TD Nº3

Réduction des endomorphismes et des matrices carrées

1 Compléments d'algèbre linéaire

Exercice 1. Deux décomposition classiques.

1. Soient $S_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}), M^{\mathsf{T}} = M \}$ l'ev des matrices symétriques et $\mathcal{A}_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}), M^{\mathsf{T}} = -M \}$ l'ev des matrices antisymétriques. Montrer

$$\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R}).$$

2. Soit E un ev et H un hyperplan de E. Montrer $E = H \oplus \operatorname{Vect}(a)$ pour tout $a \in E \setminus H$.

On rappelle que H est un hyperplan de E si H = ker φ où φ une forme linéaire non nulle sur E.

Exercice 2. Dans l'espace $E = \mathbb{R}_n[X]$, on pose, pour $0 \le i \le n$, $F_i = \{P \in E, \text{ tel que } \forall j \in [[0, n]] \setminus \{i\}, P(j) = 0\}$. Montrer que les F_i sont des sous-espaces vectoriels d E et que $E = F_0 \oplus \ldots \oplus F_n$.

Exercice 3. Soient
$$A \in \mathcal{M}_n(\mathbb{K})$$
 et $M = \begin{pmatrix} A & A \\ O_n & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$.

Montrer que : $\forall k \in \mathbb{N}^*$, $M^k = \begin{pmatrix} A^k & kA^k \\ O_n & A^k \end{pmatrix}$ et que si, $A \in \mathcal{GL}_n(\mathbb{K})$, alors $M \in \mathcal{GL}_{2n}(\mathbb{K})$ et $M^{-1} = \begin{pmatrix} A^{-1} & -A^{-1} \\ O_n & A^{-1} \end{pmatrix}$.

Exercice 4. Soient $A \in \mathcal{M}_{n_1}(\mathbb{K})$, $B \in \mathcal{M}_{n_2,n_1}(\mathbb{K})$ et $C \in \mathcal{M}_{n_1,n_2}(\mathbb{K})$. Calculer $\det \begin{pmatrix} I_{n_2} & B \\ C & A \end{pmatrix}$.

Indication : utiliser une transvection par blocs sur les colonnes.

Exercice 5. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer $\det \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \ge 0$. Indication: utiliser des transvections par blocs.

Exercice 6. Matrices commutant avec une matrice diagonale (d'après CNC 2021).

- 1. Soient $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale telle que $\lambda_1, \ldots, \lambda_n$ distints deux à deux et $A \in \mathcal{M}_n(\mathbb{K})$ commute avec D : AD = DA. Montrer que A est une matrice diagonale.
- 2. Soient $D = \operatorname{diag}(\lambda_1 I_{n_1}, \dots, \lambda_r I_{n_r}) \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale par blocs telle que $\lambda_1, \dots, \lambda_r$ distincts deux à deux et $A \in \mathcal{M}_n(\mathbb{K})$ commute avec D : AD = DA.

Montrer que A est diagonale par blocs de la forme $A = \operatorname{diag}(A_1, \ldots, A_r) \in \mathcal{M}_n(\mathbb{K})$ avec $A_i \in \mathcal{M}_{n_i}(\mathbb{K}), 1 \leq i \leq r$.

2 Sous-espaces stables, éléments propres

Exercice 7. Soient E un ev, F un sev de E et $(e_i)_{i \in I}$ une famille génératrice de F: F = Vect $(e_i, i \in I)$. Montrer que F est stable par u si, et seulement si, $\forall i \in I, u(e_i) \in F$.

Exercice 8. Soient E un ev et $x \in E$ non nul. Montrer que Vect (x) est stable par u si, et seulement si, x est vecteur propre de u.

Exercice 9. Soit $u \in \mathcal{L}(E)$ de rang 1. Montrer qu'il existe λ valeur propre de u tel que $u^2 = \lambda u$.

Exercice 10. Classique. Soient E un ev de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$. Soit $x \in E$ non nul.

- **1.** Justifier qu'il existe $p \in \mathbb{N}^*$ tel que la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre et $(x, u(x), \dots, u^{p-1}(x), u^p(x))$ est liée.
- **2.** Montrer alors que l'espace $F_x = \text{Vect}(x, u(x), \dots, u^{p-1}(x))$ est stable par u.
- 3. Écrire la matrice de l'endomorphisme induit par u sur F_x .

Exercice 11. Montrer que deux matrices semblables ont le même spectre et les sous-espaces propres associés sont de même dimension.

Exercice 12. Soient E un ev et u un automorphisme de E. Déterminer les valeurs propres de u^{-1} en fonction des valeurs propres de u.

Exercice 13. Soient E un ev, $u \in \mathcal{L}(E)$ et F un sev de E stable par u.

Binyze Mohamed 1 / 6

1. Montrer $\ker u_F = F \cap \ker u$ et $\operatorname{Im} u_F \subset F \cap \operatorname{Im} u$. Donner un exemple où l'inclusion est stricte.

Indication: on pourra considérer l'endomorphisme de dérivation sur $\mathbb{K}[X]$ et $F = \mathbb{K}_n[X]$.

- **2.** Montrer que, si u est injectif, alors u_F est injectif.
- **3.** Montrer que, pour toute valeur propre λ de u_F , $E_{\lambda}(u_F) = F \cap E_{\lambda}(u)$.

3 Polynôme caractéristique

Exercice 14. 1. Montrer qu'une matrice et sa transposée ont même polynôme caractéristique.

2. Montrer que deux matrices semblables ont même polynôme caractéristique. Que dire de la réciproque?

Exercice 15. Soit
$$A \in \mathcal{GL}_n(\mathbb{K})$$
. Montrer que : $\chi_{A^{-1}}(X) = \frac{(-1)^n}{\det A} X^n \chi_A \left(\frac{1}{X}\right)$.

Exercice 16. Soient E un ev de dimension finie, $u \in \mathcal{L}(E)$ et F_1, \ldots, F_r des sev de E stables par u tels que $E = \bigcap_{i=1}^r F_i$.

Établir
$$\chi_u = \prod_{i=1}^r \chi_{u_{F_i}}$$
.

Exercice 17. 1. Soient E un \mathbb{R} -ev de dimension impaire et $u \in \mathcal{L}(E)$. Montrer que u a au moins une valeur propre réelle.

2. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et n impair. Montrer que A a au moins une valeur propre réelle.

Exercice 18. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On se propose de démontrer que AB et BA ont le même polynôme caractéristique.

- 1. Démontrer le résultat lorsque la matrice A est inversible.
- 2. On se place maintenant dans le cas général. Soit $\lambda \in \mathbb{C}$. Établir que $\begin{pmatrix} \lambda \mathbf{I}_n BA & B \\ \mathbf{O} & \lambda \mathbf{I}_n \end{pmatrix} \begin{pmatrix} \mathbf{I}_n & \mathbf{O} \\ A & \mathbf{I}_n \end{pmatrix} = \begin{pmatrix} \mathbf{I}_n & \mathbf{O} \\ A & \mathbf{I}_n \end{pmatrix} \begin{pmatrix} \lambda \mathbf{I}_n & B \\ \mathbf{O} & \lambda \mathbf{I}_n AB \end{pmatrix}$.
- 3. En déduire que AB et BA ont le même polynôme caractéristique.
- **4.** Montrer que, pour tout $p \in \mathbb{N}^*$, $\chi_{(AB)^p} = \chi_{(BA)^p}$. Indication : utiliser la question précédente.

Exercice 19. Soient E un ev de dimension $n \ge 1$ et $u \in \mathcal{L}(E)$ de rang 1. Montrer $\chi_u = X^{n-1}(X - \operatorname{Tr} u)$.

Exercice 20. Polynôme caractéristique d'une projection et symétrie vectorielle. Soit E un ev de dimension $n \ge 1$.

1. Soit $u \in \mathcal{L}(E)$ une projection vectorielle. Montrer $\chi_u = (X-1)^r X^{n-r}$ avec $r = \operatorname{rg} u$.

Indication : utiliser $E = \ker u \oplus \operatorname{Im} u$ et écrire la matrice de u dans une base convenable.

2. Soit $u \in \mathcal{L}(E)$ une symétrie vectorielle. Montrer $\chi_u = (X-1)^r (X+1)^{n-r}$ avec $r = \dim \ker (u - \mathrm{Id}_E)$.

Indication: utiliser $E = \ker(u - \operatorname{Id}_E) \oplus \ker(u + \operatorname{Id}_E)$ et écrire la matrice de u dans une base convenable.

Exercice 21. Déterminer les éléments propres de la matrice $A = \begin{pmatrix} - & - & - & - \\ -3 & -1 & 3 \\ -1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

Exercice 22. Plusieurs concours et plusieurs années. Soit $A = \begin{pmatrix} a & b & \dots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \dots & b & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$. Calculer χ_A . Indication : utiliser les opérations élémentaires suivantes : $C_1 \leftarrow C_1 + C_2 + \ldots + C_n$ et $L_i \leftarrow L_i - L_1$ pour $2 \le i \le n$

Exercice 23. Matrice compagnon. Soit $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ un polynôme de $\mathbb{K}[X]$.

On considère la matrice compagnon $C_P = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 0 & 1 \\ -a_0 & \dots & \dots & -a_{n-2} & -a_{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$ Montrer $\chi_{C_n} = P$. Indication: utilisen l'enfantion C_n .

Montrer χ_{C_P} = P. Indication : utiliser l'opération élémentaire C_1

4 Diagonalisabilité

Exercice 24. 1. Soient E un ev de dimension finie et $u \in \mathcal{L}(E)$ tel que $Sp(u) = \{\lambda\}$.

Montrer que u est diagonalisable si, et seulement si, $u = \lambda.\mathrm{Id}_E$.

2 / 6Binyze Mohamed

2. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que Sp $(A) = \{\lambda\}$. Montrer que A est diagonalisable si, et seulement si, $A = \lambda I_n$.

Exercice 25. D'après CNC MP 2023. On considère $(\alpha, \beta) \in \mathbb{R}^2$ et on pose $A = \begin{pmatrix} \alpha & 1 \\ 0 & \beta \end{pmatrix}$.

- 1. Justifier que si $\alpha \neq \beta$, alors la matrice A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.
- **2.** Montrer que si $\alpha = \beta$, alors la matrice A n'est pas diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 26. Soit $n \ge 2$. Montrer que la matrice $A = \left(\delta_{i+1,j}\right)_{1 \le i,j \le n}$ n'est jamais diagonalisable. Indication : regarder Sp (A).

Exercice 27. CNC MP 2024. On considère dans $\mathcal{M}_3(\mathbb{R})$ les matrices suivantes :

$$A = \frac{1}{2} \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ -1 & -1 & 5 \end{pmatrix}, \ P = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } \ Q = \begin{pmatrix} 2 & 2 & -2 \\ -3 & -1 & 5 \\ 1 & -1 & 1 \end{pmatrix}.$$

- 1. a. Vérifier que $PQ = 4I_3$.
 - **b.** En déduire que P est une matrice inversible et calculer sa matrice inverse P^{-1} .
- **2.** On considère les vecteurs suivants : $u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ et $w = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.
 - a. Montrer que u est un vecteur propre de la matrice A dont on précisera la valeur propre α correspondante.
 - b. Montrer que v et w sont deux vecteurs propres de la matrice A associés à la même valeur propre β dont on précisera sa valeur.
 - c. Montrer qu'il existe une matrice diagonale D à préciser telle que $A = PDP^{-1}$.
- a. Montrer par récurrence que pour tout entier naturel n, $A^n = PD^nP^{-1}$.
 - **b.** Déterminer, pour tout entier naturel n, D^n en fonction de n.
 - c. En déduire pour tout entier naturel n, l'expression de A^n en fonction de n sous forme d'un tableau.

Exercice 28. Soient E un ev de dimension 3 et $u \in \mathcal{L}(E)$ représenté dans une base $\mathcal{B} = (e_1, e_2, e_3)$ de E par la matrice $A = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}$. Justifier que u est diagonalisable et déterminer une base de diagonalisation de u.

Exercice 29. Suites récurrentes.

Soient $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ des suites réelles vérifiant, pour tout $n\in\mathbb{N}$, (Σ) : $\begin{cases} x_{n+1} &= 2x_n - y_n + z_n \\ y_{n+1} &= -x_n + 2y_n - z_n \\ z_{n+1} &= -x_n + y_n \end{cases}$

Notons pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} x_n \\ y_n \\ x_n \end{pmatrix}$.

- **1.** Montrer que : $(\Sigma) \iff X_{n+1} = AX_n$ où $A \in \mathcal{M}_3(\mathbb{R})$ à déterminer.
- **2.** Montrer $\forall n \in \mathbb{N}, X_n = A^n X_0$.
- 3. Justifier que A est diagonalisable puis, déterminer $P \in \mathcal{GL}_3(\mathbb{R})$ et $D \in \mathcal{M}_3(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$.
- **4.** Montrer $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.
- **5.** Résoudre (Σ) . (exprimer x_n, y_n et z_n en fonction de x_0, y_0 et z_0)

Exercice 30. Résolution d'une équation matricielle. Soit $A = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

On considère l'équation matricielle (\mathcal{E}) : $X^2 + 2X = A$ d'inconnue $X \in \mathcal{M}_3(\mathbb{R})$.

- 1. Justifier que A est diagonalisable puis, déterminer $P \in \mathcal{GL}_3(\mathbb{R})$ et $D \in \mathcal{M}_3(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$.
- **2.** Soit $X \in \mathcal{M}_3(\mathbb{R})$ solution de (\mathcal{E}) . On pose $M = P^{-1}XP$.
 - **a.** Justifier que $M^2 + M = D$.
 - **b.** Montrer DM = MD.

3 / 6Binyze Mohamed

- ${\bf c}$. En déduire que M est une matrice diagonale.
- 3. Résoudre l'équation (\mathcal{E}) .

Exercice 31. Diagonalisation de l'endomorphisme de rang 1.

- 1. Soit $u \in \mathcal{L}(E)$ de rang égal à 1. Montrer que u est diagonalisable si, et seulement si, $\operatorname{Tr}(u)$ est non nulle.
- 2. Application : retrouver alors que la matrice élémentaire $E_{i,j}$ de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable si, et seulement si, i = j.

Exercice 32. Soient $(a,b) \in \mathbb{R}^2$ et u l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $u(M) = aM + bM^{\mathsf{T}}$.

- 1. Vérifier que les sous-espaces des matrices symétriques et antisymétriques sont stables par u.
- 2. Établir que u est diagonalisable et préciser ses valeurs propres.
- 3. Calculer la trace et le déterminant de u.

Exercice 33. Racine carrée d'une matrice (d'après CNC MP 2021). Pour A une matrice de $\mathcal{M}_n(\mathbb{R})$, une matrice R de $\mathcal{M}_n(\mathbb{R})$ est dite une racine carrée de A si $R^2 = A$. On note $\mathcal{R}_n(A)$ l'ensemble des racines carrées de A, c'est-a-dire,

$$\mathcal{R}_n(A) = \left\{ R \in \mathcal{M}_n(\mathbb{R}), \ R^2 = A \right\}.$$

On considère A une matrice de $\mathcal{M}_n(\mathbb{R})$ possédant n valeurs propres réelles distinctes $\lambda_1, \ldots, \lambda_n$ telles que $\lambda_1 < \ldots < \lambda_n$. On pose $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$.

- 1. a. Justifier l'existence d'une matrice P inversible de $\mathcal{M}_n(\mathbb{R})$ telle que $A = PDP^{-1}$.
 - **b.** Montrer que R est une racine carrée de A si, et seulement si, la matrice $P^{-1}RP$ est une racine carrée de D.
- 2. Soit Δ une racine carrée de la matrice D.
 - **a.** Montrer que $\Delta D = D\Delta$.
 - **b.** En déduire que Δ est une matrice diagonale.
 - **c.** Si on pose $\Delta = \operatorname{diag}(\delta_1, \ldots, \delta_n)$, déterminer pour tout entier $i, 1 \le i \le n, \delta_i^2$ en fonction de λ_i .
- 3. Déterminer $\mathcal{R}_n(A)$ dans le cas où A admet au moins une valeur propre strictement négative.
- **4.** On suppose que les valeurs propres de A sont toutes positives ou nulles.
 - a. Déterminer les racines carrées de la matrice D.
 - **b.** En déduire les racines carrées de A en fonction de la matrice P et $\lambda_1, \ldots, \lambda_n$.
 - c. Déterminer le nombre des racines carrées de la matrice A.
- **5.** Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$. Déterminer $\mathcal{R}_3(A)$.

5 Nilpotence, trigonalisabilité

Exercice 34. Toute matrice triangulaire supérieure stricte est nilpotente. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure stricte et u l'endomorphisme canoniquement associé à A. Notons $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{K})$.

- **1.** Justifier que Im $(u) \subset \text{Vect}(e_1, \dots, e_{n-1})$.
- **2.** Montrer $\forall k \in [1, n-1]$, Im $(u^k) \subset \text{Vect}(e_1, \dots, e_{n-k})$.
- 3. En déduire que u^n = $0_{\mathcal{L}(E)}$, puis que A est nilpotente.

Exercice 35. Classique. Soient E un ev de dimension finie $n \ge 1$ et $u \in \mathcal{L}(E)$ nilpotent d'indice de nilpotence $p \in \mathbb{N}^*$.

- **1.** Montrer qu'il existe $x_0 \in E$ non nul tel que la famille $(x_0, u(x_0), \dots, u^{p-1}(x_0))$ est libre.
- **2.** En déduire que $p \le n$ et que $u^n = 0_{\mathcal{L}(E)}$.

Exercice 36. Montrer qu'une matrice triangulaire inférieure est trigonalisable et donner une matrice de passage.

Exercice 37. Soient E un \mathbb{K} -ev de dimension finie $n \geq 2$, $u \in \mathcal{L}(E)$ et $k \in \mathbb{N}$.

- 1. On suppose que $\lambda \in \mathbb{K}$ est une valeur propre de u. Vérifier que λ^k est valeur propre de u^k .
- 2. On suppose $\mathbb{K} = \mathbb{C}$. Montrer que les valeurs propres de u^k sont exactement les λ^k avec λ valeur propre de u.
- 3. On suppose $\mathbb{K}=\mathbb{R}.$ Donner un exemple où la propriété précédente n'est plus vraie.

Binyze Mohamed 4 / 6

Exercice 38. Soit $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & -3 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ et u l'endomorphisme canoniquement associé à A.

- 1. Calculer χ_A . La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? A est-elle trigonalisable dans $\mathcal{M}_3(\mathbb{R})$?
- 2. Déterminer une base \mathcal{B} de $\mathcal{M}_{3,1}(\mathbb{R})$ dont les deux premières vecteurs sont des vecteurs propres de A telle que

$$T = \operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix}.$$

- **3.** Déterminer $P \in \mathcal{GL}_3(\mathbb{R})$ telle que $A = PTP^{-1}$ puis, montrer que, pour tout $k \in \mathbb{N}$, $A^k = PT^kP^{-1}$.
- **4.** Calculer T^k pour tout $k \in \mathbb{N}$ et, en déduire A^k pour tout $k \in \mathbb{N}$.

Exercice 39. ENSTIM MP.

1. Soit $A \in \mathcal{M}_2(\mathbb{C})$ une matrice non diagonalisable.

Montrer que l'on peut écrire $A = \alpha I_2 + N$ avec $\alpha \in \mathbb{C}$ et $N \in \mathcal{M}_2(\mathbb{C})$ nilpotente d'indice 2.

2. Application : Résoudre l'équation $X^n = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ d'inconnue $X \in \mathcal{M}_2(\mathbb{C})$.

Exercice 40. $\mathcal{GL}_n(\mathbb{C})$ est connexe par arcs. Soit $A \in \mathcal{GL}_n(\mathbb{C})$.

- 1. Justifier l'existence de $P \in \mathcal{GL}_n(\mathbb{C})$ et $T \in \mathcal{M}_n(\mathbb{C})$ trinagulaire supérieure telle que $A = PTP^{-1}$.
- **2.** Construire un chemin inscrit dans $\mathcal{GL}_n(\mathbb{C})$ d'extrémités I_n et T.
- **3.** Montrer alors que $\mathcal{GL}_n(\mathbb{C})$ est connexe par arcs.

Exercice 41. CCINP MP. Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

Calculer χ_A et déterminer une matrice de passage rendant la matrice A semblable à $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 42. CCINP PSI.

- 1. Déterminer l'ensemble Ω des réels a tels que la matrice $A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & a & -1 \\ 1 & 1 & -1 \end{pmatrix}$ n'est pas diagonalisable.
- **2.** Pour $a \in \Omega$, trouver P inversible telle que $P^{-1}AP$ soit triangulaire supérieure.

6 Réduction et polynômes annulateurs

Exercice 43. 1. Soient E un \mathbb{K} -ev et F un sev de E stable par u.

Montrer que, pour tout $P \in \mathbb{K}[X]$, F est stable par P(u) et $P(u)_F = P(u_F)$.

2. Soient E un \mathbb{K} -ev et $(u,v) \in (\mathcal{L}(E))^2$ commutent : uv = vu.

Montrer que, pour tout $(P,Q) \in (\mathbb{K}[X])^2$, $\ker(P(u))$ et $\operatorname{Im}(P(u))$ sont stables par Q(v).

Exercice 44. Deux matrices semblables ont les mêmes polynômes annulateurs. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables : $A = PBP^{-1}$ avec $P \in \mathcal{GL}_n(\mathbb{K})$.

Montrer que, pour tout $Q \in \mathbb{K}[X]$, $Q(A) = PQ(B)P^{-1}$. En déduire que, A et B ont les mêmes polynômes annulateurs.

Exercice 45. Soit $A \in \mathcal{M}_3(\mathbb{R})$ vérifiant $A^3 = I_3$. Calculer $\operatorname{Tr}(A)$ et $\det(A)$.

Exercice 46. Soient E un \mathbb{K} -ev et $u \in \mathcal{L}(E)$.

Montrer que, si $P \in \mathbb{K}[X]$ est un polynôme annulateur de u tel que $P(0) \neq 0$, alors u est inversible et $u^{-1} \in \mathbb{K}[u]$.

Exercice 47. Calcul des puissances d'une matrice carrée.

1. Soient E un \mathbb{K} -ev, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ un polynôme annulateur de u de degré $N \ge 1$.

Montrer que, pour tout $k \in \mathbb{N}$, $u^k \in \text{Vect}(u^i, 0 \le i \le N-1)$. Indication: utiliser la disivion euclidienne de X^k par P.

Binyze Mohamed $5 \ / \ 6$

2. Application : Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4 \end{pmatrix}$. Calculer A^k pour tout $k \in \mathbb{N}$. Indication : on pourra commençer par calculer χ_A .

Exercice 48. Soient E un \mathbb{K} -ev de dimension finie, $u \in \mathcal{L}(E)$ et F est un sev de E stable par u. Montrer \prod_{u_F} divise \prod_u .

Exercice 49. Calculer le polynôme minimal des matrices suivantes : $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$.

Exercice 50. Polynôme minimal et caractéristique d'une matrice nitpotente. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que, $\chi_A = X^n$ si, et seulement si, A est nilpotente.
- **2.** Montrer que, $\prod_A = X^p$ si, et seulement si, A est nilpotente d'indice $p \in \mathbb{N}^*$.

Exercice 51. Montrer que, deux matrices semblables ont le même polynôme minimal.

Exercice 52. Matrices de rang 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- **1.** Montrer que rg $(A) = 1 \iff \exists U, V \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\}$ telles que $A = UV^{\mathsf{T}}$.
- 2. En déduire un polynôme annulateur d'une matrice de rang 1.
- **3.** Supposons $\operatorname{rg}(A) = 1$.
- **a.** Montrer que $\prod_A = A^2 \text{Tr}(A).A$.
- **b.** Montrer que $I_n + A$ est inversible si, et seulement si, $Tr(A) \neq -1$. Calculer alors $(I_n + A)^{-1}$ en fonction de I_n et A.

Exercice 53. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^n = I_n$ et la famille $(I_n, A, A^2, \dots, A^{n-1})$ soit libre. Déterminer \prod_A puis calculer $\operatorname{Tr}(A)$.

Exercice 54. Soient E un \mathbb{R} -ev et $u \in \mathcal{L}(E)$ vérifiant $u^3 = \mathrm{Id}_E$. Justifier que $\ker(u - \mathrm{Id}_E) \oplus \ker(u^2 + u + \mathrm{Id}_E) = E$.

Exercice 55. CCINP MP. Soient E un \mathbb{R} -ev et $u \in \mathcal{L}(E)$ vérifiant $u^4 + u = 0$. Montrer $\ker(u) \oplus \operatorname{Im}(u) = E$.

Exercice 56. Montrer que l'endomorphisme φ de $\mathbb{K}_n[X]$ définie par $\varphi(P) = X^n P\left(\frac{1}{X}\right)$ est diagonalisable.

Exercice 57. Décomposition spectrale d'un endomorphisme diagonalisable. Soit $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$. Notons u l'endomorphisme diagonalisable.

phisme canoniquement associé à A.

- **1.** Calculer A^2 . La matrice A est-elle diagonalisable dans $\mathcal{M}_4(\mathbb{R})$?
- **2.** Montrer que $\chi_A = (X-1)^2(X+1)^2$.
- 3. Déterminer la décomposition en éléments simples de la fraction $\frac{1}{\chi_A}$
- **4.** On pose $p_1 = \frac{1}{4}(u \operatorname{Id})^2(u + 2\operatorname{Id})$ et $p_2 = -\frac{1}{4}(u + \operatorname{Id})^2(u 2\operatorname{Id})$.
- a. Montrer que p_1 est la projection sur $E_{-1}(u)$ parallèlement à $E_1(u)$ et p_2 est la projection sur $E_1(u)$ parallèlement à $E_{-1}(u)$.
- **b.** Écrire u en fonction de p_1 et p_2 .
- **c.** Montrer que $\forall k \in \mathbb{N}, \ u^k = (-1)^k p_1 + p_2$.
- **d.** Justifier que u est inversible puis exprimer u^{-1} en fonction de p_1 et p_2 .

Exercice 58. Soit $a \in \mathbb{R}$. Pour $M \in \mathcal{M}_n(\mathbb{R})$, on pose : $u(M) = aM + \text{Tr}(M)I_n$.

- 1. Montrer que u est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$, trouver ses éléments propres et son polynôme minimal.
- 2. Pour quels a, u est-il un automorphisme? Trouver son inverse dans ces cas.

Exercice 59. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant AB = BA et $M = \begin{pmatrix} A & B \\ O_n & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$.

- **1.** Montrer que pour tout $P \in \mathbb{R}[X]$, $P(M) = \begin{pmatrix} P(A) & P'(A)B \\ O_n & P(A) \end{pmatrix}$.
- 2. Montrer que M est diagonalisable si, et seulement si, A est diagonalisable et B est nulle.

Binyze Mohamed $6 \ / \ 6$