TD Nº2

Espaces vectoriels normés

1 Normes et suites dans un evn

Exercice 1. Quelques normes usuelles.

- **1.** Soit $E = \mathcal{C}^0([0,1],\mathbb{K})$. Montrer que $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ sont des normes sur E.
- **2.** Soit $E = \mathcal{M}_{n,p}(\mathbb{K})$. Montrer que $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ sont des normes sur E.

Exercice 2. Normes sous-multiplicatives. On dit qu'une norme $N: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{R}$ est sous-multiplicative si, pour toutes matrices A et B de $\mathcal{M}_n(\mathbb{K})$, $N(AB) \leq N(A)N(B)$.

Montrer que $\|.\|_1$, $\|.\|_2$ et $\|.\|_{\infty}$ sont des normes sous-multiplicatives sur $\mathcal{M}_n(\mathbb{K})$.

Exercice 3. Dans $C^1([0,1],\mathbb{K})$, on pose : $N_1(f) = |f(0)| + ||f'||_{\infty}$ et $N_2(f) = ||f||_{\infty} + ||f'||_{\infty}$.

- **1.** Montrer que N_1 et N_2 sont deux normes sur $\mathcal{C}^1([0,1],\mathbb{K})$.
- 2. Montrer que N_1 et N_2 sont équivalentes. Indication : utiliser l'égalité $f(x) = f(0) + \int_0^x f'(t) dt$ pour tout $x \in [0,1]$.

Exercice 4. 1. Dans $C^0([0,1],\mathbb{K})$, montrer que les normes $\|.\|_1$ et $\|.\|_2$ ne sont pas équivalentes.

Indication: cherchons une suite $(f_n)_{n\in\mathbb{N}}$ de $\mathcal{C}^0([0,1],\mathbb{K})$ telle que $\frac{\|f_n\|_2}{\|f_n\|_1}\xrightarrow[n\to+\infty]{} +\infty$ ou $\frac{\|f_n\|_1}{\|f_n\|_2}\xrightarrow[n\to+\infty]{} +\infty$.

2. Même question pour les normes $\|.\|_2$ et $\|.\|_{\infty}$ et les normes $\|.\|_1$ et $\|.\|_{\infty}$

Exercice 5. Équivalence des normes en dimension finie. Soit $n \in \mathbb{N}$. Montrer qu'il existe $\lambda > 0$ vérifiant :

$$\int_0^1 |P(t)| dt \ge \lambda \sup_{t \in [0,1]} |P(t)| \text{ pour tout } P \text{ dans } \mathbb{R}_n [X].$$

Exercice 6. Dans $(\mathbb{R}^2, \|.\|_2)$, on considère $A = \{(x_1, x_2) \in \mathbb{R}^2, x_2 = 2x_1\}$ et $x = (1, -1) \in \mathbb{R}^2$. Calculer d(x, A).

Exercice 7. 1. Montrer que l'ensemble $A = \{(x,y) \in \mathbb{R}^2, x^2 + xy + y^2 = 1\}$ est borné.

2. Montrer que l'ensemble $B = \{(x,y) \in \mathbb{R}^2, \ x^2 - y^2 = 1\}$ n'est pas borné.

Indication: cherchons une suite $(b_n)_{n\in\mathbb{N}}$ de B telle que $||b_n|| \xrightarrow[n\to+\infty]{} +\infty$.

Exercice 8. On considère les matrices $A = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 3/5 & 0 \\ 0 & 0 & 1/3 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Montrer que la suite $(A^n)_n$ converge et déterminer sa limite. Montrer que la suite $(B^n)_n$ diverge.

Exercice 9. On considère la matrice $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Vérifier que $(A - I_3)^2 = O_3$. En déduire A^n . Montrer que la suite

 $\left(\frac{1}{n}A^n\right)_{n\geq 1}$ converge et déterminer sa limite.

Exercice 10. Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$.

On introduit la fonction f_n définie par $\forall t \in [0,1]$, $f_n(t) = \begin{cases} 2nt & \text{si } 0 \le t \le 1/2n \\ -2n(t-1/n) & \text{si } 1/2n \le t \le 1/n \\ 0 & \text{si } 1/n \le t \le 1 \end{cases}$

- 1. Tracer le graphe de f_n et vérifier que $f_n \in E$.
- 2. Montrer que la suite $(f_n)_n$ converge vers 0 pour la norme $\|.\|_1$. Que dire de la convergence de $(f_n)_n$ pour la norme $\|.\|_{\infty}$?
- 3. Conclure.

Exercice 11. Suite divergente admettant une unique v.a. Soit $(x_n)_{n\geq 1}$ la suite définie par : $\forall n\in\mathbb{N}^*,\ x_n=n^{(-1)^n}$.

- 1. Justifier que 0 est une valeur d'adhérence de la suite $(x_n)_{n\geq 1}$.
- 2. Montrer que 0 est l'unique valeur d'adhérence de $(x_n)_{n\geq 1}$. Indication : raisonner par l'absurde.
- **3.** La suite $(x_n)_{n\geq 1}$ est-elle convergente?

Exercice 12. Comparaison de boules. Soient E un evn, $(a,b) \in E^2$, r,s>0 et $\lambda \in \mathbb{K}^*$. Montrer

Binyze Mohamed $1 \ / \ 4$

- 1. a + B(b, r) = B(a + b, r).
- **2.** $\lambda B(a,r) = B(\lambda a, |\lambda|r)$.
- 3. B(a+b,r+s) = B(a,r) + B(b,s).

2 Topologie dans un evn

Exercice 13. Soit E un evn et A une partie non vide de E. Pour $\lambda \in \mathbb{K}^*$, on désigne par $\lambda A = \{\lambda a, a \in A\}$. Montrer que si Aest ouvert (resp. fermé), alors λA l'est aussi.

Exercice 14. Intersection d'ouverts et réunion de fermés. Déterminer $\bigcap_{n\in\mathbb{N}^*} \left[\frac{-1}{n}, \frac{1}{n}\right]$ et $\bigcup_{n\in\mathbb{N}^*} \left[\frac{-n}{n+1}, \frac{n}{n+1}\right]$. Conclure.

Exercice 15. \mathbb{Z} est un fermé. Soit $x \in \mathbb{R} \setminus \mathbb{Z}$ et $n = \lfloor x \rfloor$ la partie entière de x. Posons $r = \min \{ |x - n|, |x - n - 1| \}$. Montrer $]x-r,x+r[\subset \mathbb{R} \setminus \mathbb{Z}$. En déduire que \mathbb{Z} est fermé.

Exercice 16. $\mathbb Z$ est un fermé. Soit $(x_n)_n$ une suite de $\mathbb Z$ telle que $x_n \xrightarrow[n \to +\infty]{} x \in \mathbb R$. Montrer qu'il existe un rang $n_0 \in \mathbb N$ tel que, pour tout $n \ge n_0$, $x_n = x_{n_0}$. En déduire que $\mathbb Z$ est fermé.

Exercice 17. Déterminer l'intérieur de \mathbb{Z} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$.

Exercice 18. 1. Montrer que, si A est une partie d'un evn E et O un ouvert de E, alors O + A est un ouvert de E.

2. Dans \mathbb{R} , on pose $A = \mathbb{Z}$ et $B = \left\{ n - \frac{1}{2n}, \ n \in \mathbb{N}^* \right\}$. Montrer que A et B sont fermés mais A + B n'est pas fermé. Indication: pour montrer que A+B n'est pas fermé, on cherche une suite $(x_n)_n$ de A+B telle que $x_n \xrightarrow[n \to +\infty]{} x$ mais

Exercice 19. Soient A et B deux patries d'un evn E.

1. Montrer

 $x \notin A + B$.

- **a.** $\overset{\circ}{A} \subset A \subset \overline{A}$.**c.** A fermé $\iff A = \overline{A}$.**f.** $\overset{\circ}{A \cap B} = \overset{\circ}{A} \cap \overset{\circ}{B}$.**h.** $\overset{\circ}{A} \cup \overset{\circ}{B} \subset \overset{\circ}{A \cup B}$.**b.** A ouvert $\iff A = \overset{\circ}{A}$.**e.** $A \subset B \implies \overline{A} \subset \overline{B}$.**g.** $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.**i.** $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

- 2. Donner des exemples où les inclusions $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ et $A \cup B \subset A \cup B$ sont strictes.

Exercice 20. Montrer que l'adhérence d'un sous-espace vectoriel est aussi un sous-espace vectoriel.

Exercice 21. Soit E un evn et F un sev de E. Montrer que, si $F \neq \emptyset$, alors F = E. En déduire que, si F est un ouvert, alors F = E.

Exercice 22. Caractérisation des points adhérents à l'aide de la distance. Soit A une partie non vide de E.

Montrer l'équivalence : $x \in \overline{A} \iff d(x,A) = 0$. Indication : utiliser la caractérisation à l'aide de epsilon de la borne inf.

Exercice 23. Soit $E = \mathbb{R}[X]$ muni de la norme : $||P|| = \sup |P(t)|$.

Démontrer que l'ensemble des polynômes nuls en 2 est dense de E. Indication : on pourra étudier la suite $((X/2)^n)_{n>0}$.

Exercice 24. Soit E un evn de dimension infinie. Montrer que tout hyperplan E de E est soit fermé soit dense dans E.

Indication: supposons H n'est pas fermé et utiliser la décomposition de $E: E = H \oplus \text{Vect}(a)$ où $a \in E \setminus H$.

Continuité d'une application

Exercice 25. Soit $p \ge 1$, $E = \mathbb{R}^p$ muni d'une norme $\|.\|$. Montrer que l'application f définie sur E par $f(x) = \begin{cases} 1 & \text{si } ||x|| \ge 1 \\ 0 & \text{si } ||x|| < 1 \end{cases}$ n'est pas continue en aucun point de la sphère unité de E.

Exercice 26. En utilisant l'image réciproque d'une application continue, démontrer que \mathbb{Z} est un fermé de \mathbb{R} .

Indication: considérons $f(x) = \sin(\pi x)$.

Exercice 27. Deux exemples classiques.

- 1. Soit A une partie non vide d'un evn E. Montrer que l'application $x \mapsto d(x,A)$ est 1-lipschitzienne.
- **2.** Soit E_1, \ldots, E_p des evn. Montrer que la *i*-ième projection $\pi_i : E_1 \times \ldots \times E_p \longrightarrow E_i, \ 1 \le i \le p$ définie par $\pi_i(x_1, \ldots, x_p) = x_i$ est 1-lipschitzienne.

2 / 4Binyze Mohamed

Exercice 28. 1. Montrer que la fonction $x \mapsto \sqrt{x}$ n'est pas lipschitzienne sur \mathbb{R}_+ . Indication: raisonner par l'absurde.

- 2. Montrer que la fonction $x \mapsto x^2$ n'est pas lipschitzienne sur \mathbb{R} . Indication : regarder la dérivée.
- 3. Le produit de deux applications lipschitziennes est une application lipschitzienne?

Exercice 29. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue vérifiant : $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y). Montrer que $\forall x \in \mathbb{R}$, f(x) = xf(1). **Indication** : commoncer par montrer l'égalité pour $x \in \mathbb{N}$.

Exercice 30. Soit $E = \mathcal{C}^0([0,1],\mathbb{K})$ muni des normes usuelles $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$.

Montrer que l'application $\Phi: E \longrightarrow \mathbb{K}$ $f \longmapsto \int_0^1 f(t) dt$ est lipschitzienne pour chacune des normes $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$.

4 Applications linéaires et multilinéaires continues

Exercice 31. 1. Justifier la continuité de l'application $\varphi : \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$.

- **2.** En déduire que l'application $f: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$ est continue.
- 3. Montrer que l'ensemble $\{A \in \mathcal{M}_n(\mathbb{R}), AA^{\top} = I_n\}$ est un fermé.

Exercice 32. $\mathcal{GL}_n(\mathbb{K})$ est un ouvert. Montrer que $\mathcal{GL}_n(\mathbb{K})$ est un ouvert de $\mathcal{M}_n(\mathbb{K})$. Indication: utiliser l'image réciproque de l'application det.

Exercice 33. Continuité de l'application inverse $A \mapsto A^{-1}$. On rappelle la formule $A^{-1} = \frac{1}{\det A} (\cot A)^{\mathsf{T}}$ pour toute $A \in \mathcal{GL}_n(\mathbb{K})$ où com A est la comatrice de A: com $A = \left((-1)^{i+j}\det(A_{i,j})\right)_{1 \leq i,j \leq n}$ avec $A_{i,j}$ est la matrice (de taille n-1) obtenu en supprimant la i-ième ligne et la j-ième colonne de la matrice A.

- **1.** Soit $(i,j) \in [1,n]^2$. Justifier que l'application $\varphi_{i,j} : \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_{n-1}(\mathbb{K})$ est continue.
- **2.** En déduire que l'application comatrice : $A \mapsto \text{com } A$ est continue sur $\mathcal{M}_n(\mathbb{K})$.
- **3.** Montrer alors que l'application $A \mapsto A^{-1}$ est continue sur $\mathcal{GL}_n(\mathbb{K})$.

Exercice 34. 1. Montrer que l'application $\varphi: (\mathcal{C}([0,1],\mathbb{R}),\|.\|_{\infty}) \longrightarrow \mathbb{R}$

2. Montrer que l'application $\varphi: \left(\mathcal{C}([0,1],\mathbb{R}),\|.\|_1\right) \longrightarrow \mathbb{R}$ n'est pas continue. $f \longmapsto f(1)$

Indication: pour montrer que φ n'est pas continue, cherchons une suite $(f_n)_n$ de $\mathcal{C}([0,1],\mathbb{R})$ telle que $\frac{|\varphi(f_n)|}{\|f_n\|_1} \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 35. Calcul de la norme d'opérateur d'une application linéaire. Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$. Étudier, dans chaque cas, la continuité de l'application linéaire φ , puis calculer $||| \varphi |||$.

1. $\varphi: (E, \|.\|_{\infty}) \longrightarrow \mathbb{R}$ 2. $\varphi: (E, \|.\|_1) \longrightarrow \mathbb{R}$ 3. $\varphi: (E, \|.\|_2) \longrightarrow \mathbb{R}$ $f \longmapsto f(1) - f(0)$ $f \longmapsto \int_0^1 t f(t) dt$

Exercice 36. Norme subordonnée matricielle. On munit \mathbb{K}^n et \mathbb{K}^p de la norme usuelle $\|.\|_{\infty}$. Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}} \in \mathcal{M}_{n,p}(\mathbb{K})$.

- $\textbf{1.} \ \text{Montrer} \ \forall x \in \mathbb{K}^p, \ \forall i \in [[1,n]], \ |(A.x)_i| \leq \|A\|_{\infty} \|x\|_{\infty}. \ \text{En d\'eduire} \ \|A\|_{\infty} \geq \inf \Big\{ C > 0, \ \forall x \in \mathbb{K}^p, \ \|A.x\|_{\infty} \leq C \|x\|_{\infty} \Big\}.$
- $\textbf{2. Soit } i_0 \in [\![1,n]\!] \text{ tel que } \sum_{j=1}^p \lvert a_{i_0,j} \rvert = \sup_{1 \leq i \leq n} \sum_{j=1}^p \lvert a_{i,j} \rvert \text{ et soit } y \in \mathbb{K}^p \text{ tel que : } \forall j \in [\![1,p]\!], \ \ y_j = \left\{ \begin{array}{ll} \frac{\lvert a_{i_0,j} \rvert}{a_{i_0,j}} & \text{si} & a_{i_0,j} \neq 0 \\ 0 & \text{si} & a_{i_0,j} = 0 \end{array} \right..$
- $\textbf{a.} \ \ \text{Montrer que} \ \ \forall i \in [\![1,n]\!], \ \ |(A.y)_i| \leq \|A\|_{\infty} \|y\|_{\infty}. \ \ \textbf{Indication}: \ \ \text{discuter les } \ \text{cas}: A = \mathrm{O}_{n,p} \ \text{et} \ \ A \neq \mathrm{O}_{n,p}.$
- **b.** En déduire que $||A.y||_{\infty} = ||A||_{\infty} ||y||_{\infty}$.
- 3. Conclure.

3 / 4Binyze Mohamed

5 Compacité

Exercice 37. Soit E un evn de dimension finie. Montrer que la sphère unité $S = \{x \in E, \|x\| = 1\}$ est une partie compacte.

Exercice 38. Un fermé borné non compact en dimension infinie. Soit $E = \mathcal{C}^0([0,1],\mathbb{C})$ muni de $\|.\|_{\infty}$. On considère la suite $(f_n)_n$ définie par $f_n(t) = e^{2in\pi t}$.

- **1.** Montrer que : $\forall (m,n) \in \mathbb{N}^2$, $m \neq n \implies ||f_m f_n||_{\infty} = 2$.
- 2. La suite $(f_n)_n$ possède-t-elle une valeur d'adhérence pour $\|.\|_{\infty}$. Indication : raisonner par l'absurde.
- 3. En déduire que la sphère unité de E n'est pas compacte.

Exercice 39. Soit A et B deux parties d'un evn E.

- 1. On suppose que A et B sont compacts. Montrer que A+B est compact. Indication : utiliser la définition de la compacité.
- 2. On suppose que A est compact et B est fermé. Montrer que A+B est fermé et non compact. Indication : prendre B=E.

Exercice 40. L'ensemble des matrices non inversibles de $\mathcal{M}_n(\mathbb{K})$ est-il un compact?

Exercice 41. Soit K un compact d'un evn E et $x \in E$. Montrer qu'il existe $x_0 \in K$ tel que $d(x, K) = ||x_0 - x||$.

Indication: utiliser le théorème des bornes atteintes.

Exercice 42. Distance à un fermé en dimension finie. Soit E un evn de dimension finie et F un fermé de E. Soit $x \in E$. Montrer qu'il existe $a \in F$ tel que d(x, F) = ||x - a||. Indication: utiliser le théorème de Bolzano-Weierstrass.

Exercice 43. Soient K un compact d'un evn E et $f: K \longrightarrow K$ telle que : $\forall (x,y) \in K^2, \ x \neq y \implies \|f(x) - f(y)\| < \|x - y\|$.

- 1. Montrer que f possède au plus un point fixe. Indication : raisonner par l'absurde.
- **2.** Justifier qu'il existe $c \in K$ tel que $\forall x \in K$, $||f(x) x|| \ge ||f(c) c||$.
- **3.** En déduire que f admet un point fixe.

6 Connexité par arcs

Exercice 44. Ensemble cpa mais n'est pas étoilé.

- 1. Montrer, de deux façons différentes, que l'ensemble $U = \{z \in \mathbb{C}, |z| = 1\}$ est connexe par arcs.
- **2.** Montrer que U n'est pas étoilé.

Exercice 45. Montrer que \mathbb{C}^* est connexe par arcs.

Exercice 46. L'ensemble Q est-il connexe par arcs? Indication : raisonner par l'absurde et utiliser le TVI.

Exercice 47. 1. Montrer que l'ensemble \mathcal{D} des matrices de $\mathcal{M}_n(\mathbb{K})$ diagonales est convexe.

2. Montrer que l'ensemble Ω des matrices de $\mathcal{GL}_n(\mathbb{C})$ triangulaires supérieures est connexe par arcs.

Indication: si $A = (a_{i,j})_{1 \le i,j \le n} \in \Omega$, considérons le chemin $\gamma : [0,1] \longrightarrow \Omega$ définie par $\gamma(t) = \begin{cases} 0 & \text{si} \quad i > j \\ ta_{i,j} & \text{si} \quad i < j \\ r_j^t e^{it\theta_j} & \text{si} \quad i = j \text{ où } a_{j,j} = r_j e^{i\theta_j} \end{cases}$

Exercice 48. Montrer que $\mathcal{GL}_n(\mathbb{R})$ pour $n \geq 2$ n'est pas connexe par arcs. Indication : considérons l'application det.

Exercice 49. Théorème de Darboux. Soit I un intervalle ouvert de $\mathbb R$ et $f:I\longrightarrow \mathbb R$ une fonction dérivable.

Soit
$$A = \{(x,y) \in I^2, x < y\}$$
. Pour $(x,y) \in A^2$, on pose $g(x,y) = \frac{f(y) - f(x)}{y - x}$.

- 1. Justifier que A est une partie connexe par arcs de \mathbb{R}^2 .
- **2.** Montrer que $g(A) \subset f'(I) \subset \overline{g(A)}$.
- 3. En déduire que f'(I) est un intervalle.

Exercice 50. Soient I un intervalle ouvert de \mathbb{R} et $f:I\longrightarrow\mathbb{R}$ continue et injective. Montrer que f est strictement monotone. **Indication**: considérer g(x,y)=f(x)-f(y) défini sur $X=\left\{(x,y)\in I^2,\ x< y\right\}$.

Exercice 51. Soit E un evn et A, B deux parties connexes par arcs de E.

- **1.** Montrer que $A \times B$ est connexe par arcs.
- **2.** En déduire que A + B est connexe par arcs.
- **3.** Montrer que si, $A \cap B \neq \emptyset$ alors $A \cup B$ est connexe par arcs.

Binyze Mohamed $4 \ / \ 4$