TD Nº2

Espaces vectoriels normés (correction)

1 Normes et suites dans un evn

Corrigé de l'exercice 1. 1. Pour la norme $\|.\|_1$. Soit $f \in E$, on a $\|f\|_1 \stackrel{\text{def}}{=} \int_0^1 |f(t)| dt$.

• Séparation : Soit $f \in E$. On a

$$||f||_1 = 0 \implies \int_0^1 |f(t)| dt = 0 \implies \forall t \in [0,1], \ |f(t)| = 0 \implies \forall t \in [0,1], \ f(t) = 0 \implies f = 0.$$

Car $t \mapsto |f(t)|$ est continue et positive sur [0,1].

• Homogénéité : Soit $f \in E$ et $\lambda \in \mathbb{K}$. On a

$$\|\lambda f\|_1 = \int_0^1 |\lambda f(t)| dt = |\lambda| \int_0^1 |f(t)| dt = |\lambda| \|f\|_1.$$

• Inégalité triangulaire : Soit $(f,g) \in E^2$. On a

$$||f+g||_1 = \int_0^1 |f(t)+g(t)| dt \le \int_0^1 |f(t)| dt + \int_0^1 |g(t)| dt = ||f||_1 + ||g||_1.$$

D'où $\|.\|_1$ est une norme sur E.

Pour la norme $\|.\|_2$. Soit $f \in E$, on a $\|f\|_2 \stackrel{\text{def}}{=} \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}}$.

• Séparation : Soit $f \in E$. On a

$$||f||_2 = 0 \implies \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}} = 0 \implies \forall t \in [0,1], \ |f(t)|^2 = 0 \implies \forall t \in [0,1], \ f(t) = 0 \implies f = 0.$$

Car $t \mapsto |f(t)|^2$ est continue et positive sur [0,1].

• Homogénéité : Soit $f \in E$ et $\lambda \in \mathbb{K}$. On a

$$\|\lambda \cdot f\|_2 = \left(\int_0^1 |\lambda \cdot f(t)|^2 dt\right)^{\frac{1}{2}} = |\lambda| \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}} = |\lambda| \|f\|_2.$$

• Inégalité triangulaire : Soit $(f,g) \in E^2$. On a

$$\begin{split} \|f+g\|_2^2 &= \int_0^1 |f(t)+g(t)|^2 \mathrm{d}t \\ &= \int_0^1 |f(t)^2+2f(t)g(t)+g(t)^2 |\mathrm{d}t \\ &\leq \int_0^1 |f(t)|^2 \mathrm{d}t + 2 \int_0^1 |f(t)g(t)| \mathrm{d}t + \int_0^1 |g(t)|^2 \mathrm{d}t \\ &\leq \int_0^1 |f(t)|^2 \mathrm{d}t + 2 \left(\int_0^1 |f(t)|^2 \mathrm{d}t\right)^{\frac{1}{2}} \left(\int_0^1 |g(t)|^2 \mathrm{d}t\right)^{\frac{1}{2}} + \int_0^1 |g(t)|^2 \mathrm{d}t \quad \text{Inégalité de Cauchy-Schwarz} \\ &= \left(\left(\int_0^1 |f(t)|^2 \mathrm{d}t\right)^{\frac{1}{2}} + \left(\int_0^1 |g(t)|^2 \mathrm{d}t\right)^{\frac{1}{2}}\right)^2 = \left(\|f\|_2 + \|g\|_2\right)^2 \end{split}$$

donc $||f + g||_2 \le ||f||_2 + ||g||_2$.

D'où $\|.\|_2$ est une norme sur E.

Pour la norme $\|.\|_{\infty}$. Soit $f \in E$, on a $\|f\|_{\infty} \stackrel{\text{def}}{=} \sup_{t \in [0,1]} |f(t)|$.

• Séparation : Soit $f \in E$. On a

$$||f||_{\infty} = 0 \Longrightarrow \forall t \in [0,1], \ 0 \le |f(t)| \le ||f||_{\infty} = 0 \Longrightarrow \forall t \in [0,1], \ |f(t)| = 0 \Longrightarrow \forall t \in [0,1], \ f(t) = 0 \Longrightarrow f = 0.$$

• Homogénéité : Soit $f \in E$ et $\lambda \in \mathbb{K}$. On a

$$\|\lambda.f\|_{\infty} = \sup_{t \in [0,1]} |\lambda.f(t)| = \sup_{t \in [0,1]} |\lambda|.|f(t)| = |\lambda| \sup_{t \in [0,1]} |f(t)| = |\lambda| \|f\|_{\infty}.$$

Binyze Mohamed $1\ /\ 15$

• Inégalité triangulaire : Soit $(f,g) \in E^2$. On a

$$\forall t \in [0,1], |f(t) + g(t)| \le |f(t)| + |g(t)| \le ||f||_{\infty} + ||g||_{\infty}$$

donc
$$||f + g||_{\infty} = \sup_{t \in [0,1]} |f(t) + g(t)| \le ||f||_{\infty} + ||g||_{\infty}.$$

D'où $\|.\|_{\infty}$ est une norme sur E.

- **2.** Pour la norme $\|.\|_1$. Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in E$, on a $\|A\|_1 \stackrel{\text{def}}{=} \sup_{1 \le j \le p} \sum_{i=1}^n |a_{i,j}|$.
 - Séparation : Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in E$. On a

$$||A||_1 = 0 \implies \forall (i,j) \in [[1,n]] \times [[1,p]], \ 0 \le |a_{i,j}| \le ||A||_1 = 0$$

 $\implies \forall (i,j) \in [[1,n]] \times [[1,p]], \ a_{i,j} = 0$
 $\implies A = O_{n,n}.$

• Homogénéité : Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in E$ et $\lambda \in \mathbb{K}$. On a

$$\|\lambda A\|_1 = \sup_{1 \le j \le p} \sum_{i=1}^n |\lambda a_{i,j}| = |\lambda| \sup_{1 \le j \le p} \sum_{i=1}^n |a_{i,j}| = |\lambda| \|A\|_1.$$

• Inégalité triangulaire : Soit $A=(a_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq p}}\in E,\ B=(b_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq p}}\in E.$ On a

$$\forall j \in [[1, p]], \quad \sum_{i=1}^{n} |a_{i,j} + b_{i,j}| \leq \sum_{i=1}^{n} |a_{i,j}| + \sum_{i=1}^{n} |b_{i,j}| \leq \sup_{1 \leq j \leq p} \sum_{i=1}^{n} |a_{i,j}| + \sup_{1 \leq j \leq p} \sum_{i=1}^{n} |b_{i,j}| \leq ||A||_1 + ||B||_1$$

donc
$$||A + B||_1 = \sup_{1 \le j \le p} \sum_{i=1}^n |a_{i,j} + b_{i,j}| \le ||A||_1 + ||B||_1.$$

D'où $\|.\|_1$ est une norme sur E.

Pour la norme $\|.\|_2$. Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in E$, on a $\|A\|_2 \stackrel{\text{def}}{=} \left(\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2\right)^{\frac{1}{2}}$.

• Séparation : Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le i \le n}} \in E$. On a

$$||A||_2 = 0 \implies \left(\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2\right)^{\frac{1}{2}} = 0 \implies \forall (i,j) \in [[1,n]] \times [[1,p]], \ a_{i,j} = 0 \implies A = O_{n,p}.$$

• Homogénéité : Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in E$ et $\lambda \in \mathbb{K}$. On a

$$\|\lambda.A\|_2 = \left(\sum_{i=1}^n \sum_{j=1}^p |\lambda.a_{i,j}|^2\right)^{\frac{1}{2}} = |\lambda| \left(\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2\right)^{\frac{1}{2}} = |\lambda| \|A\|_2.$$

• Inégalité triangulaire : $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in E$, $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in E$. On a

$$\begin{split} \|A+b\|_2^2 &= \sum_{i=1}^n \sum_{j=1}^p |a_{i,j}+b_{i,j}|^2 \\ &= \sum_{i=1}^n \sum_{j=1}^p |a_{i,j}^2+2a_{i,j}b_{i,j}+b_{i,j}^2| \\ &\leq \sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2+2\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}b_{i,j}| + \sum_{i=1}^n \sum_{j=1}^p |b_{i,j}|^2 \\ &\leq \sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2+2\left(\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^n \sum_{j=1}^p |b_{i,j}|^2\right)^{\frac{1}{2}} + \sum_{i=1}^n \sum_{j=1}^p |b_{i,j}|^2 \quad \text{Inégalité de Cauchy-Schwarz} \\ &= \left(\left(\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2\right)^{\frac{1}{2}} + \left(\sum_{i=1}^n \sum_{j=1}^p |b_{i,j}|^2\right)^{\frac{1}{2}}\right)^2 = \left(\|A\|_2 + \|B\|_2\right)^2 \end{split}$$

donc $||A + B||_2 \le ||A||_2 + ||B||_2$.

Binyze Mohamed 2 / 15

D'où $\|.\|_2$ est une norme sur E.

Pour la norme $\|.\|_{\infty}$. De même que $\|.\|_1$ ou on remarque aussi que $\|A\|_{\infty} = \|A^{\mathsf{T}}\|_1$.

Corrigé de l'exercice 2. Pour la norme $\|.\|_1$. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ et $B = (b_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$. On a

$$\forall (i,j) \in [[1,n]]^2, (AB)_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j}$$

Soit $j \in [[1, n]]$, on a

$$\sum_{i=1}^{n} \sum_{k=1}^{n} |a_{i,k} b_{k,j}| = \sum_{k=1}^{n} |b_{k,j}| \left(\sum_{i=1}^{n} |a_{i,k}|\right) \le \left(\sup_{1 \le j \le n} \sum_{i=1}^{n} |a_{i,j}|\right) \sum_{k=1}^{n} |b_{k,j}| \le \left(\sup_{1 \le j \le n} \sum_{i=1}^{n} |a_{i,j}|\right) \left(\sup_{1 \le j \le n} \sum_{k=1}^{n} |b_{k,j}|\right) = \|A\|_1 \|B\|_1$$

donc $||AB||_1 = \sup_{1 \le j \le n} \sum_{i=1}^n |(AB)_{i,j}| \le ||A||_1 ||B||_1.$

Pour la norme $\|.\|_2$. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ et $B = (b_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$. On a

$$||AB||_{2}^{2} = \sum_{i,j=1}^{n} |(AB)_{i,j}|^{2}$$

$$= \sum_{i,j=1}^{n} \left| \sum_{k=1}^{n} a_{i,k} b_{k,j} \right|^{2}$$

$$\leq \sum_{i,j=1}^{n} \left(\sum_{k=1}^{n} |a_{i,k}|^{2} \right) \left(\sum_{k=1}^{n} |b_{k,j}|^{2} \right)$$
 Inégalité de Cauchy-Schwarz
$$= \left(\sum_{i,k=1}^{n} |a_{i,k}|^{2} \right) \left(\sum_{j,k=1}^{n} |b_{k,j}|^{2} \right) = ||A||_{2}^{2} ||B||_{2}^{2}$$

donc $||AB||_2 \le ||A||_2 ||B||_2$.

Pour la norme $\|.\|_{\infty}$. De même que $\|.\|_1$ ou on remarque aussi que $\|A\|_{\infty} = \|A^{\mathsf{T}}\|_1$.

Corrigé de l'exercice 3. 1. Pour N_1 .

• Séparation : Soit $f \in C^1([0,1], \mathbb{K})$, on a

$$N_1(f) = 0 \implies f(0) = 0 \text{ et } ||f'||_{\infty} = 0 \implies f(0) = 0 \text{ et } f' = 0 \implies f(0) = 0 \text{ et } f \text{ est constante} \implies f = 0.$$

• Homogénéité : Soit $f \in \mathcal{C}^1([0,1],\mathbb{K})$ et $\lambda \in \mathbb{K}$. On a

$$N_1(\lambda.f) = |\lambda.f(0)| + ||\lambda.f'||_{\infty} = |\lambda||f(0)| + |\lambda|||f'|| = |\lambda|N_1(f).$$

• Inégalité triangulaire : Soit $f, g \in \mathcal{C}^1([0,1], \mathbb{K})$. On a

$$N_1(f+g) = |f(0)+g(0)| + ||f'+g'||_{\infty} \le |f(0)| + ||f'||_{\infty} + |g(0)| + ||g'||_{\infty} = N_1(f) + N_1(g).$$

Pour N_2 .

• Séparation : Soit $f \in C^1([0,1], \mathbb{K})$, on a

$$N_2(f) = 0 \implies ||f||_{\infty} = 0 \text{ et } ||f'||_{\infty} = 0 \implies f = 0.$$

• Homogénéité : Soit $f \in \mathcal{C}^1([0,1],\mathbb{K})$ et $\lambda \in \mathbb{K}$. On a

$$N_1(\lambda.f) = \|\lambda.f\|_{\infty} + \|\lambda.f'\|_{\infty} = |\lambda| \|f\|_{\infty} + |\lambda| \|f'\|_{\infty} = |\lambda| N_2(f).$$

• Inégalité triangulaire : Soit $f, g \in \mathcal{C}^1([0,1], \mathbb{K})$. On a

$$N_1(f+g) = \|f+g\|_{\infty} + \|f'+g'\|_{\infty} \le \|f\|_{\infty} + \|g\|_{\infty} + \|f'\|_{\infty} + \|g'\|_{\infty} = N_2(f) + N_2(g).$$

Binyze Mohamed $3 \ / \ 15$

2. Soit $f \in C^1([0,1], \mathbb{K})$. On a $N_1(f) = |f(0)| + ||f'||_{\infty} \le ||f||_{\infty} + ||f'||_{\infty} = N_2(f)$. D'autre part, pour tout $f \in E$:

$$\forall x \in [0,1], |f(x)| = \left| f(0) + \int_0^x f'(t) dt \right|$$

$$\leq |f(0)| + \int_0^x |f'(t)| dt$$

$$\leq |f(0)| + ||f'||_{\infty} \int_0^x dt$$

$$\leq |f(0)| + ||f'||_{\infty} .x$$

$$\leq |f(0)| + ||f'||_{\infty} = N_1(f).$$

Donc $||f||_{\infty} \le N_1(f)$ et $N_2(f) = ||f||_{\infty} + ||f'||_{\infty} \le 2N_1(f)$. D'où :

$$\forall f \in \mathcal{C}^1\big(\big[0,1\big],\mathbb{K}\big), \ N_1(f) \leq N_2(f) \leq 2N_1(f)$$

et les normes N_1 et N_2 sont équivalentes sur $\mathcal{C}^1([0,1],\mathbb{K})$.

Corrigé de l'exercice 4. La suite $(f_n)_{n\in\mathbb{N}}$ de $\mathcal{C}^0([0,1],\mathbb{K})$ définie par : $\forall t\in[0,1],\ f_n(t)=t^n$ vérifie :

$$\forall n \in \mathbb{N}, \ \frac{\|f_n\|_2}{\|f_n\|_1} = \frac{n+1}{\sqrt{2n+1}}, \ \frac{\|f_n\|_\infty}{\|f_n\|_1} = n+1 \ \text{et} \ \frac{\|f_n\|_\infty}{\|f_n\|_2} = \sqrt{2n+1}.$$

Donc, les suites réelles $\left(\frac{\|f_n\|_2}{\|f_n\|_1}\right)_{n\in\mathbb{N}}$, $\left(\frac{\|f_n\|_\infty}{\|f_n\|_1}\right)_{n\in\mathbb{N}}$ et $\left(\frac{\|f_n\|_\infty}{\|f_n\|_2}\right)_{n\in\mathbb{N}}$ ne sont pas bornées.

Corrigé de l'exercice 5. On pose, pour $P \in \mathbb{R}_n[X]$, $N_1(P) = \sup_{t \in [0,1]} |P(t)|$ et $N_2(P) = \int_0^1 |P(t)| dt$.

 N_1 et N_2 sont deux normes sur l'ev $\mathbb{R}_n[X]$ qui est de dimension finie $(\dim \mathbb{R}_n[X] = n + 1)$ donc les normes N_1 et N_2 sont équivalentes, en particulier, il existe $\lambda > 0$ vérifiant :

$$\int_0^1 |P(t)| dt \ge \lambda \sup_{t \in [0,1]} |P(t)| \text{ pour tout } P \text{ dans } \mathbb{R}_n[X].$$

Corrigé de l'exercice 6. Soit $a = (a_1, a_2) \in A$. On a

$$||x - a||_2 = ||(x_1 - a_1, x_2 - a_2)||_2 = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2}$$

$$= \sqrt{(1 - a_1)^2 + (-1 - 2a_1)^2}$$

$$= \sqrt{5}\sqrt{\left(a_1 + \frac{1}{5}\right)^2 + \frac{9}{25}}$$

$$\geq \sqrt{5}\sqrt{\frac{9}{25}}$$

$$= \frac{3}{\sqrt{5}}$$

avec égalité si, et seulement si, $a_1 = \frac{-1}{5}$, $a_2 = \frac{-2}{5}$, donc $d(x, A) = \inf_{a \in A} ||x - a||_2 = \frac{3}{\sqrt{5}}$.

Corrigé de l'exercice 7. 1. Soit $(x,y) \in A$. On a $\left(x + \frac{y}{2}\right)^2 + \frac{3}{4}y^2 = 1$ donc

$$\begin{cases} \frac{3}{4}y^2 \le 1 \\ \left(x + \frac{y}{2}\right)^2 \le 1 \end{cases} \implies \begin{cases} |y| \le \frac{2}{\sqrt{3}} \\ |x| \le 1 + \frac{1}{\sqrt{3}} \end{cases} \implies \|(x,y)\|_{\infty} \le 1 + \frac{1}{\sqrt{3}},$$

par suite, $A \subset B_{\infty} \left(0, 1 + \frac{1}{\sqrt{3}}\right)$.

Binyze Mohamed 4 / 15

2. On pose $b_n = (x_n, y_n) \in \mathbb{R}^2$ avec $x_n = n + \frac{1}{4n}$ et $y_n = n - \frac{1}{4n}$. On a $x_n^2 - y_n^2 = 1$ donc $(b_n)_n \in B^{\mathbb{N}^*}$ et $\|b_n\|_1 = 2n \xrightarrow[n \to +\infty]{} + \infty$. Par suite, B n'est pas bornée.

Corrigé de l'exercice 8. 1. A est une matrice diagonale donc $A^n = \operatorname{diag}\left(1/2^n, 3^n/5^n, 1/3^n\right) \xrightarrow[n \to +\infty]{} \operatorname{diag}\left(0, 0, 0\right) = O_3$. Ainsi, $(A^n)_n$ converge et de limite nulle.

On a $\forall n \in \mathbb{N}$, $B^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^n & (-1)^{n+1} \\ 0 & 0 & 0 \end{pmatrix}$. La suite $\left((-1)^n\right)_n$ diverge, donc la suite $(B^n)_n$ diverge.

Corrigé de l'exercice 9. On a $(A - I_3)^2 = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}^2 = O_3$. Soit $n \in \mathbb{N}$, on a

$$A^{n} = (A - I_{3} + I_{3})^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (A - I_{3})^{k} \text{ binôme de Newton car } A - I_{3} \text{ et } I_{3} \text{ commutent}$$

$$= \binom{n}{0} I_{3} + \binom{n}{0} (A - I_{3})$$

$$= I_{3} + n(A - I_{3}).$$

$$\underline{\text{Donc } \frac{1}{n}A^n = \frac{1}{n}I_3 + (A - I_3) \xrightarrow[n \to +\infty]{} (A - I_3).}$$

Corrigé de l'exercice 10.

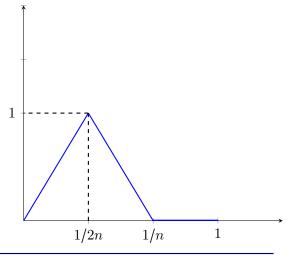
1. On a f_n est continue sur [0,1] donc $f_n \in E$.

2.
$$||f_n||_1 = \int_0^1 |f_n(t)| dt = \int_0^{1/2n} 2nt dt + \int_{1/2n}^{1/n} -2n(t-1/n) dt = \frac{1}{n}$$
 et donc

$$||f_n||_1 \xrightarrow[n \to +\infty]{} 0.$$

Ainsi, la suite $(f_n)_n$ converge vers 0 pour la norme $\|.\|_1$. Il est clair que $\|f_n\|_{\infty} = 1$ donc la suite $(f_n)_n$ ne converge pas vers 0 pour la norme $\|.\|_{\infty}$.

3. On retrouve que les normes $\|.\|_{\infty}$ et $\|.\|_1$ ne sont pas équivalentes.



Corrigé de l'exercice 11. 1. On a $x_{2n+1} = \frac{1}{2n+1} \xrightarrow[n \to +\infty]{} 0$ donc 0 est une valeur d'adhérence de la suite $(x_n)_{n \ge 1}$.

2. Soit ℓ une valeur d'adhérence de la suite $(x_n)_{n\geq 1}$. Supposons $\ell > 0$. Il existe $\varphi : \mathbb{N}^* \longrightarrow \mathbb{N}^*$ strictement croissante telle que $x_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$. On a

$$\ln x_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ln \ell \implies (-1)^{\varphi(n)} \ln \varphi(n) \xrightarrow[n \to +\infty]{} \ln \ell \implies |\ln \varphi(n)| \xrightarrow[n \to +\infty]{} |\ln \ell|$$

ce qui contredit le fait que $\varphi(n) \xrightarrow[n \to +\infty]{} +\infty$. Par suite, $\ell = 0$ et 0 est la seule valeur d'adhérence de $(x_n)_{n \ge 1}$.

3. On a $x_{2n} = 2n \xrightarrow[n \to +\infty]{} +\infty$ donc la suite $(x_n)_{n\geq 1}$ diverge.

Corrigé de l'exercice 12. 1. On a

$$x \in B(a+b,r) \iff |x-a-b| < r \iff x-a \in B(b,r) \iff x \in a+B(b,r)$$

donc a + B(b, r) = B(a + b, r).

2. Soit $x \in \lambda B(a,r)$, donc $x = \lambda y$ avec $y \in B(a,r)$ et

Binyze Mohamed 5 / 15

$$|x - \lambda a| = |\lambda y - \lambda a| = |\lambda||y - a| < |\lambda|r$$

c-à-d $x \in B(\lambda a, |\lambda|r)$ et $\lambda B(a, r) \subset B(\lambda a, |\lambda|r)$. De plus,

$$B(\lambda a, |\lambda|r) = \lambda \frac{1}{\lambda} B(\lambda a, |\lambda|r) \subset \lambda B(a, r).$$

D'où l'égalité : $\lambda B(a,r) = B(\lambda a, |\lambda|r)$.

3. D'après les deux questions précédentes :

$$B(a+b,r+s) = a+b+B(0,r+s)$$

$$= a+b+(r+s)B(0,1)$$

$$= a+rB(0,1)+b+sB(0,1)$$

$$= a+B(0,r)+b+B(0,s)$$

$$= B(a,r)+B(b,s).$$

Topologie dans un evn

Corrigé de l'exercice 13. Soit $\lambda \in \mathbb{K}^*$.

• Supposons A ouvert et soit $x \in \lambda A$. Il existe $a \in A$ tel que $x = \lambda a$. Comme A est un ouvert, il existe r > 0 tel que $B(a,r) \subset A$ donc

$$B(x,|\lambda|r) = B(\lambda a,|\lambda|r) = \lambda B(a,r) \subset \lambda A.$$

Par suite, λA est un ouvert.

Supposons A fermé et soit $(x_n)_n \in A^{\mathbb{N}}$ telle que $x_n \xrightarrow[n \to +\infty]{} x \in E$. On a $x_n = \lambda a_n$ avec $a_n \in A$ donc

$$a_n = \frac{1}{\lambda} x_n \xrightarrow[n \to +\infty]{} \frac{1}{\lambda} x = a \in A \text{ et } x = \lambda a \in \lambda A.$$

Par suite, λA est un fermé.

Corrigé de l'exercice 14. On a $\{0\} \subset \bigcap_{n \in \mathbb{N}^*} \left| \frac{-1}{n}, \frac{1}{n} \right|$ et

$$x \in \bigcap_{n \in \mathbb{N}^*} \left| \frac{-1}{n}, \frac{1}{n} \right| \implies \forall n \in \mathbb{N}^*, \quad \frac{-1}{n} < x < \frac{1}{n} \stackrel{\text{à la limite}}{\Longrightarrow} x = 0$$

$$\begin{split} &\operatorname{donc} \ \bigcap_{n \in \mathbb{N}^*} \left] \frac{-1}{n}, \frac{1}{n} \right[\subset \left\{ 0 \right\}. \ \operatorname{Par \ suite}, \ \bigcap_{n \in \mathbb{N}^*} \left] \frac{-1}{n}, \frac{1}{n} \right[= \left\{ 0 \right\}. \\ &\operatorname{Conclusion} : \ \operatorname{une \ intersection \ quelconque \ d'ouverts \ n'est \ pas \ n\'{e}cessairement \ un \ ouvert.} \\ &\operatorname{On \ a} \ \forall n \in \mathbb{N}^*, \ \left[\frac{-n}{n+1}, \frac{n}{n+1} \right] \subset \left] -1, 1 \right[\ \operatorname{donc} \ \bigcup_{n \in \mathbb{N}^*} \left[\frac{-n}{n+1}, \frac{n}{n+1} \right] \subset \left] -1, 1 \right[\ \operatorname{et} \end{split}$$

$$x \in]-1,1[\implies \exists n_0 \in \mathbb{N}^*, \quad \frac{-n_0}{n_0+1} \le x \le \frac{n_0}{n_0+1}$$
 car sinon $\forall n \ge 1, \quad x > \frac{n}{n+1}$ ou $x < \frac{-n}{n+1}$ et à la limita, $x \ge 1$ ou $x \le -1$
$$\implies x \in \bigcup_{n \in \mathbb{N}^*} \left[\frac{-n}{n+1}, \frac{n}{n+1} \right]$$

 $\mathrm{donc}\]-1,1\big[\subset\bigcup_{n\in\mathbb{N}^*}\left[\frac{-n}{n+1},\frac{n}{n+1}\right].\ \mathrm{Par}\ \mathrm{suite},\ \bigcup_{n\in\mathbb{N}^*}\left[\frac{-n}{n+1},\frac{n}{n+1}\right]=\big]-1,1\big[.$

Conclusion : une intersection quelconque de fermés n'est pas nécessairement un fermé.

6 / 15Binyze Mohamed

Corrigé de l'exercice 15. On a $r = \min\{|x-n|, |x-n-1|\} = \min\{x-n, n+1-x\}$ et

$$y \in]x - r, x + r[\iff -r < x - y < r$$

$$\implies x - n - 1 \le -r < x - y < r \le x - n$$

$$\implies n < y < n + 1$$

$$\implies y \in \mathbb{R} \setminus \mathbb{Z}$$

donc $]x - r, x + r[\subset \mathbb{R} \setminus \mathbb{Z}$. On vient de montrer que $\mathbb{R} \setminus \mathbb{Z}$ est un ouvert, donc \mathbb{Z} est un fermé.

Corrigé de l'exercice 16. Par définition de la limite, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, |x_n - x| < 1/4$. Donc

$$\forall n \ge n_0, |x_n - x_{n_0}| = |x_n - x_{n_0} + x - x| \le |x_n - x| + |x_{n_0} - x| < 1/2$$

nécessairement, $\forall n \ge n_0, x_n - x_{n_0} = 0 \operatorname{car} |x_n - x_{n_0}| \in \mathbb{N}.$

Par suite, il existe $n_0 \in \mathbb{N}$ tel que $x_n = x_{n_0}$ pour tout $n \ge n_0$ et, à la limite, $x = x_{n_0} \in \mathbb{Z}$. Ainsi, \mathbb{Z} est fermé.

Corrigé de l'exercice 17. Si $x \in \mathbb{Z}$, il existe r > 0 tel que $]x - r, x + r[\subset \mathbb{Z}$ et ceci est absurde, donc $\mathbb{Z} = \emptyset$.

Si $x \in \mathbb{Q}$, il existe r > 0 tel que $]x - r, x + r[\subset \mathbb{Q}$ et ceci est absurde car entre deux réels il existe un irrationnel, donc $\mathbb{Q} = \emptyset$.

Si $x \in \mathbb{R} \setminus \mathbb{Q}$, il existe r > 0 tel que $]x - r, x + r[\subset \mathbb{R} \setminus \mathbb{Q}$ et ceci est absurde car entre deux réels il existe un rationnel, donc $\mathbb{R} \setminus \mathbb{Q} = \emptyset$.

Corrigé de l'exercice 18. 1. Soit $x \in O + A$ donc $x = x_0 + a$ avec $x_0 \in O$ et $a \in A$. Comme O est un ouvert, il existe r > 0 tel que $B(x_0, r) \subset O$ et

$$B(x,r) = B(x_0 + a, r) = a + B(x_0, r) \subset O + A.$$

Par suite, O + A est un ouvert.

2. On a \mathbb{Z} est un fermé et l'ensemble $\mathbb{R} \setminus B = \underbrace{]-\infty, \frac{1}{2} \left[\bigcup_{n \in \mathbb{N}^*} \underbrace{]n - \frac{1}{2n}, n+1 - \frac{1}{2(n+1)} \left[\right]}_{\text{ouvert}} \right]$ est un ouvert donc B

est un fermé. L'ensemble A+B n'est pas fermé. En effet :

$$A+B=\left\{(m+n)-\frac{1}{2n},\ m\in\mathbb{Z},\ n\in\mathbb{N}^*\right\}=\left\{k-\frac{1}{2n},\ k\in\mathbb{Z},\ n\in\mathbb{N}^*\right\}.$$

La suite $(x_n)_n$ définie par $x_n = -\frac{1}{2n}$ vérifie : $x_n = \underbrace{-n}_{\in A} + \underbrace{n - \frac{1}{2n}}_{\in B} \in A + B$ et $x_n \xrightarrow[n \to +\infty]{} 0 \notin A + B$.

Corrigé de l'exercice 19. 1. a. Soit $x \in \mathring{A}$, il existe r > 0 tel que $B(x,r) \subset A$ donc $x \in A$ et $\mathring{A} \subset A$. Soit $x \in A$ et soit r > 0, on a ||x - x|| = 0 < r donc $x \in \overline{A}$ et $A \subset \overline{A}$.

- **b.** Si A est ouvert alors $\overset{\circ}{A} = \bigcup_{\substack{O \text{ ouvert de } E\\O \subset A}} O = A \bigcup \left(\bigcup_{\substack{O \text{ ouvert de } E\\O \subset A,\ O \neq A}} O\right) \supset A \text{ donc } A \subset \overset{\circ}{A} \text{ et par suite, } \overset{\circ}{A} = A.$
 - Si $\overset{\circ}{A} = A$ alors comme $\overset{\circ}{A}$ est un ouvert, A est un ouvert.
- c. Si A est fermé alors $\overline{A} = \bigcap_{\substack{F \text{ fermé de } E\\A \subseteq F, \ F \neq A}} F = A \cap \left(\bigcap_{\substack{F \text{ fermé de } E\\A \subseteq F, \ F \neq A}} F\right) \subset A \text{ donc } \overline{A} \subset A \text{ et par suite, } \overline{A} = A.$

Si $\overline{A} = A$ alors comme \overline{A} est un fermé, A est un fermé.

d. Supposons $A \subseteq B$ et soit $x \in \mathring{A}$, il existe r > 0 tel que $B(x,r) \subseteq A \subseteq B$ donc il existe r > 0 tel que $B(x,r) \subseteq B$ et $x \in \mathring{B}$. Par suite $\mathring{A} \subseteq \mathring{B}$.

Binyze Mohamed $7\ /\ 15$

- e. Supposons $A \subseteq B$ et soit $x \in \overline{A}$, donc $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ et donc $B(x,r) \cap B \neq \emptyset$ c-à-d $x \in \overline{B}$. Par suite $\overline{A} \subseteq \overline{B}$.
- **f.** On a $A \cap B \subset A$ et $A \cap B \subset B \implies \widehat{A \cap B} \subset \mathring{A}$ et $\widehat{A \cap B} \subset \mathring{B} \implies \widehat{A \cap B} \subset \mathring{A} \cap \mathring{B}$. Inversement.

$$x \in \overset{\circ}{A} \cap \overset{\circ}{B} \implies \exists r_1 > 0, \ B(x, r_1) \subset A \ \text{ et } \exists r_2 > 0, \ B(x, r_2) \subset B$$

$$\implies \exists r = \min(r_1, r_2) > 0, \ B(x, r) \subset A \cap B$$

$$\implies x \in \overset{\circ}{A \cap B}$$

donc $\overset{\circ}{A} \cap \overset{\circ}{B} \subset \overset{\circ}{A \cap B}$ d'où l'égalité $\overset{\circ}{A \cap B} = \overset{\circ}{A} \cap \overset{\circ}{B}$.

- $\mathbf{g}. \text{ On a } A \cap B \subset A \text{ et } A \cap B \subset B \implies \overline{A \cap B} \subset \overline{A} \text{ et } \overline{A \cap B} \subset \overline{B} \implies \overline{A \cap B} \subset \overline{A} \cap \overline{B}.$
- $\textbf{h.} \ \ \text{On a} \ A \subset A \cup B \ \text{et} \ B \subset A \cup B \implies \overset{\circ}{A} \subset \overset{\circ}{A \cup B} \ \text{et} \ \overset{\circ}{B} \subset \overset{\circ}{A \cup B} \implies \overset{\circ}{A} \cup \overset{\circ}{B} \subset \overset{\circ}{A \cup B}.$
- i. On a $A \subset A \cup B$ et $B \subset A \cup B \implies \overline{A} \subset \overline{A \cup B}$ et $\overline{B} \subset \overline{A \cup B} \implies \overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

 Inversement, $\overline{A} \cup \overline{B}$ est un fermé qui contient $A \cup B$ donc il contient $\overline{A \cup B}$ donc $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ d'où l'égalité $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 2. L'inclusion $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ est stricte en effet : pour $A = \mathbb{R} \setminus \mathbb{Q}$, $B = \mathbb{Q}$, on a $\overline{A \cap B} = \emptyset$ et $\overline{A} \cap \overline{B} = \mathbb{R}$. L'inclusion $\overset{\circ}{A} \cup \overset{\circ}{B} \subset \overline{A \cup B}$ est stricte en effet : pour $A = \mathbb{R} \setminus \mathbb{Q}$, $B = \mathbb{Q}$, on a $\overset{\circ}{A} \cup \overset{\circ}{B} = \emptyset$ et $\overline{A \cup B} = \mathbb{R}$.

Corrigé de l'exercice 20. Soient E un evn et F un sev de E. Soient $(x,y) \in \overline{F}^2$ et $\lambda \in \mathbb{K}$. Montrons que $x + \lambda y \in \overline{F}$. Il existe $(x_n)_n \in F^{\mathbb{N}}$, $(y_n)_n \in F^{\mathbb{N}}$ telles que $x_n \xrightarrow[n \to +\infty]{} x$ et $y_n \xrightarrow[n \to +\infty]{} y$, donc

$$\underbrace{x_n + \lambda y_n}_{\in F} \xrightarrow[n \to +\infty]{} x + \lambda y.$$

Ainsi, $x + \lambda y \in \overline{F}$ d'où \overline{F} est un sev de E.

Corrigé de l'exercice 21. Supposons $\overset{\circ}{F} \neq \emptyset$ et soit $x_0 \in \overset{\circ}{F}$, il existe r > 0 tel que $B(x_0, r) \subset F$. Soit $x \in E$.

- Si x = 0, alors $x \in F$.
- Si $x \neq 0$, considérons le vecteur $y = x_0 + \frac{1}{2r\|x\|}x$. On a $\|y x_0\| = \frac{1}{2r\|x\|}\|x\| < r$ c-à-d $y \in B(x_0, r)$ donc $y \in F$ et par suite $x = 2r\|x\|\underbrace{(y x_0)}_{\in F} \in F$.

D'où $E \subset F$ et par suite, F = E.

Supposons F est un ouvert de E, alors $\overset{\circ}{F}=F$ et en particulier $0\in \overset{\circ}{F}$ c-à-d $\overset{\circ}{F}\neq\varnothing$ donc d'après ce qui précède, F=E.

Corrigé de l'exercice 22. On a $d(x,A) = \inf_{a \in A} ||x - a||$. Par la caractérisation séquentielle de la borne inférieure,

$$\mathrm{d}(x,A) = 0 \iff \forall \varepsilon > 0, \ \exists a \in A, \ 0 \leq \|x-a\| \leq 0 + \varepsilon.$$

Donc $x \in \overline{A} \iff \forall r > 0, \exists a \in A, \|x - a\| \le r \iff d(x, A) = 0.$

Corrigé de l'exercice 23. Posons $D = \{P \in E, P(2) = 0\}$. Soit $P \in E$ et considérons la suite $(P_n)_{n \geq 0} \in E^{\mathbb{N}}$ définie par $P_n = P + P(2) \left(\frac{X}{2}\right)^n$. On a $P_n(2) = P(2) - P(2) = 0$ donc $(P_n)_{n \geq 0} \in D^{\mathbb{N}}$ et

$$||P_n - P|| = ||P(2)(\frac{X}{2})^n|| = |P(2)| \sup_{t \in [-1,1]} ||(\frac{t}{2})^n|| = \frac{|P(2)|}{2^n} \xrightarrow[n \to +\infty]{} 0$$

donc $P_n \xrightarrow[n \to +\infty]{} P$. D'où D est dense dans E.

Corrigé de l'exercice 24. Supposons H n'est pas fermé et montrons que H est dense dans E. On a $H \subset \overline{H} \subset E$ et $H \subsetneq \overline{H}$, il existe $a \in \overline{H} \smallsetminus H$, donc $H \oplus \mathrm{Vect}\,(a) \subset \overline{H}$. Mais $E = H \oplus \mathrm{Vect}\,(a)$ d'où $\overline{H} = E$.

Binyze Mohamed $8 \ / \ 15$

3 Continuité d'une application

Corrigé de l'exercice 25. Soit x un point de la sphère unité de E donc ||x|| = 1. Considérons la suite $(x_n)_n \in E^{\mathbb{N}}$ définie par $x_n = \frac{n}{n+1}x$. On a $||x_n|| = \frac{n}{n+1}||x|| < 1$ donc $f(x_n) = 0$ pour tout $n \in \mathbb{N}$.

Par ailleurs $||x_n - x|| = \frac{1}{n+1} ||x|| \xrightarrow[n \to +\infty]{} 0$. Ainsi, la suite $(x_n)_n$ converge vers x mais la suite $(f(x_n))_n$ ne converge pas vers f(x).

Corrigé de l'exercice 26. La fonction $f: x \mapsto \sin(\pi x)$ est continue sur \mathbb{R} et

$$f(x) = 0 \iff \sin(\pi x) = 0 \iff \pi x \in \pi \mathbb{Z} \iff x \in \mathbb{Z}$$

donc $\mathbb{Z} = f^{-1}(\{0\})$. Ainsi, \mathbb{Z} est un fermé comme image réciproque du fermé $\{0\}$ par l'application continue f.

Corrigé de l'exercice 27. 1. soit $(x,y) \in E^2$ et $a \in A$, on a

$$d(x, A) \le ||x - a||$$

 $\le ||x - y|| + ||y - a||$
 $\le ||x - y|| + d(y, A)$ par passage à la borne inférieure

donc $d(x, A) - d(y, A) \le ||x - y||$. Or x et y jouent des rôles symétriques, d'où $|d(x, A) - d(y, A)| \le ||x - y||$.

2. Soient $(x_1, \ldots, x_p) \in E_1 \times \ldots \times E_p$, $(y_1, \ldots, y_p) \in E_1 \times \ldots \times E_p$. On a, pour tout $1 \le i \le p$:

$$\|\pi_{i}(x_{1},...,x_{p}) - \pi_{i}(y_{1},...,y_{p})\|_{E_{i}} = \|x_{i} - y_{i}\|_{E_{i}}$$

$$\leq \max_{1 \leq i \leq p} \|x_{i} - y_{i}\|_{E_{i}}$$

$$= N((x_{1},...,x_{p}) - (x_{1},...,x_{p}))$$

où N est la norme produit définie sur l'espace produit $E_1 \times \ldots \times E_p$. D'où π_i est 1-lipshitzienne.

Corrigé de l'exercice 28. 1. Supposons f lipshitzienne sur \mathbb{R}_+ , donc $\exists k \in \mathbb{R}_+$, $\forall (x,y) \in (\mathbb{R}_+)^2$, $|\sqrt{x} - \sqrt{y}| \le k|x-y|$.

- Si k = 0, alors $\forall (x, y) \in \mathbb{R}^2_+$, $\sqrt{x} = \sqrt{y}$ ce qui est absurde.
- Si $k \neq 0$, en particulier, pour x = 0 et $y = \frac{1}{4k^2}$, on aurait $\frac{1}{2k} \leq k \frac{1}{4k^2} = \frac{1}{4k}$ ce qui est absurde donc f n'est pas lipshitzienne sur \mathbb{R}_+ .
- 2. On sait qu'une fonction f de classe \mathcal{C}^1 sur I est lipshitzienne si, et seulement si, f' est bornée. Ici, la fonction $x \longmapsto x^2$ est de classe \mathcal{C}^1 sur \mathbb{R} mais sa dérivée n'est pas bornée sur \mathbb{R} , donc la fonction $x \longmapsto x^2$ n'est pas lipshitzienne sur \mathbb{R} .
- 3. La réponse est négative. En effet : la fonction $x \longmapsto x$ est lipshitzienne sur $\mathbb R$ mais $x \longmapsto x^2$ ne l'est pas.

Corrigé de l'exercice 29. On montre que f(r) = rf(1) pour tout $r \in \mathbb{Q}$. Soit $x \in \mathbb{R}$, par densité de \mathbb{Q} dans \mathbb{R} , il existe $(r_n)_n \in \mathbb{Q}^{\mathbb{N}}$ telle que $r_n \xrightarrow[n \to +\infty]{} x$. Par ailleurs, $f(r_n) = r_n f(1)$ pour tout $n \in \mathbb{N}$ et, à la limite et la continuité de f, on obtient f(x) = xf(1). D'où f(x) = xf(1) pour tout $x \in \mathbb{R}$.

Corrigé de l'exercice 30. Soit $(f,g) \in E^2$.

• Pour la norme $\|.\|_1$:

$$|\Phi(f) - \Phi(g)| = \left| \int_0^1 f(t) dt - \int_0^1 g(t) dt \right| = \left| \int_0^1 f(t) - g(t) dt \right| \le \int_0^1 |f(t) - g(t)| dt = ||f - g||_1.$$

• Pour la norme $\|.\|_2$:

$$|\Phi(f) - \Phi(g)| \le \int_0^1 |f(t) - g(t)| dt \le \int_0^1 |f(t) - g(t)|^2 dt = ||f - g||_2.$$
Inégalité de Cauchy-Schwarz

• Pour la norme $\|.\|_{\infty}$:

$$|\Phi(f) - \Phi(g)| \le \int_0^1 |f(t) - g(t)| dt \le \sup_{t \in [0,1]} |f(t) - g(t)| \int_0^1 dt = ||f - g||_{\infty}.$$

Binyze Mohamed 9 / 15

4 Applications linéaires et multilinéaires continues

Corrigé de l'exercice 31. 1. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. On a :

$$\varphi(A + \lambda B) = (A + \lambda B, (A + \lambda B)^{\mathsf{T}}) = (A + \lambda B, A^{\mathsf{T}} + \lambda B^{\mathsf{T}}) = (A, A^{\mathsf{T}}) + \lambda (B, B^{\mathsf{T}}) = \varphi(A) + \lambda \varphi(B)$$

donc φ est linéaire.

2. L'application produit matriciel $\psi: \mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$ est continue, car bilinéaire en dimen-(A, B) $\longmapsto AB$

sion finie et $f = \psi \circ \varphi$, donc f est continue comme composée d'applications continues.

3. $\{A \in \mathcal{M}_n(\mathbb{R}), AA^{\top} = I_n\} = \{A \in \mathcal{M}_n(\mathbb{R}), f(A) = I_n\} = f^{-1}(\{I_n\})$ qui est, un fermé comme image réciproque du fermé $\{I_n\}$ par l'application continue f.

Corrigé de l'exercice 32. On a $A \in \mathcal{GL}_n(\mathbb{K}) \iff \det A \neq 0$, donc

$$\mathcal{GL}_n(\mathbb{K}) = \left\{ A \in \mathcal{M}_n(\mathbb{K}), \det A \neq 0 \right\} = \left\{ A \in \mathcal{M}_n(\mathbb{K}), \det A \in \mathbb{K}^* \right\} = \det^{-1}(\mathbb{K}^*).$$

 $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$ est un ouvert comme complémentaire du fermé $\{0\}$ et l'application det est continue car polynomiale en les coefficients de la matrice. D'où $\mathcal{GL}_n(\mathbb{K})$ est un ouvert.

Corrigé de l'exercice 33. 1. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. On a :

$$\forall (i,j) \in [[1,n]]^2, \ \varphi_{i,j}(A+\lambda B) = (A+\lambda B)_{i,j} = A_{i,j} + \lambda B_{i,j} = \varphi_{i,j}(A) + \lambda \varphi_{i,j}(B)$$

donc $\varphi_{i,j}$ est linéaire et $\mathcal{M}_n(\mathbb{K})$ est de dimension finie, par suite $\varphi_{i,j}$ est continue.

- 2. On a com $A = ((-1)^{i+j} \det(\varphi_{i,j}(A)))_{1 \le i,j \le n}$. Chaque application coordonnée $A \mapsto (-1)^{i+j} \det(\varphi_{i,j}(A))$ est continue car composée de deux applications continues donc l'application $A \mapsto \text{com } A$ est continue.
- 3. L'application transposée $\varphi: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$ est continue car linéaire en dimension finie, donc $A \longmapsto A^{\mathsf{T}}$

l'application $A \longmapsto (\text{com } A)^{\top}$ est continue comme composée d'applications continues.

D'où l'application $A \mapsto A^{-1} = \frac{1}{\det A} (\operatorname{com} A)^{\mathsf{T}}$ est continue comme produit d'applications continues.

Corrigé de l'exercice 34. 1. L'application φ est linéaire. Soit $f \in \mathcal{C}([0,1],\mathbb{R})$, on a

$$|\varphi(f)| = |f(1)| \le \sup_{t \in [0,1]} |f(t)| = ||f||_{\infty}$$

donc φ est continue sur $\mathcal{C}([0,1],\mathbb{R})$ muni de la norme $\|.\|_{\infty}$.

2. L'application φ est linéaire. La suite $(f_n)_n$ de $\mathcal{C}([0,1],\mathbb{R})$ définie par $f_n(t) = (n+1)t^n$ vérifie

$$\forall n \in \mathbb{N}, \|f_n\|_1 = 1, |\varphi(f_n)| = n+1 \text{ et } \frac{|\varphi(f_n)|}{\|f_n\|_1} = n+1 \xrightarrow[n \to +\infty]{} +\infty.$$

Par suite, φ n'est pas continue sur $\mathcal{C}([0,1],\mathbb{R})$ muni de la norme $\|.\|_1$.

Corrigé de l'exercice 35. 1. φ est linéaire et pour tout $f \in E$, on a

$$|\varphi(f)| = |f(1) - f(0)| \le |f(1)| + |f(0)| \le ||f||_{\infty} + ||f||_{\infty} = 2||f||_{\infty}$$

 $\operatorname{donc} \, \varphi \, \operatorname{est} \, \operatorname{continue} \, \operatorname{et} \, ||| \, \varphi \, ||| = \sup_{\|f\|_{\infty} \leq 1} |\varphi(f)| \leq 2. \, \operatorname{Pour} \, f : t \longmapsto t - \frac{1}{2} \, \operatorname{on} \, \operatorname{a} \, \operatorname{l'\'egalit\'e} \, |\varphi(f)| = 2 \|f\|_{\infty}. \, \operatorname{D'o\`u} \, ||| \, \varphi \, ||| = 2.$

2. φ est linéaire et pour tout $f \in E$, on a

$$|\varphi(f)| = \left| \int_0^1 t f(t) dt \right| \le \int_0^1 t |f(t)| dt \le \int_0^1 |f(t)| dt = ||f||_1$$

Binyze Mohamed $10 \ / \ 15$

donc φ est continue et $||| \varphi ||| = \sup_{f \in E \setminus \{0\}} \frac{|\varphi(f)|}{\|f\|_1} \le 1$. La suite $(f_n)_n \in E^{\mathbb{N}}$ définie par $f_n(t) = t^n$ vérifie

$$||f_n||_1 = \frac{1}{n+1}, |\varphi(f_n)| = \frac{1}{n+2} \text{ et } \frac{|\varphi(f_n)|}{||f_n||_1} \xrightarrow[n \to +\infty]{} 1.$$

D'où $||| \varphi ||| = 1$.

3. φ est linéaire et pour tout $f \in E$, on a

$$|\varphi(f)| = \left| \int_0^1 f(t) \cos(\pi t) dt \right| \le \int_0^1 |f(t)| |\cos(\pi t)| dt \underset{\text{Cauchy-Schwarz}}{\le} \sqrt{\int_0^1 |f(t)|^2 dt} \sqrt{\int_0^1 |\cos(\pi t)|^2 dt}$$

$$\text{Or } \int_0^1 |\cos(\pi t)|^2 \mathrm{d}t = \frac{1}{2} \int_0^1 \left(\cos(2\pi t) + 1\right) \mathrm{d}t = \frac{1}{2} \left[\frac{\sin(2\pi t)}{2\pi} + t\right]_0^1 = \frac{1}{2}, \text{ donc } |\varphi(f)| \le \frac{1}{\sqrt{2}} \|f\|_2 \text{ c-à-d } \varphi \text{ est continue }$$
 et $\|\|\varphi\|\| \le \frac{1}{\sqrt{2}}.$ Pour $f: t \longmapsto \cos(\pi t)$ on a l'égalité $|\varphi(f)| = \frac{1}{\sqrt{2}} \|f\|_2.$ D'où $\|\|\varphi\|\| = \frac{1}{\sqrt{2}}.$

Corrigé de l'exercice 36. 1. Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$. Pour tout $x \in \mathbb{K}^p$, on a

$$\forall i \in [[1, n]], \ |(A.x)_i| = \left| \sum_{j=1}^p a_{i,j} x_j \right| \le \sum_{j=1}^p |a_{i,j}| ||x_j| \le \sum_{j=1}^p |a_{i,j}| ||x||_{\infty} \le \left(\sup_{1 \le i \le n} \sum_{j=1}^p |a_{i,j}| \right) ||x||_{\infty}.$$

En passant au sup sur i on obtient $\|A.x\|_{\infty} \le \left(\sup_{1 \le i \le n} \sum_{j=1}^p |a_{i,j}|\right) \|x\|_{\infty}$ c-à-d $\|A.x\|_{\infty} \le \|A\|_{\infty} \|x\|_{\infty}$ et par suite,

$$\inf \left\{ C > 0, \ \forall x \in \mathbb{K}^p, \ \|A.x\|_{\infty} \le C \|x\|_{\infty} \right\} \le \|A\|_{\infty}.$$

2. a. Si $A = O_{n,p}$, le résultat est clair.

Si $A \neq O_{n,p}$, il existe $j_0 \in [[1,p]]$ tel que $|y_{j_0}| = 1$ et, puisque $|y_j| \le 1$ pour tout $j \in [[1,p]]$, on a $||y||_{\infty} = 1$. Par ailleurs,

$$\forall i \in [[1, n]], \ |(A.y)_i| = \left| \sum_{j=1}^p a_{i,j} y_j \right| \le \sum_{j=1}^p |a_{i,j}| \ |y_j| \le \sum_{j=1}^p |a_{i,j}| \le \sup_{1 \le i \le n} \sum_{j=1}^p |a_{i,j}| = \left(\sup_{1 \le i \le n} \sum_{j=1}^p |a_{i,j}| \right) \|y\|_{\infty}$$

donc $\forall i \in [[1, n]], |(A.y)_i| \le ||A||_{\infty} ||y||_{\infty}.$

b. En passant au sup sur i on obtient $||A.y||_{\infty} = \sup_{1 \le i \le n} |(A.y)_i| \le ||A||_{\infty} ||y||_{\infty}$. Par ailleurs,

$$|(A.y)_{i_0}| = \left| \sum_{j=1}^p a_{i_0,j} y_j \right| = \left| \sum_{j=1}^p a_{i_0,j} \frac{|a_{i_0,j}|}{a_{i_0,j}} \right| = \sum_{j=1}^p |a_{i_0,j}| = \sup_{1 \le i \le n} \sum_{j=1}^p |a_{i,j}| = ||A||_{\infty} ||y||_{\infty}$$

donc $|(A.y)_{i_0}| = ||A||_{\infty} ||y||_{\infty}$ et par suite, $||A.y||_{\infty} = ||A||_{\infty} ||y||_{\infty}$.

 $\textbf{3.} \ \ \text{D'apès la question précédente, on a} : \|A\|_{\infty} = \frac{\|A.y\|_{\infty}}{\|y\|_{\infty}} \leq \inf \left\{ C > 0, \ \forall x \in \mathbb{K}^p, \ \|A.x\|_{\infty} \leq C \|x\|_{\infty} \right\} \ \text{donc}$

$$\inf\left\{C>0,\ \forall x\in\mathbb{K}^p,\ \|A.x\|_{\infty}\leq C\|x\|_{\infty}\right\}\geq\|A\|_{\infty}$$

Finalement, $\|A\|_{\infty} = \inf \left\{ C > 0, \ \forall x \in \mathbb{K}^p, \ \|A.x\|_{\infty} \le C \|x\|_{\infty} \right\}.$

5 Compacité

Corrigé de l'exercice 37. S est bornée et $S = f^{-1}(\{1\})$ où $f: x \mapsto ||x||$, donc S est un fermé comme image réciproque du fermé $\{1\}$ par l'application continue f. Comme E est de dimension finie, alors S est un compact.

Binyze Mohamed $11\ /\ 15$

Corrigé de l'exercice 38. 1. Soit $(m,n) \in \mathbb{N}^2$ tel que $m \neq n$. On a, pour tout $t \in [0,1]$:

$$|f_m(t) - f_n(t)| = |e^{2im\pi t} - e^{2in\pi t}|$$

$$= |e^{i(m+n)\pi t} (e^{i(m-n)\pi t} - e^{-i(m-n)\pi t})|$$

$$= 2 |\sin((m-n)\pi t)| \le 2,$$

et, l'égalité étant réalisée pour $t = \frac{1}{2|m-n|} \in [0,1]$, donc $||f_m - f_n||_{\infty} = \sup_{t \in [0,1]} |f_m(t) - f_n(t)| = 2$.

2. Supposons $(f_n)_n$ possède une valeur d'adhérence $f \in E$, il existe $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $f_{\varphi(n)} \xrightarrow[n \to +\infty]{} f$, donc

$$\forall (m,n) \in \mathbb{N}^2, \ m > n \implies \|f_{\varphi(m)} - f_{\varphi(n)}\|_{\infty} = 2 \qquad (\star)$$

à la limite dans (*) quand $m \to +\infty$, on obtient : $\forall n \in \mathbb{N}$, $||f_{\varphi(n)} - f||_{\infty} = 2$, et ceci est absurde puisque $f_{\varphi(n)} \xrightarrow[n \to +\infty]{} f$. Ainsi, la suite $(f_n)_n$ ne possède aucune valeur d'adhérence.

3. Notons S la sphère unité de E. On a $||f_n||_{\infty} = \sup_{t \in [0,1]} |f_n(t)| = \sup_{t \in [0,1]} |e^{2in\pi t}| = 1$ donc $(f_n)_n \in S^{\mathbb{N}}$ et ne possède aucune valeur d'adhérence donc S n'est pas compact.

Corrigé de l'exercice 39. 1. Soit $(x_n)_n$ une suite de A+B donc $x_n=a_n+b_n$ avec $(a_n)_n \in A^{\mathbb{N}}$ et $(b_n)_n \in B^{\mathbb{N}}$. Il existe $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $a_{\varphi(n)} \xrightarrow[n \to +\infty]{} a \in A$. La suite $(b_{\varphi(n)})_n$ possède une valeur d'adhérence dans B donc il existe $\psi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $b_{\varphi(\psi(n))} \xrightarrow[n \to +\infty]{} b \in B$. Par ailleurs

$$x_{\varphi(\psi(n))} = a_{\varphi(\psi(n))} + b_{\varphi(\psi(n))} \xrightarrow[n \to +\infty]{} a + b \in A + B$$

c-à-d a+b est une valeur d'adhérence de $(x_n)_n$. Ainsi, A+B est compact.

2. Soit $(x_n)_n$ une suite de A+B telle que $x_n \xrightarrow[n \to +\infty]{} x \in E$. On écrit $x_n = a_n + b_n$ avec $(a_n)_n \in A^{\mathbb{N}}$ et $(b_n)_n \in B^{\mathbb{N}}$. Il existe $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $a_{\varphi(n)} \xrightarrow[n \to +\infty]{} a \in A$ donc

$$b_{\varphi(n)} = a_{\varphi(n)} - x_{\varphi(n)} \xrightarrow[n \to +\infty]{} a - x$$

comme B est fermé, $a - x = b \in B$ et donc $x = a + b \in A + B$. D'où A + B est fermé.

A+B n'est pas, en général, un compact. Il suffit de prendre B=E qui est un fermé mais A+E n'est pas compact car n'est pas borné.

Corrigé de l'exercice 40. L'ensemble des matrices non inversibles de $\mathcal{M}_n(\mathbb{K})$ est un fermé car c'est le complémentaire de l'ensemble des matrices inversibles qui est un ouvert.

La suite $(A_k)_k$ de $\mathcal{M}_n(\mathbb{K})$ définie par $A_k = \operatorname{diag}(k,0,\ldots,0)$ est non inversible et $||A_k||_2 = k \xrightarrow[k \to +\infty]{} +\infty$, donc l'ensemble des matrices non inversibles n'est pas borné et par suite, n'est pas compact.

Corrigé de l'exercice 41. Soit $x \in E$. L'application $f: K \longrightarrow \mathbb{R}$ est continue sur le compact K, d'après $y \longmapsto \|y - x\|$

le théorème des bornes atteintes, f est bornée et atteint ses bornes donc il existe $x_0 \in K$ tel que $f(x_0) = \inf_{y \in K} f(y)$ c-à-d $||x_0 - x|| = \inf_{y \in K} ||y - x||$. Ainsi, il existe $x_0 \in K$ tel que $d(x, K) = ||x_0 - x||$.

Corrigé de l'exercice 42. Par la caractérisation séquentielle de la borne inférieure, il exite une suite $(a_n)_n$ de F telle que $||x - a_n|| \xrightarrow[n \to +\infty]{} d(x, F)$. En particulier, la suite $(||x - a_n||)_n$ est bornée et on a de même pour la suite $(a_n)_n$ puisque

$$\forall n \in \mathbb{N}, \|a_n\| \le \underbrace{\|x - a_n\|}_{\text{bornée}} + \|x\|.$$

D'après le théorème de Bolzano-Weierstrass en dimension finie, on peut extraire de $(a_n)_n$ une suite convergente $(a_{\varphi(n)})_n$. Notons a sa limite, on a alors

Binyze Mohamed $12\ /\ 15$

$$a \in F$$
 car F fermé et $d(x, F) = \lim_{n \to +\infty} ||x - a_{\varphi(n)}|| = ||x - a||$.

Corrigé de l'exercice 43. 1. Supposons que f admet au moins deux points fixes x_1 et x_2 $(x_1 \neq x_2)$. On a

$$||f(x_1) - f(x_2)|| = ||x_1 - x_2|| < ||x_1 - x_2||$$

ce qui est absurde donc f possède au plus un point fixe.

2. La fonction f est lipshitzienne donc continue, donc l'application $g: K \longrightarrow \mathbb{R}$ est continue $x \longmapsto \|f(x) - x\|$ comme composée d'applications continues. Comme K est compact, d'après le théorème des bornes atteintes, g est bornée et atteint ses bornes donc il existe $c \in K$ tel que $g(c) = \inf_{x \in K} g(x)$ c-à-d il existe $c \in K$ tel que $\|f(x) - x\| \ge \|f(c) - c\|$ pour tout $x \in K$.

3. Si $f(c) \neq c$ alors ||f(c)-c|| > ||f(f(c))-f(c)|| = g(f(c)) ce qui est absurdre car ||f(c)-c|| est la valeur minimale de g sur K. Par suite, f(c) = c et c est un point fixe de f.

6 Connexité par arcs

Corrigé de l'exercice 44. 1. $U=\left\{z\in\mathbb{C},\;|z|=1\right\}$.

• Première méthode : On a

$$U = \left\{ z \in \mathbb{C}, |z| = 1 \right\}$$

$$= \left\{ e^{i\theta}, \ \theta \in \mathbb{R} \right\}$$

$$= \left\{ f(\theta), \ \theta \in \mathbb{R} \right\} \text{ où } f : \mathbb{R} \longrightarrow U \text{ définie par } f(\theta) = e^{i\theta}$$

$$= f(\mathbb{R})$$

Comme f est continue et \mathbb{R} est connexe par arcs alors U est connexe par arcs comme image réciproque d'un connexe par arcs par une application continue.

• Deuxième méthode : Soit $(u,v) \in U^2$ donc $u = e^{i\alpha}$ et $v = e^{i\beta}$ avec $(\alpha,\beta) \in \mathbb{R}^2$. L'application γ : $[0,1] \longrightarrow U$ est un chemin inscrit dans U d'extrémités u et v : $t \longmapsto e^{i(t\alpha+(1-t)\beta)}$ $\gamma(0) = e^{i\beta} = v, \ \gamma(1) = e^{i\alpha} = u.$ D'où U est connexe par arcs.

2. U n'est pas étoilé : $\forall a \in U, \exists x \in U$ tel que [a, x] n'est pas inclus dans U. (prendre x = -a)

Corrigé de l'exercice 45. Soit $(u, v) \in (\mathbb{C}^*)^2$.

- Si $0 \notin [u, v]$, l'application $\gamma : t \mapsto tu + (1 t)v$ est un chemin inscrit dans \mathbb{C}^* d'extrémités u et v.
- Supposons $0 \in [u, v]$ et soit $w \notin [u, v]$. L'application

$$\gamma(t) = \begin{cases} 2tw + (1-2t)u & \text{si} \quad t \in [0, 1/2] \\ (2-2t)w + (2t-1)v & \text{si} \quad t \in [1/2, 1] \end{cases}$$

est un chemin inscrit dans \mathbb{C}^* d'extrémités u et v.

D'où \mathbb{C}^* est connexe par arcs.

Corrigé de l'exercice 46. Soit $(a,b) \in \mathbb{Q}^2$. Supposons \mathbb{Q} est connexe par arcs, il existe un chemin $\gamma : [0,1] \longrightarrow \mathbb{Q}$ tel que $\gamma(0) = a$ et $\gamma(1) = b$. Comme γ est continue, par le TVI, $\gamma([0,1])$ est un intervalle de \mathbb{R} . Par ailleurs, la densité de $\mathbb{R} \setminus \mathbb{Q}$ donne l'existence d'un irrationnel α entre a et b donc $\alpha \in \gamma([0,1]) \subset \mathbb{Q}$ ce qui est absurde. D'où \mathbb{Q} n'est pas connexe par arcs.

Binyze Mohamed 13 / 15

Corrigé de l'exercice 47. 1. Soit $A, B \in \mathcal{D}$, on écrit $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $B = \operatorname{diag}(\mu_1, \dots, \mu_n)$ avec $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ et $(\mu_1, \dots, \mu_n) \in \mathbb{K}^n$.

L'application

$$\gamma : [0,1] \longrightarrow \mathcal{D}$$

$$t \longmapsto tA + (1-t)B = \operatorname{diag}(t\mu_1 + (1-t)\lambda_1, \dots, t\mu_n + (1-t)\lambda_n)$$

est un chemin inscrit dans \mathcal{D} d'extrémités A et $B: \gamma(0) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) = A$ et $\gamma(1) = \operatorname{diag}(\mu_1, \ldots, \mu_n) = B$. Par suite, \mathcal{D} est convexe.

2. On a $I_n \in \Omega$. Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \Omega$. L'application $\gamma : [0,1] \longrightarrow \Omega$ définie par

$$\gamma(t) = \begin{cases} 0 & \text{si } i > j \\ ta_{i,j} & \text{si } i < j \\ r_j^t e^{it\theta_j} & \text{si } i = j \text{ où } a_{j,j} = r_j e^{i\theta_j} \end{cases}$$

est un chemin inscrit dans Ω d'extrémités I_n et $A:\gamma(0)=I_n$ et $\gamma(1)=A$. (avec la convention $0^0=1$) Par transitivité, on peut joindre deux éléments quelconques de Ω . Par suite, Ω est connexe par arcs.

Corrigé de l'exercice 48. Supposons $\mathcal{GL}_n(\mathbb{R})$ est connexe par arcs. L'application det est continue car polynomiale en les coefficients de la matrice, donc $\det(\mathcal{GL}_n(\mathbb{R}))$ est connexe par arcs. Par ailleurs, $\det(\mathcal{GL}_n(\mathbb{R})) = \mathbb{R}^*$ qui n'est pas connexe par arcs car n'est pas un intervalle, ce qui est absurde. D'où $\mathcal{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Corrigé de l'exercice 49. 1. Il est clair que A est convexe donc connexe par arcs.

- 2. L'inclusion $g(A) \subset f'(I)$ découle du théorème des accroissements finis. D'autre part, soit $z = f'(a) \in f'(I)$. I étant un ouvert (car $I = \varphi^{-1}(\mathbb{R}_+^*)$ où $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}$, définie par $\varphi(x,y) = y - x$), donc il existe r > 0 tel que $]a - r, a + r[\subset I$. On pose $a_n = a - \frac{r}{n+1}$. Alors $(a_n)_{n \in \mathbb{N}}$ est une suite de I qui converge vers a. Comme f est dérivable en a, $f'(a) = \lim_{n \to +\infty} g(a, a_n)$. Or $g(a, a_n) \in \overline{g(A)}$, donc $z \in \overline{g(A)}$. D'où $g(A) \subset f'(I) \subset \overline{g(A)}$.
- 3. g(A) est un intervalle de \mathbb{R} et son adhérence $\overline{g(A)}$ est l'intervalle fermé qui a les mêmes extrémités. Dans ces conditions, f'(I) ne peut être qu'un intervalle.

Corrigé de l'exercice 50. Soit $(x,y) \in I^2$ tel que x < y donc $(x,y) \in X$ et X est connexe par arcs car convexe. Par ailleurs $f(x) - f(y) = g(x,y) \neq 0$ car f injective, donc $g(X) \subset \mathbb{R}^*$. La fonction g est continue car f l'est donc g(X) est un intervalle de \mathbb{R} , nécessairement, $g(X) \subset \mathbb{R}^*_+$ ou $g(X) \subset \mathbb{R}^*_-$ cela veut dire que f(x) > f(y) ou f(x) < f(y). D'où f est strictement monotone.

Corrigé de l'exercice 51. 1. Soient $(a,b) \in A \times B$ et $(a',b') \in A \times B$. Il existe un chemin φ inscrit dans A d'extrémités a et $a' : \varphi(0) = a$, $\varphi(1) = a'$. De même, Il existe un chemin ψ inscrit dans B d'extrémités b et $b' : \psi(0) = b$, $\psi(1) = b'$. Considérons l'application

$$\gamma : [0,1] \longrightarrow A \times B$$
.
$$t \longmapsto (\varphi(t), \psi(t))$$

On a γ est un chemin inscrit dans $A \times B$ et d'extrémités (a,b) et (a',b'):

$$\gamma(0) = (\varphi(0), \psi(0)) = (a, b), \ \gamma(1) = (\varphi(1), \psi(1)) = (a', b').$$

D'où $A \times B$ est connexe par arcs.

2. L'application $f: E \times E \longrightarrow E$ est continue et on a $A + B = f(A \times B)$ donc A + B est connexe par $(x,y) \longmapsto x + y$

arcs comme image directe du connexe par arcs $A \times B$ par l'application continue f.

- **3.** Supposons $A \cap B \neq \emptyset$, il existe $x_0 \in A \cap B$. Soit x, y dans $A \cup B$.
 - Si x, y dans A, le problème est résolu.

Binyze Mohamed $14\ /\ 15$

- Si x, y dans B, le problème est résolu.
- Si $x \in A$ et $y \in B$. Alors puisque A est connexe par arcs, il existe un chemin γ_1 inscrit dans A d'extrémités x_0 et $x : \gamma_1(0) = x$, $\gamma_1(1) = x_0$. De même, puisque B est connexe par arcs, il existe un chemin γ_2 inscrit dans B d'extrémités x_0 et $y : \gamma_2(0) = x_0$, $\gamma_2(1) = y$. L'application

$$\gamma(t) = \begin{cases} \gamma_1(2t) & \text{si } t \in [0, 1/2] \\ \gamma_2(2t-1) & \text{si } t \in [1/2, 1] \end{cases}$$

est un chemin inscrit dans $A \cup B$ d'extrémités x et $y: \gamma(0) = x, \gamma(1) = y$.

• De même si $x \in B$ et $y \in A$.

D'où $A \cup B$ est connexe par arcs.

Binyze Mohamed $$15\ /\ 15$$