi_u = X^{n-1}(X - \operatorname{Tr} u)$. On a χ_u est scindé sur \mathbb{K} et dim $E_0(u) = \dim \ker u = n - 1$. Ainsi

Tr
$$u \neq 0 \iff \dim E_{\operatorname{Tr} u}(u) = 1 = m_{\operatorname{Tr} u}(u)$$
 et $\dim E_0(u) = n - 1 = m_0(u)$ $\iff u$ est diagonalisable.

2. La matrice $E_{i,j}$ de $\mathcal{M}_n(\mathbb{K})$ est de rang 1 donc $E_{i,j}$ est diagonalisable si, et seulement si, $\operatorname{Tr} E_{i,j}$ est non nulle si, et seulement si, i = j.

Corrigé de l'exercice 32. 1. Si $M \in \mathcal{S}_n(\mathbb{R})$ alors $u(M) = aM + bM^{\top} = aM + bM = (a+b)M \in \mathcal{S}_n(\mathbb{R})$ donc $\mathcal{S}_n(\mathbb{R})$ est stable par u.

Si $M \in \mathcal{A}_n(\mathbb{R})$ alors $u(M) = aM + bM^{\top} = aM - bM = (a - b)M \in \mathcal{A}_n(\mathbb{R})$ donc $\mathcal{A}_n(\mathbb{R})$ est stable par u.

Binyze Mohamed 10 / 22

2. On sait que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$. Soit alors \mathcal{B} une base adaptée à cette décomposition. La matrice de u dans cette base est de la forme

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} (a+b)\mathrm{I}_{s} & \mathrm{O}_{s,n^{2}-s} \\ \mathrm{O}_{n^{2}-s,s} & (a-b)\mathrm{I}_{n^{2}-s} \end{pmatrix} \in \mathcal{M}_{n^{2}}(\mathbb{R}) \quad \text{avec} \quad s = \dim \mathcal{S}_{n}(\mathbb{R}) = \frac{n(n+1)}{2}.$$

La matrice $\operatorname{Mat}_{\mathcal{B}}(u)$ est diagonale donc u est diagonalisable et $\operatorname{Sp} u = \{a+b, a-b\}$.

3. u est diagonalisable donc χ_u est scindé et par suite

Tr
$$u = (a+b)s + (a-b)(n^2-s) = an^2 + bn$$
 et $\det u = (a+b)^s (a-b)^{n-s} = (a+b)^{n(n+1)/2} (a-b)^{n(n-1)/2}$.

Corrigé de l'exercice 33. 1. a. La matrice A est de taille n et possède n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$ donc A est diagonalisable et il existe $P \in \mathcal{GL}_n(\mathbb{R})$ telle que $A = PDP^{-1}$.

b. Soit $R \in \mathcal{M}_n(\mathbb{R})$. On a :

$$R$$
 est une racine carrée de $A\iff R^2=A$
$$\iff R^2=PDP^{-1}$$

$$\iff P^{-1}R^2P=D$$

$$\iff \left(P^{-1}RP\right)^2=D$$

$$\iff P^{-1}RP \text{ est une racine carrée de }D.$$

- **2.** a. On a $\Delta^2 = D$ donc $\Delta D = \Delta \Delta^2 = \Delta^2 \Delta = D\Delta$.
 - **b.** Soit $\Delta = (d_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$. On a

$$\Delta D = D\Delta \iff \forall (i,j) \in [[1,n]]^2, \ (\Delta D)_{i,j} = (D\Delta)_{i,j}$$

$$\iff \forall (i,j) \in [[1,n]]^2, \ d_{i,j}\lambda_j = \lambda_i d_{i,j}$$

$$\iff \forall (i,j) \in [[1,n]]^2, \ d_{i,j}(\lambda_i - \lambda_j) = 0$$

$$\iff \forall (i,j) \in [[1,n]]^2, \ i \neq j \implies d_{i,j} = 0. \ (\operatorname{car} \lambda_i \neq \lambda_j \ \operatorname{pour} \ i \neq j)$$

donc Δ est une matrice diagonale.

- c. On a $\Delta^2 = D$ donc diag $(\delta_1^2, \dots, \delta_n^2) = \text{diag}(\lambda_1, \dots, \lambda_n)$ c-à-d $\delta_i^2 = \lambda_i$ pour tout $1 \le i \le n$.
- 3. S'il existe $i_0 \in [[1, n]]$ tel que $\lambda_{i_0} < 0$ alors $\delta_{i_0}^2 = \lambda_{i_0} < 0$ ce qui est absurde. Par suite $\mathcal{R}_n(A) = \emptyset$.
- **4.** a. D'après ce qui précède, les racines carrées de D sont de la forme $\Delta = \operatorname{diag}(\pm\sqrt{\lambda_1},\dots,\pm\sqrt{\lambda_n})$.
 - **b.** D'après la première question, les racines carrées de A sont de la forme $R = P \operatorname{diag} \left(\pm \sqrt{\lambda_1}, \dots, \pm \sqrt{\lambda_n}\right) P^{-1}$.
 - c. Comme $0 \le \lambda_1 < \ldots < \lambda_n$, deux cas se présentent :
 - Si $\lambda_1 > 0$, alors Card $\mathcal{R}_n(A) = 2^n$.
 - Si $\lambda_1 = 0$, alors Card $\mathcal{R}_n(A) = 2^{n-1}$.

D'où, le nombre des racines carrées de la matrice A égal à $\begin{cases} 2^n & \text{si} \quad \lambda_1 > 0 \\ 2^{n-1} & \text{si} \quad \lambda_1 = 0 \end{cases}$

5. La matrice A est triangulaire supérieure à coefficients diagonaux deux à deux distints donc A est diagonalisable et $\operatorname{Sp} A = \{1, 2, 3\}$. Cherchons les sous-espaces propres de A.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On a

$$X \in E_1(A) \iff AX = X \iff \begin{cases} x = x \\ 2y + z = y \iff y = z = 0 \\ 3z = z \end{cases}$$

donc
$$E_1(A) = \text{Vect} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
.

Binyze Mohamed $11 \ / \ 22$

$$X \in E_2(A) \iff AX = 2X \iff \begin{cases} x = 2x \\ 2y + z = 2y \iff x = z = 0 \\ 3z = 2z \end{cases}$$

donc
$$E_2(A) = \text{Vect} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
.

$$X \in E_3(A) \iff AX = 3X \iff \begin{cases} x = 3x \\ 2y + z = 3y \\ 3z = 3z \end{cases} \iff \begin{cases} x = 0 \\ y = z \end{cases}$$

donc
$$E_3(A) = \text{Vect}\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
. Par suite, $A = PDP^{-1}$ avec $D = \text{diag}(1, 2, 3)$ et $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

 ${
m Finalement},$

$$\mathcal{R}_{3}(A) = \begin{cases} P \operatorname{diag}(1,2,3)P^{-1}, & P \operatorname{diag}(-1,2,3)P^{-1}, & P \operatorname{diag}(1,-2,3)P^{-1}, & P \operatorname{diag}(1,2,-3)P^{-1}, \\ P \operatorname{diag}(-1,-2,3)P^{-1}, & P \operatorname{diag}(1,-2,-3)P^{-1}, & P \operatorname{diag}(-1,2,-3)P^{-1}, & P \operatorname{diag}(-1,2,-3)P^{-1}, \end{cases}$$

On a $8 = 2^3$ solutions.

5 Nilpotence, trigonalisabilité

Corrigé de l'exercice 34. 1. La matrice A est triangulaire supérieure stricte on a:

$$u(e_1) = 0$$
 et $u(e_i) \in \text{Vect}(e_1, \dots, e_{i-1})$ pour $2 \le i \le n$.

Donc Im (u) = Vect $(u(e_1), \ldots, u(e_n))$ \subset Vect (e_1, \ldots, e_{n-1}) .

2. Récurrence sur $k \in [[1, n-1]]$.

Initialisation: Pour k=1 la propriété est vraie d'après la question précédente.

 $H\acute{e}r\acute{e}dit\acute{e}: Soit \ k \in [[1,n-2]].$ Supposons la propriété est vraie au rang k et montrons le au rang k+1. On a

$$\operatorname{Im}(u^{k+1}) = u(\operatorname{Im}(u^{k}))$$

$$\subset u(\operatorname{Vect}(e_{1}, \dots, e_{n-k}))$$

$$= \operatorname{Vect}(u(e_{1}), \dots, u(e_{n-k}))$$

$$\subset \operatorname{Vect}(e_{1}, \dots, e_{n-k-1}) \operatorname{car} u(e_{n-k}) \subset \operatorname{Vect}(e_{1}, \dots, e_{n-k-1}) \operatorname{puisque} 2 \leq n - k \leq n$$

Donc la propriété est vraie au rang k+1.

Conclusion: Par le principe de récurrence, pour tout $k \in [[1, n-1]]$, $\operatorname{Im}(u^k) \subset \operatorname{Vect}(e_1, \dots, e_{n-k})$.

3. En particulier, pour k = n - 1, on a

$$\operatorname{Im}(u^{n-1}) \subset \operatorname{Vect}(e_1) \implies \operatorname{Im}(u^n) \subset u(\operatorname{Vect}(e_1)) = \operatorname{Vect}(u(e_1)) = \{0_E\}.$$

Il s'ensuit que $u^n = 0_{\mathcal{L}(E)}$ d'où $A^n = O_n$.

Corrigé de l'exercice 35. 1. u est nilpotent d'indice $p \in \mathbb{N}^*$ donc $u^p = 0_{\mathcal{L}(E)}$ et $u^{p-1} \neq 0_{\mathcal{L}(E)}$. Soit $x_0 \in E \setminus \{0_E\}$ tel que $u^{p-1}(x_0) \neq 0_E$. Montrons que la famille $(x_0, u(x_0), \dots, u^{p-1}(x_0))$ est libre.

Soit $(\lambda_0, \dots, \lambda_{p-1}) \in \mathbb{K}^p$ tels que $\sum_{k=0}^{p-1} \lambda_k u^k(x_0) = 0_E$. Montrons que $\lambda_k = 0$ pour tout $0 \le k \le p-1$.

Par l'absurde, supposons qu'il existe $i_0 \in [[0, p-1]]$ tel que $\lambda_{i_0} \neq 0$. Posons alors $k = \min \{i \in [[0, p-1]], \lambda_i \neq 0\}$. On a :

$$\lambda_k \neq 0 \text{ et } \lambda_k u^k(x_0) + \lambda_{k+1} u^{k+1}(x_0) + \dots + \lambda_{p-1} u^{p-1}(x_0) = 0_E.$$

En appliquant u^{p-1-k} , on obtient

$$\lambda_k \underbrace{u^{p-1}(x_0)}_{\neq 0_E} + \underbrace{\lambda_{k+1} u^p(x_0) + \ldots + \lambda_{p-1} u^{2p-2-k}(x_0)}_{=0_E} = 0_E$$

donc $\lambda_k = 0$ ce qui est absurde. Ainsi, la famille $(x_0, u(x_0), \dots, u^{p-1}(x_0))$ est libre.

Binyze Mohamed $12\ /\ 22$

2. Comme la famille $(x_0, u(x_0), \dots, u^{p-1}(x_0))$ est libre, on a Card $(x_0, u(x_0), \dots, u^{p-1}(x_0)) \le \dim E$ c-à-d $p \le n$. Par suite, $u^n = u^{n-p}u^p = 0_{\mathcal{L}(E)}$.

Corrigé de l'exercice 36. Soit
$$A = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ a_{n,1} & \dots & \dots & a_{n,n} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$
 une matrice triangulaire inférieure.

Posons
$$P = \begin{pmatrix} (0) & 1 \\ & \ddots & \\ & & \ddots & \\ 1 & (0) \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$
. On a $P^2 = I_n$ donc $P \in \mathcal{GL}_n(\mathbb{K})$ et

$$PAP^{-1} = \begin{pmatrix} a_{n,n} & \dots & a_{n,1} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{1,1} \end{pmatrix} = T$$

qui est une matrice triangulaire supérieure. Ainsi, $A = PTP^{-1}$ et par suite, A est trigonalisable.

Corrigé de l'exercice 37. 1. Soit $\lambda \in \operatorname{Sp} u$. Il existe $x \in E \setminus \{0_E\}$ tel que $u(x) = \lambda x$.

Montrons par récurrence sur $k \in \mathbb{N}$ que $u^k(x) = \lambda^k x$.

Initialisation: Pour k=1 la propriété est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $k\in\mathbb{N}^*$. Supposons la propriété est vraie au rang k et montrons le au rang k+1. On a

$$u^{k+1}(x) = u\big(u^k(x)\big) = u\big(\lambda^k x\big) = \lambda^k u(x) = \lambda^k \lambda x = \lambda^{k+1} x$$

donc la propriété est vraie au rang k + 1.

Conclusion: Par le principe de récurrence, pour tout $k \in \mathbb{N}$, $u^k(x) = \lambda^k x$.

Ainsi, λ^k est une valeur propre de u^k .

2. Si $\mathbb{K} = \mathbb{C}$ alors l'endomorphisme u est trigonalisable donc il existe une base \mathcal{B} de E telle que :

$$\operatorname{Mat}_{\mathcal{B}}(u) = T = \begin{pmatrix} \lambda_1 & \star & \dots & \star \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

avec Sp $u = \{\lambda_1, \dots, \lambda_n\}$. Aussi, la matrice de u^k dans \mathcal{B} est T^k :

$$\operatorname{Mat}_{\mathcal{B}}(u^{k}) = T^{k} = \begin{pmatrix} \lambda_{1} & \star' & \dots & \star' \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star' \\ 0 & \dots & 0 & \lambda_{n} \end{pmatrix}$$

avec Sp $u^k = \{\lambda_1^k, \dots, \lambda_n^k\}.$

3. Supposons $\mathbb{K} = \mathbb{R}$. Soit $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ avec $\theta \in \mathbb{R} \setminus \{\pi \mathbb{Z}\}$ et u l'endomorphisme canoniquement associé à R_{θ} .

On a $R_{\theta}^k = R_{k\theta}$. En choisissant $\theta = \frac{\pi}{k}$, on obtient $u^k = -\text{Id donc Sp } u = \emptyset$ et $\text{Sp } u^k = \{-1\}$.

Corrigé de l'exercice 38. 1. On a

$$\chi_{A} = \begin{vmatrix} X - 1 & -1 & 1 \\ 0 & X - 1 & 0 \\ -1 & 3 & X - 3 \end{vmatrix} \begin{vmatrix} C_{1} \leftarrow C_{\underline{1}} + C_{2} + C_{3} \\ X - 1 & X - 1 & 0 \\ X - 1 & 3 & X - 3 \end{vmatrix} = \begin{pmatrix} X - 1 & 1 \\ 1 & X - 1 & 0 \\ 1 & 3 & X - 3 \end{vmatrix} \begin{vmatrix} L_{2} \leftarrow L_{2} - L_{1} \\ 1 & X - 1 & 0 \\ 1 & 3 & X - 3 \end{vmatrix}$$

$$\begin{pmatrix} X - 1 & 1 \\ 1 & X - 1 & 0 \\ 1 & 3 & X - 3 \end{vmatrix} \begin{vmatrix} L_{2} \leftarrow L_{2} - L_{1} \\ 1 & X - 1 & 0 \\ 1 & 3 & X - 3 \end{vmatrix}$$

$$\begin{pmatrix} X - 1 & 1 \\ 0 & X & -1 \\ 0 & 4 & X - 4 \end{vmatrix}.$$

Binyze Mohamed $$13\ /\ 22$$

On développe selon la première colonne, on obtient $\chi_A = (X-1) \begin{vmatrix} X & -1 \\ 4 & X-4 \end{vmatrix} = (X-1)(X(X-4)+4) = (X-1)(X-2)^2$.

Le polynôme caractéristique χ_A est scindé sur \mathbb{R} donc A est trigonalisable dans $\mathcal{M}_3(\mathbb{R})$. Cherchons les sous-espaces propres.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_1(A) \iff AX = X \iff \begin{cases} x + y - z = x \\ y = y \iff x = y = z \\ x - 3y + 3z = z \end{cases}$$

donc $E_1(A) = \operatorname{Vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \operatorname{Vect}(e_1)$ et $\dim E_1(A) = 1 = m_1(A)$.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_2(A) \iff AX = 2X \iff \begin{cases} x + y - z = 2x \\ y = 2y \iff x = -z \\ x - 3y + 3z = 2z \end{cases}$$

donc $E_2(A) = \operatorname{Vect} \left(\underbrace{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}}_{=e_2} = \operatorname{Vect} (e_2) \text{ et } \dim E_2(A) = 1 \neq m_2(A).$ La matrice A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

2. Soit
$$e_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
 tel que $\mathcal{B} = \begin{pmatrix} e_1, e_2, e_3 \end{pmatrix}$ forme une base de $\mathcal{M}_{3,1}(\mathbb{R})$ et $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix}$. On a :

$$u(e_3) = -e_2 + 2e_3 \iff \begin{pmatrix} a+b-c \\ b \\ a-3b+3c \end{pmatrix} = \begin{pmatrix} -1+2a \\ 2b \\ 1+2c \end{pmatrix} \iff \begin{cases} a+b-c & = -1+2a \\ b & = 2b \\ a-3b+3c & = 1+2c \end{cases} \iff \begin{cases} b & = 0 \\ a+c & = 1 \end{cases}.$$

Le vecteur $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ convient et, la famille $\mathcal{B} = (e_1, e_2, e_3)$ forme une base de $\mathcal{M}_{3,1}(\mathbb{R})$.

3. P est la matrice de passage de la base canonique de $\mathcal{M}_{3,1}(\mathbb{R})$ à la base $\mathcal{B}: P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \in \mathcal{GL}_3(\mathbb{R}).$

Montrons par récurrence sur $k \in \mathbb{N}$, que $A^k = PT^kP^{-1}$.

Initialisation: Pour k=1 la propriété est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $k\in\mathbb{N}^*.$ Supposons la propriété est vraie au rang k et montrons le au rang k+1. On a

$$A^{k+1} = AA^k = APT^kP^{-1} = PTP^{-1}PT^kP^{-1} = PT^{k+1}P^{-1}$$

donc la propriété est vraie au rang k + 1.

Conclusion: Par le principe de récurrence, pour tout $k\in\mathbb{N},\ A^k=PT^kP^{-1}$

4. On écrit la matrice T par blocs : $T = \begin{pmatrix} 1 & O_{1,2} \\ O_{1,2} & T_0 \end{pmatrix}$ avec $T_0 = \begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix}$. On a, pour tout $k \in \mathbb{N}$, $T^k = \begin{pmatrix} 1 & O_{1,2} \\ O_{1,2} & T_0^k \end{pmatrix}$.

Par ailleurs, $T_0 = 2I_2 + N$ avec $N = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$ nilpotente d'indice 2. La formule de binôme de Newton donne :

$$T_0^k = \left(2\mathbf{I}_2 + N\right)^k = \sum_{j=0}^k \binom{k}{j} 2^{k-j} N^j = \binom{k}{0} 2^k \mathbf{I}_2 + \binom{k}{1} 2^{k-1} N = 2^k \mathbf{I}_2 + k 2^{k-1} N = \binom{2^k}{0} - k 2^{k-1}$$

Donc $T^k = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^k & -k2^{k-1} \\ 0 & 0 & 2^k \end{pmatrix}$. Il reste à calculer P^{-1} . Pour cela, on va utiliser la méthode des systèmes linéaires. Soit

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \text{ et } Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \text{ tels que } PX = Y. \text{ On a :}$$

Binyze Mohamed $14 \ / \ 22$

$$PX = Y \iff \begin{cases} x_1 + x_2 & = & y_1 \\ x_1 & = & y_2 \\ x_1 - x_2 + x_3 & = & y_3 \end{cases} \iff \begin{cases} x_1 = y_1 - y_2 \\ x_2 = y_2 \\ x_3 = -y_1 + 2y_2 + y_3 \end{cases}$$

donc
$$P^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
. Finalement, $\forall k \in \mathbb{N}$, $A^k = \begin{pmatrix} 2^k - k2^{k-1} & 1 + (k-1)2^k & -k2^k \\ 0 & 1 & 0 \\ k2^{k-1} & 1 - (k+1)2^k & 2^k + k2^{k-1} \end{pmatrix}$.

Corrigé de l'exercice 39. 1. La matrice A est trigonalisable donc il existe $T \in \mathcal{M}_2(\mathbb{C})$ triangulaire supérieure et $P \in \mathcal{GL}_2(\mathbb{C})$ telle que $A = PTP^{-1}$. Notons $T = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ avec $(a,b,c) \in \mathbb{C}^3$.

- Si b = 0 alors A serait diagonalisable ce qui est exclu.
- Si $a \neq c$ alors la matrice A possède deux valeurs propres distinctes et A serait diagonalisable, ce qui est exclu.

Donc nécessairement
$$T = \begin{pmatrix} \alpha & b \\ 0 & \alpha \end{pmatrix}$$
 avec $\alpha \in \mathbb{C}$ et $b \in \mathbb{C}^*$. On écrit $T = \alpha I_2 + \underbrace{\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}}_{=N_0} = \alpha I_2 + N_0$. Ainsi,

$$A = PTP^{-1} = P(\alpha I_2 + N_0)P^{-1} = \alpha I_2 + \underbrace{PN_0P^{-1}}_{=N} = \alpha I_2 + N$$

et $N^2 = \left(PN_0P^{-1}\right)^2 = PN_0^2P^{-1} = \mathcal{O}_2$ et $N \neq \mathcal{O}_2$ donc N est nilpotente d'indice 2.

2. Notons $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$. On a $\chi_A = X^2 - \text{Tr}(A)X + \det(A) = X^2 - 2X + 1 = (X - 1)^2$ donc Sp $A = \{1\}$. La matrice A n'est

pas diagonalisable car sinon $A = I_2$. D'après la première question, $A = I_2 + N$ avec $N = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$ nilpotente d'indice

2. Soit $X \in \mathcal{M}_2(\mathbb{C})$ solution de l'équation $X^n = A$. La matrice X n'est pas diagonalisable car sinon A serait diagonalisable. D'après la première question, $X = \alpha I_2 + N'$ avec $\alpha \in \mathbb{C}$ valeur propre de X et $N' \in \mathcal{M}_2(\mathbb{C})$ nilpotente d'indice 2. On a α^n est valeur propre de A donc $\alpha^n = 1$. Aussi, par la formule du binôme de Newton, on a alors

$$X^{n} = (\alpha \mathbf{I}_{2} + N')^{n} = \sum_{j=0}^{n} {n \choose j} \alpha^{n-j} N'^{j} = {n \choose 0} \alpha^{n} \mathbf{I}_{2} + {n \choose 1} \alpha^{n-1} N' = \alpha^{n} \mathbf{I}_{2} + n \alpha^{n-1} N' = \mathbf{I}_{2} + \frac{n}{\alpha} N'$$

donc $N' = \frac{\alpha}{n}N$. Inversement, les matrices $X = I_2 + \frac{\alpha}{n}N$ avec $\alpha \in \mathbb{U}_n$ sont effectivement solutions.

Corrigé de l'exercice 40. 1. La matrice A est à coefficients complexes donc A est trigonalisable : il existe $P \in \mathcal{GL}_n(\mathbb{C})$ et $T \in \mathcal{M}_n(\mathbb{C})$ trinagulaire supérieure telle que $A = PTP^{-1}$.

2. Notons $T = (b_{i,j})_{1 \le i,j \le n}$. Comme A est inversible alors T l'est aussi donc $b_{i,i} \ne 0$ pour tout $1 \le i \le n$. Considérons

l'application $\gamma:[0,1]\longrightarrow \mathcal{GL}_n(\mathbb{C})$ définie par $\gamma(t)=\left\{ \begin{array}{ll} 0 & \text{si} \quad i>j\\ tb_{i,j} & \text{si} \quad i<j\\ r_j^t\,\mathrm{e}^{it\theta_j} & \text{si} \quad i=j \text{ où } b_{j,j}=r_j\,\mathrm{e}^{i\theta_j} \end{array} \right.$ γ est un chemin inscrit dans $\mathcal{GL}_n(\mathbb{C})$ et on a $\gamma(0)=\mathrm{I}_n$ et $\gamma(1)=T$.

3. Considérons l'application

$$\varphi : [0,1] \longrightarrow \mathcal{GL}_n(\mathbb{C})$$

$$t \longmapsto P\gamma(t)P^{-1}$$

 φ est un chemin inscrit dans $\mathcal{GL}_n(\mathbb{C})$ et on a $\gamma(0) = I_n$ et $\gamma(1) = PTP^{-1} = A$. D'où $\mathcal{GL}_n(\mathbb{C})$ est connexe par arcs.

Corrigé de l'exercice 41. On commence par calculer $\chi_A.$ On a

$$\chi_A = \begin{vmatrix} X - 1 & 0 & 0 \\ 0 & X & 1 \\ 0 & -1 & X - 2 \end{vmatrix} = (X - 1) \begin{vmatrix} X & 1 \\ -1 & X - 2 \end{vmatrix} = (X - 1) (X(X - 2) + 1) = (X - 1)^3$$

donc $\operatorname{Sp} A = \{1\}$. Cherchons le sous-espace propre de A.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_1(A) \iff AX = X \iff \begin{cases} x = x \\ -z = y \iff y = -z \\ y + 2z = z \end{cases}$$

Binyze Mohamed $15\ /\ 22$

donc
$$X = \begin{pmatrix} x \\ -z \\ z \end{pmatrix} = x \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{=e_1} + z \underbrace{\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}}_{=e_2}$$
 et par suite, $E_1(A) = \text{Vect}(e_1, e_2)$.

Notons u l'endomorphisme canoniquement associé à A. L'expression de la matrice T impose à considérer la base $\mathcal{B} = (e_1, e_2, e_3)$ où $e_3 \in \mathcal{M}_{3,1}(\mathbb{R})$ à chercher de sorte que $\operatorname{Mat}_{\mathcal{B}}(u) = T$. Le vecteur e_3 vérifie $u(e_3) = e_2 + e_3$. Posons $e_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

On a:

$$u(e_3) = e_2 + e_3 \iff \begin{pmatrix} a \\ -c \\ b + 2c \end{pmatrix} = \begin{pmatrix} a \\ b - 1 \\ c + 1 \end{pmatrix} \iff \begin{cases} -c & = b - 1 \\ b + 2c & = c + 1 \end{cases} \iff b + c = 1.$$

Le vecteur $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ convient et, la famille $\mathcal{B} = (e_1, e_2, e_3)$ forme une base de $\mathcal{M}_{3,1}(\mathbb{R})$. La matrice de passage est alors

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Corrigé de l'exercice 42. 1. On commence par calculer χ_A . On a

$$\chi_{A} = \begin{vmatrix} X - 2 & -1 & 2 \\ -1 & X - a & 1 \\ -1 & -1 & X + 1 \end{vmatrix} \xrightarrow{C_{1} \leftarrow C_{1} + C_{3}} \begin{vmatrix} X & -1 & 2 \\ 0 & X - a & 1 \\ X & -1 & X + 1 \end{vmatrix} = X \begin{vmatrix} 1 & -1 & 2 \\ 0 & X - a & 1 \\ 1 & -1 & X + 1 \end{vmatrix} \xrightarrow{C_{1} \leftarrow C_{1} + C_{2}} X \begin{vmatrix} 0 & -1 & 2 \\ X - a & X - a & 1 \\ 0 & -1 & X + 1 \end{vmatrix} = X(X - a) \begin{vmatrix} 0 & -1 & 2 \\ 1 & X - a & 1 \\ 0 & -1 & X + 1 \end{vmatrix} = -X(X - a) \begin{vmatrix} -1 & 2 \\ -1 & X + 1 \end{vmatrix} = X(X - 1)(X - a)$$

donc $\chi_A = X(X-1)(X-a)$ est scindé sur \mathbb{R} . Trois cas se présentent :

- Si $a \notin \{0,1\}$ alors χ_A est scindé à racines simples et par suite, A est diagonalisable.
- Si a = 0 alors rg A = 2 donc dim $E_0(A) = \dim \ker(A) = 1 \neq m_0(A) = 2$ et la matrice A n'est pas diagonalisable.
- Si a = 1 alors $\operatorname{rg}\left(I_3 A\right) = \operatorname{rg}\begin{pmatrix} -1 & -1 & 2 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{pmatrix} = 2$ donc $\dim E_1(A) = \dim \ker\left(I_3 A\right) = 1 \neq m_1(A) = 2$ et la matrice A n'est pas diagonalisable.

On conclut $\Omega = \{0, 1\}$.

2. Cas : a = 0. Cherchons les sous-espaces propres.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_0(A) \iff AX = O_{3,1} \iff \begin{cases} 2x + y - 2z & = & 0 \\ x - z & = & 0 \\ x + y - z & = & 0 \end{cases} \iff \begin{cases} y = & 0 \\ x = & z \end{cases}$$

donc $E_0(A) = \text{Vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_1(A) \iff AX = X \iff \begin{cases} 2x + y - 2z & = & x \\ x - z & = & y \\ x + y - z & = & z \end{cases} \iff \begin{cases} x = 3y \\ z = 2y \end{cases}$$

donc $E_1(A) = \text{Vect} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

Ainsi, $A = PTP^{-1}$ avec $T = \begin{pmatrix} 1 & 0 & t_1 \\ 0 & 0 & t_2 \\ 0 & 0 & 0 \end{pmatrix}$ et $P = \begin{pmatrix} 3 & 1 & \alpha \\ 1 & 0 & \beta \\ 2 & 1 & \gamma \end{pmatrix} \in \mathcal{GL}_3(\mathbb{R})$ de sorte que

Binyze Mohamed $16 \ / \ 22$

$$A \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = t_1 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \qquad (\star).$$

On choisit par exemple $\alpha=\beta=0, \gamma=1$ de sorte que P soit inversible et (\star) possède une solution $(t_1=-1,t_2=1)$.

Finalement, la matrice suivante convient $P = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 1 \end{pmatrix}$.

Cas : a = 1. Même démarche que précédement, la matrice suivante convient $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

6 Réduction et polynômes annulateurs

Corrigé de l'exercice 43. 1. Soit $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$. Pour tout $x \in F$, on a

$$P(u)(x) = \left(\sum_{k=0}^{p} a_k u^k\right)(x) = \sum_{k=0}^{p} a_k \underbrace{u^k(x)}_{eF} \in F$$

donc F est stable par P(u). Par ailleurs, l'application $u \mapsto u_F$ est un morphisme d'algèbres et donc

$$P(u)_F = \left(\sum_{k=0}^p a_k u^k\right)_F = \sum_{k=0}^p a_k (u^k)_F = \sum_{k=0}^p a_k u_F^k = P(u_F).$$

2. Montrons par récurrence sur $k \in \mathbb{N}$ que $u^k v = v u^k$.

Initialisation: Pour k=1 la propriété est vraie car u et v commutent.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $k\in\mathbb{N}^*$. Supposons la propriété est vraie au rang k et montrons le au rang k+1. On a

$$u^{k+1}v = uu^kv = uvu^k = vuu^k = vu^{k+1}$$

donc la propriété est vraie au rang k + 1.

Conclusion : Par le principe de récurrence, pour tout $k \in \mathbb{N}$, $u^k v = v u^k$.

De même, on montre que : $\forall (k,\ell) \in \mathbb{N}^2$, $u^k v^\ell = v^\ell u^k$. Maintenant, soient $P = \sum_{i=0}^p a_i X^i$, $Q = \sum_{j=0}^q b_j X^j \in \mathbb{K}[X]$. On a :

$$P(u) \circ Q(v) = \left(\sum_{i=0}^p a_i u^i\right) \circ \left(\sum_{j=0}^q b_j v^j\right) = \sum_{k=0}^{p+q} \left(\sum_{i+j=k} a_i b_j u^i \circ v^j\right) = \sum_{k=0}^{p+q} \left(\sum_{i+j=k} b_j a_i v^j \circ u^i\right) = \left(\sum_{j=0}^q b_j v^j\right) \circ \left(\sum_{i=0}^p a_i u^i\right) = Q(v) \circ P(u).$$

donc P(u) et Q(v) commutent et d'après le cours, $\ker(P(u))$ et $\operatorname{Im}(P(u))$ sont stables par Q(v).

Corrigé de l'exercice 44. Soit $Q = \sum_{i=0}^{p} a_i X^i \in \mathbb{K}[X]$. On a

$$Q(A) = \sum_{i=0}^{p} a_i A^i = \sum_{i=0}^{p} a_i \left(PBP^{-1}\right)^i = \sum_{i=0}^{p} a_i PB^i P^{-1} = P\left(\sum_{i=0}^{p} a_i B^i\right) P^{-1} = PQ(B)P^{-1}$$

et par suite, $Q(A) = O_n \iff PQ(B)P^{-1} = O_n \iff Q(B) = O_n$. Ainsi, A et B ont les mêmes polynômes annulateurs.

Corrigé de l'exercice 45. Le polynôme X^3 – 1 est annulateur de A.

- Dans \mathbb{R} , $X^3 1 = (X 1)(X^2 + X + 1)$, donc $\operatorname{Sp}_{\mathbb{R}}(A) \subset \{1\}$. Or A est une matrice réelle de taille impaire donc $\operatorname{Sp}_{\mathbb{R}}(A) \neq \emptyset$ et par suite $\operatorname{Sp}_{\mathbb{R}}(A) = \{1\}$.
- Dans \mathbb{C} , $X^3 1 = (X 1)(X j)(X j^2)$, donc $\operatorname{Sp}_{\mathbb{C}}(A) \subset \{1, j, j^2\}$. Puisque 1 est valeur propre et que les valeurs propres de A sont deux à deux conjuguées, on a : $\operatorname{Sp}_{\mathbb{C}}(A) = \{1\}$ ou $\operatorname{Sp}_{\mathbb{C}}(A) = \{1, j, j^2\}$.

On en déduit $Tr(A) \in \{0,3\}$ et det(A) = 1.

Corrigé de l'exercice 46. Soit $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$ un polynôme annulateur de u. On a

Binyze Mohamed 17 / 22

$$0 = P(u) = \sum_{k=0}^{p} a_k u^k = a_0 \mathrm{Id}_E + \sum_{k=1}^{p} a_k u^k = a_0 \mathrm{Id}_E + \sum_{k=0}^{p-1} a_{k+1} u^{k+1} = a_0 \mathrm{Id}_E + \left(\sum_{k=0}^{p-1} a_{k+1} u^k\right) \circ u.$$

Or $a_0 \neq 0$ car $P(0) \neq 0$ donc $\mathrm{Id}_E = \frac{-1}{a_0} \left(\sum_{k=0}^{p-1} a_{k+1} u^k \right) \circ u = u \circ \frac{-1}{a_0} \left(\sum_{k=0}^{p-1} a_{k+1} u^k \right)$. Ainsi, u est inversible et

$$u^{-1} = \frac{-1}{a_0} \left(\sum_{k=0}^{p-1} a_{k+1} u^k \right) \in \mathbb{K} [u].$$

Corrigé de l'exercice 47. 1. Par la division euclidienne de X^k par P, il existe $(Q_k, R_k) \in (\mathbb{K}[X])^2$ tel que

$$X^k = Q_k(X)P(X) + R_k(X)$$
 avec $\deg R_k \le N - 1$.

donc

$$u^k = Q_k(u) \circ \underbrace{P(u)}_{=0_{\mathcal{L}(E)}} + R_k(u) = R_k(u) \in \operatorname{Vect}(u^i, \ 0 \le i \le N - 1).$$

P(u) = 0 d'après le théorème de Cayley-Hamilto. D'où $u^k \in \text{Vect}(u^i, 0 \le i \le N - 1)$.

2. On commence par calculer χ_A . On a

$$\chi_{A} = \begin{vmatrix} X & -1 & 0 \\ 0 & X & -1 \\ 2 & 5 & X+4 \end{vmatrix} C_{1} \leftarrow C_{1} - C_{2} + C_{3} \begin{vmatrix} X+1 & -1 & 0 \\ -X-1 & X & -1 \\ X+1 & 5 & X+4 \end{vmatrix} = (X+1) \begin{vmatrix} 1 & -1 & 0 \\ -1 & X & -1 \\ 1 & 5 & X+4 \end{vmatrix} \begin{bmatrix} L_{2} \leftarrow L_{2} + L_{1} \\ L_{3} \leftarrow L_{3} - L_{1} \\ = (X+1) \begin{vmatrix} 1 & -1 & 0 \\ 0 & X-1 & -1 \\ 0 & 6 & X+4 \end{vmatrix}$$

On développe selon la première colonne, on obtient $\chi_A = (X+1) \begin{vmatrix} X-1 & -1 \\ 6 & X+4 \end{vmatrix} = (X+1)((X-1)(X+4)+6) = (X+1)^2(X+2)$.

La division euclidienne de X^k par χ_A donne :

$$X^k = Q_k(X)\chi_A(X) + a_kX^2 + b_kX + c_k \text{ avec } (a_k, b_k, c_k) \in \mathbb{R}^3.$$

donc $\forall k \in \mathbb{N}$, $A^k = a_k A^2 + b_k A + c_k \mathbf{I}_3$ (*). Les équations $\chi_A(-1) = \chi_A'(-1) = \chi_A(-2) = 0$ conduit au système

$$\begin{cases} (-1)^k &= a_k - b_k + c_k \\ k(-1)^{k-1} &= -2a_k + b_k \\ (-2)^k &= 4a_k - 2b_k + c_k \end{cases}$$

donc $\forall k \in \mathbb{N}$, $a_k = (-1)^k (2^k - k - 1)$, $b_k = (-1)^k (2^{k+1} - 3k - 2)$ et $c_k = (-1)^k (2^k - 2k)$. La relation (\star) donne alors

$$\forall k \in \mathbb{N}, \quad A^k = (-1)^k \begin{pmatrix} 2^k - 2k & 2^{k+1} - 3k - 2 & 2^k - k - 1 \\ -2^{k+1} + 2k + 2 & -2^{k+2} + 3k + 5 & -2^{k+1} + k + 2 \\ 2^{k+2} - 2k - 4 & 2^{k+3} - 3k - 8 & 2^{k+2} - k - 3 \end{pmatrix}.$$

Corrigé de l'exercice 48. On a $\prod_u(u) = 0_{\mathcal{L}(E)}$ donc $(\prod_u(u))_F = \prod_u(u_F) = 0_{\mathcal{L}(F)}$.

Le polynôme \prod_u est annulateur de u_F donc \prod_{u_F} divise \prod_u .

Corrigé de l'exercice 49. $\chi_A = (X-1)^2$. La matrice A n'est pas diagonalisable donc $\prod_A = (X-1)^2$. $\chi_B = (X-2)(X-3)$. La matrice B est diagonalisable donc $\prod_B = (X-2)(X-3)$.

Corrigé de l'exercice 50. 1. Supposons $\chi_A = X^n$. D'après le théorème de Cayley-Hamilton, $\chi_A(A) = \mathcal{O}_n$ donc $A^n = \mathcal{O}_n$ et par suite, A est nilpotente.

Inversement, supposons A est nilpotente. D'après le cours, A est sembleble à une matrice triangulaire supérieure stricte, donc $\chi_A = X^n$.

2. Supposons $\prod_A = X^p$. On a $\prod_A (A) = A^p = O_n$ et A^{p-1} est non nulle donc A est nilpotente d'indice p. Inversement, Supposons A est nilpotente d'indice p. On a $A^p = O_n$ et A^{p-1} est non nulle. Le polynôme X^p est annulateur de A donc \prod_A divise X^p donc $\prod_A = X^r$ avec $r \le p$. Si r < p, alors $A^r = O_n$ et par suite, $p \le r$. D'où $\prod_A = X^p$.

Corrigé de l'exercice 51. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deuc matrices semblables : $A = PBP^{-1}$ où $P \in \mathcal{GL}_n(\mathbb{K})$. On a :

$$\prod_{A}(A) = P \prod_{A}(B)P^{-1}$$
 et $\prod_{B}(A) = P \prod_{B}(B)P^{-1}$

Binyze Mohamed $18\ /\ 22$

donc $\Pi_A(B) = O_n$ et $\Pi_B(A) = O_n$. Par suite, Π_B divise Π_A et Π_A divise Π_B . Comme les polynômes Π_A et Π_B sont unitaires, alors $\Pi_A = \Pi_B$.

Corrigé de l'exercice 52. 1. Supposons $\operatorname{rg} A = 1$ et notons C_1, \ldots, C_n les colonnes de A. On a

$$\operatorname{rg} A = \dim \operatorname{Im} A = \dim \operatorname{Vect} (C_1, \dots, C_n) = 1$$

donc il existe $U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{O_{n,1}\}$ tel que dim Vect $(C_1, \dots, C_n) = \text{Vect }(U)$. Comme chaque C_i est dans Vect (U),

on a $C_i = v_i.U$ avec $v_i \in \mathbb{K}$ pour tout $1 \le i \le n$. Posons $V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathcal{M}_{n,1}$. La colonne V est non nulle car A n'est pas nulle.

Ainsi,

$$A = (v_1.U, \dots, v_n.U) = \begin{pmatrix} v_1u_1 & \dots & v_nu_1 \\ \vdots & & \vdots \\ v_1u_n & \dots & v_nu_n \end{pmatrix} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} (v_1, \dots, v_n) = UV^{\mathsf{T}}.$$

Inversement, supposons qu'il existe $U, V \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{O_{n,1}\}$ telles que $A = UV^{\mathsf{T}}$. Avec les notations précédentes,

$$\operatorname{rg} A = \dim \operatorname{Vect} (C_1, \dots, C_n) = \dim \operatorname{Vect} (v_1, \dots, v_n, U) = \dim \operatorname{Vect} (U)$$

et puisque U est non nulle, on a donc $\operatorname{rg} A = 1$.

2. Si A est une matrice carrée de rang 1 alors, d'après la question précédente,

$$A^{2} = UV^{\mathsf{T}}UV^{\mathsf{T}}$$
$$= V^{\mathsf{T}}U.(UV^{\mathsf{T}}) \quad \text{car } V^{\mathsf{T}}U \text{ est un scalaire}$$
$$= V^{\mathsf{T}}U.A$$

De plus, $V^{T}U = \sum_{i=1}^{n} v_{i}u_{i} = \text{Tr}(A)$. Ainsi, $A^{2} = \text{Tr}(A)$. A et le polynôme $X^{2} - \text{Tr}(A)$. X est un polynôme annulateur de A. Supposons rg(A) = 1.

- **a.** On a \prod_A divise $X^2 \text{Tr}(A)X$ donc $\prod_A = X$, X Tr(A) ou $X^2 \text{Tr}(A)X$.
 - Si $\prod_A = X$ alors A est la matrice nulle, ce qui est exclu.
 - Si $\Pi_A = X \text{Tr}(A)$ alors $A = \text{Tr}(A).I_n$ et donc $\text{rg } A = \begin{cases} n & \text{si } \text{Tr}(A) \neq 0 \\ 0 & \text{si } \text{Tr}(A) = 0 \end{cases}$ ce qui est exclu.

D'où $\prod_A = X^2 - \text{Tr}(A)X$.

b. D'après la question précédente, $\operatorname{Sp} A = \{0, \operatorname{Tr}(A)\}$ donc

 $I_n + A$ est inversible si, et seulement si, $-1 \notin \operatorname{Sp} A$ si, et seuelement si, $\operatorname{Tr}(A) \neq -1$.

On sait que $(I_n + A)^{-1} \in \mathbb{K}[I_n + A] \subset \mathbb{K}[A]$ donc il existe $P \in \mathbb{K}[X]$ tel que $(I_n + A)^{-1} = P(A)$.

Par ailleurs, pour $k \ge 2$, $A^k = \text{Tr}(A)^{k-1}A$ donc $(I_n + A)^{-1}$ est de la forme :

$$(I_n + A)^{-1} = \alpha I_n + \beta A \text{ avec } (\alpha, \beta) \in \mathbb{K}^2.$$

Le calcul $(I_n + A)^{-1}(I_n + A) = I_n$ donne $\alpha I_n + (\alpha + \beta(1 + \text{Tr}(A)))A = I_n$. La famille (I_n, A) est libre, donc nécessairement,

$$\alpha = 1$$
 et $\beta = \frac{-1}{1 + \text{Tr}(A)}$.

D'où
$$\left(\mathbf{I}_n + A\right)^{-1} = \mathbf{I}_n + \frac{-1}{1 + \operatorname{Tr}\left(A\right)} A.$$

Corrigé de l'exercice 53. X^n – 1 est un polynôme annulateur de A donc \prod_A divise X^n – 1. Si deg $\prod_A < n$ alors la famille $\left(\prod_n A, A^2, \dots, A^{n-1} \right)$ serait liée donc deg $\prod_A = n$ et par suite, $\prod_A = X^n - 1$.

Les racines de \prod_A sont les $e^{2i\pi/k}$, $1 \le k \le n-1$ donc $\operatorname{Tr}(A) = \sum_{k=0}^{n-1} e^{2i\pi/k} = 0$.

Corrigé de l'exercice 54. Le polynôme $X^3 - 1$ est annulateur de u et on a $X^3 - 1 = (X - 1)(X^2 + X + 1)$. Les polynômes X - 1 et $X^2 + X + 1$ sont premiers entre eux, par le lemme de décomposition des noyaux,

Binyze Mohamed 19 / 22

$$\ker(u^3 - \operatorname{Id}_E) = \ker(u - \operatorname{Id}_E) \oplus \ker(u^2 + u + \operatorname{Id}_E).$$

Aussi, $\ker(u^3 - \operatorname{Id}_E) = \ker(0_{\mathcal{L}(E)}) = E$. Ainsi, $E = \ker(u - \operatorname{Id}_E) \oplus \ker(u^2 + u + \operatorname{Id}_E)$.

Corrigé de l'exercice 55. Le polynôme $X^4 + X$ est annulateur de u et on a $X^4 + X = X(X^3 + 1)$. Les polynômes X et $X^3 + 1$ sont premiers entre eux, par le lemme de décomposition des noyaux,

$$\ker(u^4 + u) = \ker(u) \oplus \ker(u^3 + \operatorname{Id}_E).$$

Aussi, $\ker(u^4 + u) = \ker(0_{\mathcal{L}(E)}) = E$ donc $E = \ker(u) \oplus \ker(u^3 + \operatorname{Id}_E)$. Or $(u^3 + \operatorname{Id}_E) \circ u = 0_{\mathcal{L}(E)}$ donc $\operatorname{Im} u \subset \ker(u^3 + \operatorname{Id}_E)$. De plus, si $x \in \ker(u^3 + \operatorname{Id}_E)$, alors $x = -u^3(x) \in \operatorname{Im} u$ donc $\ker(u^3 + \operatorname{Id}_E) \subset \operatorname{Im} u$ et par suite, $\ker(u^3 + \operatorname{Id}_E) = \operatorname{Im} u$. D'où $E = \ker(u) \oplus \operatorname{Im} u$.

Corrigé de l'exercice 56. Soit $P \in \mathbb{K}_n[X]$. On a

$$\varphi^{2}(P) = \varphi(\varphi(P)) = X^{n}\varphi(P)\left(\frac{1}{X}\right) = X^{n} \cdot \left(\frac{1}{X}\right)^{n} P(X) = P(X)$$

donc $\varphi^2 = \mathrm{Id}_{\mathbb{K}_n[X]}$. Ainsi, le polynôme $X^2 - 1$ est annulateur de φ et scindé à racines simples donc φ est diagonalisable.

Corrigé de l'exercice 57. 1. On a $A^2 = I_4$. Le polynôme $X^2 - 1$ est annulateur de A est scindé à racines simples sur \mathbb{R} donc A est diagonalisable dans $\mathcal{M}_4(\mathbb{R})$.

2. On a

$$\chi_{A} = \begin{vmatrix} X & 0 & 0 & -1 \\ 0 & X & -1 & 0 \\ 0 & -1 & X & 0 \\ -1 & 0 & 0 & X \end{vmatrix}^{C_{1} \leftarrow C_{1} + C_{2} + C_{3} + C_{4}} \begin{vmatrix} X - 1 & 0 & 0 & -1 \\ X - 1 & X - 1 & -1 & 0 \\ X - 1 & X - 1 & X & 0 \\ X - 1 & 0 & 0 & X \end{vmatrix} = (X - 1)^{2} \begin{vmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & X & 0 \\ 1 & 0 & 0 & X \end{vmatrix}^{L_{1} \leftarrow L_{1} - L_{4}}$$

$$(X - 1)^{2} \begin{vmatrix} 0 & 0 & 0 & -X - 1 \\ 0 & 0 & -X - 1 & 0 \\ 1 & 1 & X & 0 \\ 1 & 0 & 0 & X \end{vmatrix} = (X - 1)^{2} (X + 1)^{2} \begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & X & 0 \\ 1 & 0 & 0 & X \end{vmatrix}.$$

On développe selon la première colonne (deux fois), on obtient $\chi_A = -(X-1)^2(X+1)^2 \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = (X-1)^2(X+1)^2$.

3. La décomposition en éléments simples de la fraction $\frac{1}{\chi_A}$ s'écrit :

$$\frac{1}{(X-1)^2(X+1)^2} = \frac{a}{(X-1)^2} + \frac{b}{(X-1)} + \frac{c}{(X+1)^2} + \frac{d}{(X+1)}$$

avec $(a, b, c, d) \in \mathbb{R}^4$. La fraction $\frac{1}{\chi_A}$ étant paire, donc par unicité de la décomposition, a = c et b = -d.

On a $a = (X - 1)^2 \frac{1}{\chi_A}\Big|_{X=1} = 1/4$. La décomposition ci-dessus devienne :

$$\frac{-1/2}{(X-1)(X+1)} = \frac{b}{(X-1)} + \frac{d}{(X+1)}$$

et $b = (X-1)\frac{-1/2}{(X-1)(X+1)}\Big|_{X=1} = -1/4$. Ainsi,

$$\frac{1}{\chi_A} = \frac{1/4}{(X-1)^2} + \frac{-1/4}{X-1} + \frac{1/4}{(X+1)^2} + \frac{1/4}{(X+1)}.$$

4. a. Comme u est diagonalisable, on a $E_{-1}(u) \oplus E_1(u) = \mathcal{M}_{4,1}(\mathbb{R})$. On a $1 = \frac{1}{4}(X-1)^2(X+2) - \frac{1}{4}(X+1)^2(X-2)$, donc

$$Id = \frac{1}{4}(u - Id)^{2}(u + 2Id) - \frac{1}{4}(u + Id)^{2}(u - 2Id)$$

c-à-d Id = $p_1 + p_2$

• Si $x \in E_1(u)$, alors $(u - \operatorname{Id})(x) = 0$ donc

$$p_1(x) = \frac{1}{4}(u - \operatorname{Id})^2(u + 2\operatorname{Id})(x) = \frac{1}{4}(u + 2\operatorname{Id})(u - \operatorname{Id})^2(x) = \frac{1}{4}(u + 2\operatorname{Id})(u - \operatorname{Id})\underbrace{(u - \operatorname{Id})(x)}_{0} = 0.$$

Binyze Mohamed $20 \ / \ 22$

• Si $x \in E_{-1}(u)$, alors u(x) = -x donc

$$p_1(x) = \frac{1}{4}(u - \operatorname{Id})^2(u + 2\operatorname{Id})(x)$$

$$= \frac{1}{4}(u - \operatorname{Id})^2(u(x) + x)$$

$$= \frac{1}{4}(u - \operatorname{Id})^2(x)$$

$$= \frac{1}{4}(u^2 - 2u + \operatorname{Id})(x)$$

$$= \frac{1}{4}(u^2(x) - 2u(x) + x)$$

$$= \frac{1}{4}(x + 2x + x) = x$$

Ainsi, p_1 est la projection sur $E_{-1}(u)$ parallèlement à $E_1(u)$.

Pour p_2 , on a:

- Si $x \in E_{-1}(u)$, alors $p_1(x) = x$ donc $p_2(x) = x p_1(x) = x x = 0$.
- Si $x \in E_1(u)$, alors $p_1(x) = 0$ donc $p_2(x) = x p_1(x) = x 0 = x$.

Ainsi, p_2 est la projection sur $E_1(u)$ parallèlement à $E_{-1}(u)$.

- **b.** p_1 et p_2 sont les projecteurs spectraux de $\mathcal{M}_{4,1}(\mathbb{R})$ associés à la somme directe $\mathcal{M}_{4,1}(\mathbb{R}) = E_{-1}(u) \oplus E_1(u)$. D'après le cours, $u = -p_1 + p_2$.
- c. Récurrence sur $k \in \mathbb{N}$.

Initialisation: Pour k = 1 la propriété est vraie d'après la question précédente.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $k\in\mathbb{N}^*$. Supposons la propriété est vraie au rang k et montrons le au rang k+1. On a

$$u^{k+1} = uu^k = (-p_1 + p_2)((-1)^k p_1 + p_2) = (-1)^{k+1} \underbrace{p_1^2}_{=p_1} - \underbrace{p_1 p_2}_{=0} + (-1)^k \underbrace{p_2 p_1}_{=0} + \underbrace{p_2^2}_{p_2} = (-1)^{k+1} p_1 + p_2.$$

Donc la propriété est vraie au rang k + 1.

Conclusion: Par le principe de récurrence, pour tout $k \in \mathbb{N}$, $u^k = (-1)^k p_1 + p_2$.

d. On a $0 \notin \text{Sp } u = \{-1, 1\}$ donc u est inversible. Aussi, $u^2 = p_1 + p_2 = \text{Id. Ainsi}, u^{-1} = u = -p_1 + p_2$. D'où $u^{-1} = -p_1 + p_2$.

Corrigé de l'exercice 58. 1. D'abord, montons que pour tout
$$k \in \mathbb{N}^*$$
, $M^k = \begin{pmatrix} A^k & kA^{k-1}B \\ O_n & A^k \end{pmatrix}$.

Récurrence sur $k \in \mathbb{N}^*$.

Initialisation: Pour k=1 la propriété est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}: Soit \ k \in \mathbb{N}^*.$ Supposons la propriété est vraie au rang k et montrons le au rang k+1. On a

$$M^{k+1} = MM^k = \begin{pmatrix} A & B \\ \mathcal{O}_n & A \end{pmatrix} \begin{pmatrix} A^k & kA^{k-1}B \\ \mathcal{O}_n & A^k \end{pmatrix} = \begin{pmatrix} A^{k+1} & kA^kB + BA^k \\ \mathcal{O}_n & A^{k+1} \end{pmatrix} = \begin{pmatrix} A^{k+1} & (k+1)A^kB \\ \mathcal{O}_n & A^{k+1} \end{pmatrix}.$$

car A^kB = BA^k puisque AB = BA. Donc la propriété est vraie au rang k+1.

Conclusion: Par le principe de récurrence, pour tout $k \in \mathbb{N}^*$, $M^k = \begin{pmatrix} A^k & kA^{k-1}B \\ O_n & A^k \end{pmatrix}$.

Maintenant, soit $P = \sum_{k=0}^{p} a_k X^k \in \mathbb{R}[X]$. On a

$$P(M) = \sum_{k=0}^{p} a_k M^k = a_0 \mathbf{I}_{2n} + \sum_{k=1}^{p} a_k M^k = a_0 \mathbf{I}_{2n} + \begin{pmatrix} \sum_{k=1}^{p} a_k A^k & \sum_{k=1}^{p} k a_k A^{k-1} B \\ O_n & \sum_{k=1}^{p} a_k A^k \end{pmatrix} = \begin{pmatrix} \sum_{k=0}^{p} a_k A^k & \left(\sum_{k=1}^{p} k a_k A^{k-1}\right) B \\ O_n & \sum_{k=0}^{p} a_k A^k \end{pmatrix}$$

donc
$$P(M) = \begin{pmatrix} P(A) & P'(A)B \\ O_n & P(A) \end{pmatrix}$$
.

2. Supposons M diagonalisable. On a Π_M est scindé à racines simples et $O_{2n} = \Pi_M(M) = \begin{pmatrix} \Pi_M(A) & \Pi_M'(A)B \\ O_n & \Pi_M(A) \end{pmatrix}$ donc

 $\prod_M(A) = \mathcal{O}_n$ et par suite, \prod_A divise \prod_M donc nécessairement \prod_A est scindé à racines simples et cela veut dire que A est diagonalisable.

Aussi, $\prod'_M(A)B = O_n$. Mais \prod_M et \prod'_M n'ont aucune racine complexe en commun donc premiers entre eux. La relation de Bézout donne $1 = U \prod_M + V \prod'_M$. En évaluant celle-ci en A on obtient

Binyze Mohamed 21 / 22

$$I_n = U(A).\underbrace{\prod_M(A)}_{=O_n} + V(A). \prod_M'(A) = V(A). \prod_M'(A)$$

donc $\prod_{M}'(A)$ est inversible et par suite, B est nulle.

Inversement, supposons A diagonalisable et B nulle. Il existe $P \in \mathcal{GL}_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$. On a alors

$$M = \begin{pmatrix} A & \mathcal{O}_n \\ \mathcal{O}_n & A \end{pmatrix} = \begin{pmatrix} PDP^{-1} & \mathcal{O}_n \\ \mathcal{O}_n & PDP^{-1} \end{pmatrix} = \underbrace{\begin{pmatrix} P & \mathcal{O}_n \\ \mathcal{O}_n & P \end{pmatrix}}_{=Q} \underbrace{\begin{pmatrix} D & \mathcal{O}_n \\ \mathcal{O}_n & D \end{pmatrix}}_{=\Delta} \begin{pmatrix} P^{-1} & \mathcal{O}_n \\ \mathcal{O}_n & P^{-1} \end{pmatrix} = Q\Delta Q^{-1}$$

avec $\Delta \in \mathcal{M}_{2n}(\mathbb{R})$ diagonale et $Q \in \mathcal{GL}_{2n}(\mathbb{R})$. Ainsi, M est diagonalisable.

Binyze Mohamed $22 \ / \ 22$