Chapitre 2

Espaces vectoriels normés

M. BINYZE

https://supspé.com

CPGE Laâyoune

Filière MP

2025-2026

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace vectoriel normé
- Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel normé
- 3 Topologie d'un espace vectoriel normé
- 4 Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Normes et distances

Dans ce chapitre est sauf indication contraire, la notation $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$ et E un $\mathbb K$ -ev.

Définition 1.1 (norme).

On appelle *norme* sur E toute application $\|.\|:E\longrightarrow \mathbb{R}_+$ vérifiant :

- **1** Séparation : $\forall x \in E$, $||x|| = 0 \implies x = 0_E$.
- $2 \ \ \text{Homogénéité}: \ \forall x \in E, \ \forall \lambda \in \mathbb{K}, \quad \|\lambda x\| = |\lambda| \|x\|.$
- Inégalité triangulaire : $\forall (x,y) \in E^2$, $||x+y|| \le ||x|| + ||y||$.

On dit alors que le couple $(E, \|.\|)$ est un *espace vectoriel normé*.

Normes usuelles

1 Normes usuelles sur \mathbb{K}^n . Soit $x = (x_1, \dots, x_n) \in \mathbb{K}^n$, on pose:

$$\|x\|_1 \overset{\mathsf{def}}{=} \sum_{i=1}^n |x_i|, \quad \|x\|_2 \overset{\mathsf{def}}{=} \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}} \quad \mathsf{et} \quad \|x\|_\infty \overset{\mathsf{def}}{=} \max_{1 \le i \le n} |x_i|.$$

Les applications $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ sont des normes sur \mathbb{K}^n .

- 2 Normes usuelles sur $\mathcal{M}_{n,p}(\mathbb{K})$. Soit $A = (a_{i,j})_{1 \le i \le n} \in \mathcal{M}_{n,p}(\mathbb{K})$, on pose :
 - $||A||_1 \stackrel{\text{def}}{=} \sup_{1 \le j \le p} \sum_{i=1}^n |a_{i,j}|.$ $||A||_{\infty} \stackrel{\text{def}}{=} \sup_{1 \le i \le n} \sum_{j=1}^p |a_{i,j}|.$
 - $||A||_2 \stackrel{\mathsf{def}}{=} \left(\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2 \right)^{\frac{1}{2}}$.

Les applications $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ sont des normes sur $\mathcal{M}_{n,p}(\mathbb{K})$.

Normes usuelles sur $C^0([a,b],\mathbb{K})$ avec a < b. Soit $f \in C^0([a,b],\mathbb{K})$, on pose :

$$||f||_1 \stackrel{\mathsf{def}}{=} \int_a^b |f(t)| \mathrm{d}t$$

(norme de la convergence en moyenne)

$$||f||_2 \stackrel{\mathsf{def}}{=} \left(\int_a^b |f(t)|^2 \mathrm{d}t \right)^{\frac{1}{2}}$$

(norme de la convergence en moyenne quadratique).

Les applications $\|.\|_1$ et $\|.\|_2$ sont des normes sur $C^0([a,b],\mathbb{K})$.

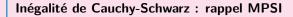
4 Norme usuelle sur¹ $\mathcal{B}(X,\mathbb{K})$. Soit $f \in \mathcal{B}(X,\mathbb{K})$, on pose :

$$\|f\|_{\infty} \stackrel{\mathsf{def}}{=} \sup_{t \in X} |f(t)|$$

(norme de la convergence uniforme ou norme infinie).

L'application $\|.\|_{\infty}$ est une norme sur $\mathcal{B}(X,\mathbb{K})$.

¹Soit X un ensemble. $\mathcal{B}(X,\mathbb{K})$ est l'espace des fonctions bornées de X dans \mathbb{K} .



I Pour des sommes : soit (x_1,\ldots,x_n) et (y_1,\ldots,y_n) dans \mathbb{K}^n . Alors

$$\sum_{i=1}^{n} |x_i y_i| \leq \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}}.$$

2 Avec des intégrales : soit f et g dans $\mathcal{C}^0([a,b],\mathbb{K})$. Alors

$$\int_{a}^{b} |f(t)g(t)| dt \le \left(\int_{a}^{b} |f(t)|^{2} dt \right)^{\frac{1}{2}} \left(\int_{a}^{b} |g(t)|^{2} dt \right)^{\frac{1}{2}}.$$

Dans la suite, le couple $\left(E,\|.\|\right)$ désigne un \mathbb{K} -espace vectoriel normé (\mathbb{K} -evn).

Proposition 1.1 (propriétés d'une norme).

- 1 $\forall x \in E, ||x|| = 0 \iff x = 0_E.$
- $|x| \forall x \in E, ||-x|| = ||x||.$
- $\forall (x,y) \in E^2, \ \left| \|x\| \|y\| \right| \le \|x y\| \$ appelée inégalité triangulaire renversée.

Définition 1.2 (vecteur unitaire).

On dit qu'un vecteur x de E est **unitaire** lorsque ||x|| = 1.

Proposition 1.2 (norme produit).

Soit $(E_i, \|.\|_{E_i})_{1 \le i \le p}$ une famille de p evn et $E = E_1 \times ... \times E_p$. L'application N définie par

$$\forall x = (x_1, \dots, x_p) \in E, \ N(x) = \max_{1 \le i \le p} ||x_i||_{E_i}$$

est une norme sur E appelée **norme produit**.

Définition 1.3 (distance).

L'application d définie sur $E \times E$ par d(x,y) = ||x-y|| est appelée la **distance associée** à la norme ||.||.

Définition 1.4 (distance à une partie).

Soit A une partie non vide de E et $x \in E$. On appelle la **distance** de x à A la quantité¹(positive) :

$$d(x,A) \stackrel{\mathsf{déf}}{=} \inf_{a \in A} ||x - a||.$$

Lorsqu'il existe $a_0 \in A$ tel que $d(x, A) = ||x - a_0||$, on dit que la distance de x à A est **atteinte** en a_0 .

 $^{^1\}mathsf{Comme}\ A$ est non vide, l'ensemble $\left\{\|x-a\|,\ a\in A\right\}$ est une partie non vide de $\mathbb{R}_+,$ donc admet une borne inférieure.

Caractérisation séquentielle de la borne inférieure : rappel MPSI Soit F une partie non vide de $\mathbb R$ admetttant une borne inférieure et δ un **minorant** de F. Alors

$$\delta = \inf F \iff \exists (u_n)_{n \in \mathbb{N}} \in F^{\mathbb{N}}, \quad u_n \xrightarrow[n \to +\infty]{} \delta.$$

Ainsi

$$d(x,A) = \alpha \iff \begin{cases} \forall a \in A, \ \|x - a\| \ge \alpha \\ \text{et} \\ \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \ \|x - a_n\| \xrightarrow[n \to +\infty]{} \alpha \end{cases}$$

Dans \mathbb{R} , on a d(1,[0,1[)=0.

Normes équivalentes

Définition 1.5 (normes équivalentes).

Deux normes N_1 et N_2 sur E sont **équivalentes**¹ si :

$$\exists (\alpha, \beta) \in (\mathbb{R}_+^*)^2, \ \forall x \in E, \ \alpha N_1(x) \le N_2(x) \le \beta N_1(x)$$

 1 Ceci définit une relation d'équivalence sur l'ensemble des normes sur E.

Théorème 1.1 (équivalence des normes en dimension finie).

Sur un même \mathbb{K} -ev de dimension finie, toutes les normes sont équivalentes.

Dans \mathbb{K}^n :

• les normes $\|.\|_1$ et $\|.\|_{\infty}$ sont équivalentes :

$$\boxed{\|x\|_{\infty} \le \|x\|_1 \le n\|x\|_{\infty}}$$

• les normes $\|.\|_2$ et $\|.\|_{\infty}$ sont équivalentes :

• les normes $\|.\|_1$ et $\|.\|_2$ sont équivalentes :

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2 .$$

Boules dans un espace vectoriel normé

Définition 1.6 (boules, sphère).

Soit $a \in E$ et r > 0.

lacktriangle On appelle **boule ouverte** de centre a et de rayon r de E l'ensemble

$$B(a,r) \stackrel{\mathsf{def}}{=} \left\{ x \in E, \|x - a\| < r \right\}.$$

2 On appelle **boule fermée** de centre a et de rayon r de E l'ensemble

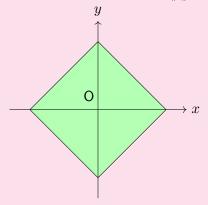
$$B_f(a,r) \stackrel{\mathsf{def}}{=} \left\{ x \in E, \|x - a\| \le r \right\}.$$

f 3 On appelle $\it sph\`ere$ de centre $\it a$ et de rayon $\it r$ de $\it E$ l'ensemble

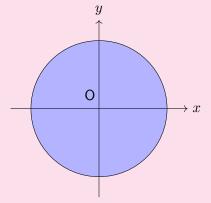
$$S(a,r) \stackrel{\mathsf{def}}{=} \left\{ x \in E, \|x-a\| = r \right\}$$

Lorsque r = 1 et a = 0, on parle de **boule unité fermée**, **boule unité ouverte** et **sphère unité**.

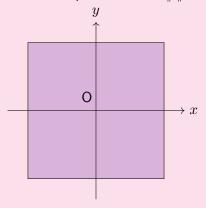
Boule unité fermé pour la norme $\|.\|_1$ sur \mathbb{R}^2 :



Boule unité fermé pour la norme $\|.\|_2$ sur \mathbb{R}^2 :



Boule unité fermé pour la norme $\|.\|_{\infty}$ sur \mathbb{R}^2 :



Définition 1.7 (bornitude).

1 On dit qu'une partie A de E est **bornée** si

$$\exists M \in \mathbb{R}_+, \ \forall x \in A, \quad \|x\| \le M$$

2 Soit X un ensemble. On dit que $f: X \longrightarrow E$ est **bornée** si

$$\exists M \in \mathbb{R}_+, \ \forall x \in X, \ \|f(x)\| \leq M$$
.

3 On dit qu'une suite $(x_n)_{n\in\mathbb{N}}$ de E est **bornée** si

$$\exists M \in \mathbb{R}_+, \ \forall n \in \mathbb{N}, \quad ||x_n|| \le M$$

 $^{^1}A$ est bornée si, et seulement si, A est incluse dans une boule (ouverte ou fermée).

L'ensemble

$$A = \{(x, y) \in \mathbb{R}^2, |x| \le 1 \text{ et } y = x \arctan x\}$$

est bornée. En effet : soit $(x,y) \in A$. On a

$$|x| \le 1$$
 et $|y| = |x \arctan x| \le \pi/2$,

donc
$$\|(x,y)\|_{\infty} = \max(|x|,|y|) \le \min(1,\pi/2) = 1$$
. Par suite, $A \subset B_f((0,0),1)$.

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace vectoriel normé
- 4 Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Convergence

Définition 2.1 (suite convergente).

On dit qu'une suite $(x_n)_{n\in\mathbb{N}}$ de E **converge**¹ s'il existe $\ell\in E$ tel que la suite réelle $(\|x_n-\ell\|)_{n\in\mathbb{N}}$ tend vers 0:

$$\exists \ell \in E, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geq N \implies \|x_n - \ell\| \leq \varepsilon \ .$$

On note alors $x_n \xrightarrow[n \to +\infty]{} \ell$. L'élément ℓ est **unique** et appelé la **limite** de $(x_n)_{n \in \mathbb{N}}$ et celle-ci est noté $\lim_{n \to +\infty} x_n$.

 $^{^{1}(}x_{n})_{n\in\mathbb{N}}$ est dite *divergente* si elle ne converge pas. Ceci peut se traduire par la négation de la définition.

Dans $\mathcal{M}_2(\mathbb{K})$, on considère la suite $(A_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}^*, A_n = \begin{pmatrix} 1 & \frac{-1}{n} \\ \frac{1}{n} & 1 \end{pmatrix}.$$

On a $\|A_n-\mathrm{I}_2\|_2=rac{\sqrt{2}}{n}\xrightarrow[n o+\infty]{}0$: la suite $(A_n)_{n\in\mathbb{N}}$ converge vers I_2 pour $\|.\|_2.$

Théorème 2.1 (caractérisation séquentielle des normes équivalentes).

Deux normes sont équivalentes si, et seulement si, toute suite qui converge pour l'une converge pour l'autre (avec la même limite).

Théorème 2.2 (convergence dans un espace produit).

Soit $E = E_1 \times ... \times E_p$ l'espace produit des evn $(E_i)_{1 \le i \le p}$ et $(x_n)_{n \in \mathbb{N}}$ une suite de E. Pour tout $n \in \mathbb{N}$, on écrit

$$x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(p)})$$
 où $x_n^{(i)} \in E_i$ pour tout $i \in [[1, p]].$

On a équivalence entre :

- $1 x_n \xrightarrow[n \to +\infty]{} \ell = (\ell_1, \dots, \ell_p) \in E;$
- $\forall i \in [[1, p]], \ x_n^{(i)} \xrightarrow[n \to +\infty]{} \ell_i.$

Proposition 2.1 (convergence dans un espace de dimension finie).

Supposons E de dimension finie, $\mathcal{B} = (e_1, \dots, e_p)$ une base de E. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de E. Pour tout $n \in \mathbb{N}$, on écrit

$$x_n = \sum_{i=1}^p x_n^{(i)} e_i.$$

On a équivalence entre :

- $1 x_n \xrightarrow[n \to +\infty]{} \ell = \sum_{i=1}^p \ell_i e_i \in E;$
- $\forall i \in [[1, p]], \ x_n^{(i)} \xrightarrow[n \to +\infty]{} \ell_i.$

Soit $E=\mathcal{M}_{p,q}(\mathbb{K}),\ \mathcal{B}=(E_{i,j})_{\substack{1\leq i\leq p\\1\leq j\leq q}}$ la base canonique de E et $(A_n)_{n\in\mathbb{N}}$ une suite de E :

$$A_n = \sum_{i=1}^p \sum_{j=1}^q a_{i,j}^{(n)} E_{i,j}.$$

- $(A_n)_{n\in\mathbb{N}}$ converge vers $A=(a_{i,j})_{\substack{1\leq i\leq p\\1\leq j\leq q}}\in E$ si, et seulement si, pour tout $(i,j)\in [\![1,p]\!]\times [\![1,q]\!]$, la suite $\left(a_{i,j}^{(n)}\right)_{n\in\mathbb{N}}$ converge vers $a_{i,j}$.
- En cas de convergence, on a $\lim_{n\to+\infty}A_n=\left(\lim_{n\to+\infty}a_{i,j}^{(n)}\right)_{\substack{1\leq i\leq p\\1\leq j\leq q}}$

Valeur d'adhérence

Définition 2.2 (suite extraite).

On appelle **suite** extraite (ou **sous-suite**) d'une suite $(x_n)_{n\in\mathbb{N}}$ de E toute suite de la forme $(x_{\varphi(n)})_{n\in\mathbb{N}}$ où $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissante.

L'application φ vérifie : $\forall n \in \mathbb{N}, \ \varphi(n) \geq n$. En particulier, $\varphi(n) \xrightarrow[n \to +\infty]{} +\infty$.

Définition 2.3 (valeur d'adhérence).

On appelle *valeur d'adhérence* d'une suite $(x_n)_{n\in\mathbb{N}}$ de E toute limite d'une sous-suite convergente de $(x_n)_{n\in\mathbb{N}}$.

Proposition 2.2.

- I Si une suite $(x_n)_{n\in\mathbb{N}}$ converge, toute suite extraite de $(x_n)_{n\in\mathbb{N}}$ converge vers la même limite.
- 2 Toute suite convergente possède¹ une unique valeur d'adhérence : sa limite.

Une suite possédant au moins deux valeurs d'adhérences (ou n'en possédant aucune) est divergente.

Théorème 2.3 (Bolzano-Weierstrass (cas réel ou complexe)).

Toute suite bornée de réels ou de complexes possède au moins une valeur d'adhérence.

¹La réciproque est fausse.

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel norme
- 3 Topologie d'un espace vectoriel normé
- 4 Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Voisinage, ouvert, fermé

 $(E,\|.\|)$ désigne un \mathbb{K} -evn.

Définition 3.1 (voisinage d'un point).

On appelle $\emph{voisinage}$ d'un point a de E toute partie V de E vérifiant :

$$\exists r > 0, \ B(a,r) \subset V$$
.

- I Une partie V de \mathbb{R} est un voisinage de $a \in \mathbb{R}$ si, et seulement si, $\exists r > 0$, $]a r, a + r[\subset V.$
- **2** Toute boule de centre $a \in E$ est un voisinage de a.

Proposition 3.1 (opérations).

- **1** Toute intersection **finie**¹ de voisinages de $a \in E$ est un voisinage de a.
- **2** Toute réunion de voisinages de $a \in E$ est un voisinage de a.

Définition 3.2 (ouvert, fermé).

 $\begin{tabular}{ll} \textbf{I} & \textbf{Une partie } U & \textbf{de } E & \textbf{est dite } \textbf{\it ouvert} & \textbf{si } U & \textbf{est voisinage de chacun de ces points} : \end{tabular}$

$$\forall a \in U, \exists r > 0, B(a,r) \subset U$$

2 Une partie F de E est dite **fermé** si son complémentaire est un ouvert.

 $^{^{1}}$ Une intersection infinie de voisinages de a n'est pas nécessairement un voisinage de a.

- \blacksquare Ø et E sont des ouverts et des fermés de E.
- **2** Tout intervalle ouvert (resp. fermé) de \mathbb{R} est un ouvert (resp. fermé).

Proposition 3.2 (topologie des boules).

- 1 Toute boule ouverte de E est un ouvert.
- 7 Toute boule fermé de E est un fermé.

Proposition 3.3 (opérations).

- 1 Toute réunion d'ouverts est un ouvert.
- **2** Toute intersection **finie**¹ d'ouverts est un ouvert.
- 3 Toute intersection de fermés est un fermé.
- 4 Toute réunion finie de fermés est un fermé.

2 Toute sphère de E est un fermé : c'est l'intersection de deux fermés.

¹Une intersection infinie d'ouverts n'est pas nécessairement un ouvert.

Théorème 3.1 (topologie dans un espace produit).

Soit $E = E_1 \times ... \times E_p$ l'espace produit des evn $(E_i)_{1 \le i \le p}$.

est un ouvert de E.

2 Si pour tout $i \in [[1, p]]$, F_i est un fermé de E_i , alors $F = F_1 \times ... \times F_n$

est un fermé de E.

Théorème 3.2 (caractérisation séquentielle d'un fermé).

 $F \text{ est un ferm\'e de } E \iff \begin{cases} \forall (x_n)_{n \in \mathbb{N}} \in F^{\mathbb{N}}, \\ x_n \xrightarrow[n \to +\infty]{} a \in E \implies a \in F \end{cases}.$

- 1 Les singletons sont des fermés.
- **2** Toute partie finie de E est un fermé.

Intérieur, adhérence, frontière

X désigne une partie de E.

Définition 3.3 (point intérieur, intérieur d'une partie).

- 1 On dit qu'un point a de E est **intérieur** à X si, X est un voisinage de a.
- 2 On appelle alors *intérieur* de X l'ensemble, noté X, des points intérieurs à X:

$$\stackrel{\circ}{X} = \left\{ x \in E, \exists r > 0, \text{ tel que } B(x,r) \subset X \right\}.$$

Proposition 3.4 (caractérisation de l'intérieur).

 $\overset{\circ}{X}$ est le plus grand ouvert de E contenu dans X : $\begin{vmatrix} \overset{\circ}{X} = \bigcup_{\substack{O \text{ ouvert de } E \\ O \subset X}} C$

$$\overset{\circ}{X} = \bigcup_{ \substack{O \text{ ouvert de } E \\ O \subset X }} O \ .$$

L'intérieur d'un intervalle de $\mathbb R$ non vide est l'intervalle ouvert de mêmes extrémités.

Définition 3.4 (point adhérent, adhérence d'une partie).

f 1 On dit qu'un point a de E est **adhérent** à X si

$$\forall r > 0, \ B(a,r) \cap X \neq \emptyset.$$

2 On appelle alors **adhérence** de X l'ensemble, noté \overline{X} , des points adhérents à X :

$$\overline{X} = \left\{ x \in E, \ \forall r > 0, \ \exists a \in X, \ \mathsf{tel} \ \mathsf{que} \ \|x - a\| \le r \right\}.$$

Proposition 3.5 (caractérisation de l'adhérence).

$$\overline{X}$$
 est le plus petit fermé de E contenant X : $\overline{X} = \bigcap_{\substack{F \text{ fermé de }E\\X\subset F}} F$

- L'adhérence d'un intervalle de \mathbb{R} non vide est l'intervalle fermé de mêmes extrémités.
- 2 0 est adhérent à \mathbb{C}^* : pour tout r>0, le complexe $z=i\frac{r}{2}\in\mathbb{C}^*$ vérifie |0-z|< r.

Proposition 3.6 (lien entre intérieur et adhérence).

Théorème 3.3 (caractérisation séquentielle des points adhérents).

$$a \in \overline{X} \iff \left(\exists (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, \ x_n \xrightarrow[n \to +\infty]{} a\right).$$

$\inf A$ et $\sup A$ sont des points adhérents à A

- I Si A est une partie non vide de \mathbb{R} majorée alors, $\sup A \in \overline{A}$. En effet : par la caractérisation séquentielle de la borne supérieure : $\exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \ a_n \xrightarrow[n \to +\infty]{} \sup A$, donc $\sup A \in \overline{A}$.
- **2** De même, si A est une partie non vide de \mathbb{R} minorée alors, $\inf A \in \overline{A}$.

Définition 3.5 (frontière).

On appelle **frontière** de X, l'ensemble défini par $: |\operatorname{Fr}(X) = \overline{X} \setminus \overset{\circ}{X}|$

- 1 $Fr([a,b[) = [a,b] \setminus]a,b[= \{a,b\}.$
- 2 La frontière d'une boule (ouverte ou fermée) est la sphère de mêmes centre et rayon.

¹La frontière d'une partie est un fermé : c'est l'intersection de deux fermés.

Parties denses

X désigne une partie de E.

Définition 3.6 (partie dense).

On dit que X est **dense** dans E si \overline{X} = E . Cela signifie que

$$\forall \varepsilon > 0, \ \forall x \in E, \ \exists a \in X, \ \|x - a\| \le \varepsilon$$

Théorème 3.4 (caractérisation séquentielle de la densité).

$$\overline{X} = E \iff \left(\forall x \in E, \ \exists (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, \ x_n \xrightarrow[n \to +\infty]{} x \right).$$

 $\overline{\mathbb{Q}} = \mathbb{R}$: pour tout $x \in \mathbb{R}$, la suites de rationnels $(x_n)_{n \in \mathbb{N}^*}$ définie par²

$$x_n = \frac{\lfloor nx \rfloor}{n}$$

converge vers x.

2 $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$: pour tout $x \in \mathbb{R}$, la suites d'irrationnels $(x_n)_{n \in \mathbb{N}^*}$ définie par

$$x_n = \frac{\lfloor nx \rfloor}{n} + \frac{\sqrt{2}}{n}$$

converge vers x.

[|]x| désigne la partie entière de x.

Topologie relative

X désigne une partie de E.

Définition 3.7 (voisinage, ouvert et fermé relatif).

 $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} Une partie V de X est un $\it voisinage relatif $$ de $x \in X$ s'il existe, un voisinage V' de x dans E, tel que $$ \end{tabular}$

$$V = V' \cap X$$
.

2 Une partie O de X est un **ouvert relatif** \hat{a} X s'il existe, un ouvert O' de E, tel que

$$O = O' \cap X$$
.

3 Une partie F de X est un **fermé relatif à** X s'il existe, un fermé F' de E, tel que

$$F = F' \cap X$$
.

[0,1] est un voisinage de 0 relatif à \mathbb{R}_+ :

$$[0,1] = [-1,1] \cap \mathbb{R}_+.$$

[2] [1,2] est un ouvert relatif à [1,2] :

$$]1,2] = [1,2] \cap]1,3[.$$

[0,1] est un fermé relatif à \mathbb{R}_+^* :

$$]0,1] = \mathbb{R}_+^* \cap [0,1].$$

Proposition 3.7 (caractérisation séquentielle d'un fermé relatif).

Soit F une partie de X. On a équivalence entre :

- **1** F est un fermé relatif à X.

L'ensemble des matrices diagonales à coefficients > 0 est un fermé relatif à $\mathcal{GL}_p(\mathbb{R})$ mais pas un fermé de $\mathcal{M}_p(\mathbb{R})$.

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel normé
- 3 Topologie d'un espace vectoriel normé
- Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Limite d'une application

 $\left(E,\|.\|_E\right)$ et $\left(F,\|.\|_F\right)$ désignent deux \mathbb{K} -evn. Soit X une partie de E et a un point adhérent à X.

Définition 4.1 (limite).

On dit que $f: X \longrightarrow F$ *tend* vers $\ell \in F$ en a si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in X, \ \|x - a\|_E \le \eta \implies \|f(x) - \ell\|_F \le \varepsilon$$

On note alors $f(x) \xrightarrow[x \to a]{} \ell$. L'élément ℓ est unique et appelé la *limite* de f en a et celle-ci est noté $\lim_{x \to a} f(x)$.

Définition 4.2.

1 On dit que $f: X \longrightarrow \mathbb{R}$ **tend** vers $+\infty$ (resp. $-\infty$) en a si

$$\forall M \in \mathbb{R}, \exists \eta > 0, \forall x \in X, \|x - a\|_E \le \eta \Longrightarrow f(x) \ge M \text{ (resp. } f(x) \le M)$$

2 Lorsque E = \mathbb{R} , on dit que $f: X \longrightarrow F$ **tend** vers $\ell \in F$ en $+\infty$ (resp. en $-\infty$) Si

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R}, \ \forall x \in X, \ x \ge M \ (resp. \ x \le M) \Longrightarrow \|f(x) - \ell\|_F \le \varepsilon$$

3 Lorsque X est non bornée, On dit que $f:X\longrightarrow F$ **tend** vers $\ell\in F$ lorsque $\|x\|_E\to +\infty$ si

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R}, \ \forall x \in X, \ \|x\|_E \ge M \implies \|f(x) - \ell\|_F \le \varepsilon$$

On note alors $f(x) \xrightarrow{\|x\| \to +\infty} \ell$.

Soit
$$f(x,y) = x \exp(-x^2 - y^2)$$
. On a
$$|f(x,y)| \le \|(x,y)\|_2 \exp(-\|(x,y)\|_2^2) \xrightarrow{\|(x,y)\|_2 \to +\infty} 0,$$
 donc $\lim_{\|(x,y)\|_2 \to +\infty} f(x,y) = 0.$

Théorème 4.1 (caractérisation séquentielle de la limite).

Soit $f: X \longrightarrow F$.

$$f(x) \xrightarrow[x \to a]{} \ell \iff \left(\forall (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, \ x_n \xrightarrow[n \to +\infty]{} a \implies f(x_n) \xrightarrow[n \to +\infty]{} \ell \right).$$

Proposition 4.1 (limite dans un espace produit).

Soit $F = F_1 \times ... \times F_p$ l'espace produit des evn $(F_i)_{1 \le i \le p}$ et $f : X \longrightarrow F$. Pour tout $x \in X$, on écrit

$$f(x) = (f_1(x), f_2(x), \dots, f_p(x))$$
 où $f_i(x) \in F_i$ pour tout $i \in [[1, p]]$.

On a équivalence entre :

- $1 f(x) \xrightarrow[x \to a]{} \ell = (\ell_1, \dots, \ell_p) \in F;$
- 2 $\forall i \in [[1,p]], f_i(x) \xrightarrow[x \to a]{} \ell_i$.

Proposition 4.2 (limite dans un espace de dimension finie).

Supposons F de dimension finie, $\mathcal{B} = (e_1, \dots, e_p)$ une base de F. Soit

$$f: X \longrightarrow F$$
 telle que $f(x) = \sum_{i=1}^{p} f_i(x)e_i$ pour tout $x \in X$. On a

équivalence entre :

$$1 f(x) \xrightarrow[x \to a]{} \ell = \sum_{i=1}^{p} \ell_i \in F;$$

2
$$\forall i \in [[1,p]], f_i(x) \xrightarrow[x \to a]{} \ell_i$$
.

Continuité d'une application

Soit X une partie de E et a un point de X.

Définition 4.3 (continuité).

On dit que $f: X \longrightarrow F$ est **continue en** a si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in X, \ \|x - a\|_E \le \eta \implies \|f(x) - f(a)\|_F \le \varepsilon$$

On dit que f est *continue sur* X si f est continue en tout point de X.

Théorème 4.2 (caractérisation séquentielle de la continuité).

Soit $f: X \longrightarrow F$.

$$f \text{ continue en } a \iff \begin{cases} \forall (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, \\ x_n \xrightarrow[n \to +\infty]{} a \implies f(x_n) \xrightarrow[n \to +\infty]{} f(a) \end{cases}.$$

Proposition 4.3 (continuité dans un espace produit).

Soit $F = F_1 \times ... \times F_p$ l'espace produit des evn $(F_i)_{1 \le i \le p}$ et $f : X \longrightarrow F$. Pour tout $x \in X$, on écrit

$$f(x) = (f_1(x), f_2(x), \dots, f_p(x))$$
 où $f_i(x) \in F_i$ pour tout $i \in [[1, p]]$.

On a équivalence entre :

- \mathbf{I} f continue en a;
- $\forall i \in [[1,p]], f_i \text{ continue en } a.$

Proposition 4.4 (continuité dans un espace de dimension finie).

Supposons F de dimension finie, $\mathcal{B} = (e_1, \dots, e_p)$ une base de F. Soit

$$f: X \longrightarrow F$$
 telle que $f(x) = \sum_{i=1}^{p} f_i(x)e_i$ pour tout $x \in X$. On a

équivalence entre :

- $\mathbf{1}$ f continue en a;
- $\forall i \in [[1,p]], f_i \text{ continue en } a.$

Théorème 4.3 (continuité par l'image réciproque).

Soit $f: X \longrightarrow F$. On a équivalence entre :

- **1** f est continue;
- 2 L'image réciproque par f de tout ouvert de F est un ouvert relatif à X:
- 3 L'image réciproque par f de tout fermé de F est un fermé relatif à X.

Le demi-pan $P = \{(x,y) \in \mathbb{R}^2, \ x > 0\}$ est un ouvert de \mathbb{R}^2 car $P = f^{-1}(\mathbb{R}_+^*)$ où f est l'application continue définie sur \mathbb{R}^2 par f(x,y) = x.

¹Si f est définie sur E tout entier, les notions d'ouvert et fermé relatifs coı̈ncident avec les notions d'ouvert et fermé de E.

Théorème 4.4 (prolongement d'une égalité par densité).

Si $f, g: E \longrightarrow F$ sont continues, égales sur une partie X dense dans E, alors f et g sont égales sur E.

Applications lipschitziennes, applications uniformément continues

Soit X une partie de E.

Définition 4.4 (application lipschitzienne).

On dit que $f: X \longrightarrow F$ est *lipschitzienne* sur X si

$$\exists k \in \mathbb{R}_+, \ \forall (x,y) \in X^2, \ \|f(x) - f(y)\|_F \le k \|x - y\|_E$$

- 1 La norme $\|.\|_E$ est 1-lipschitzienne sur E via l'inégalité trinagulaire renversée.
- 2 Soit I un intervalle de \mathbb{R} et $f:I\longrightarrow \mathbb{R}$ dérivable.
 - f est lipschitzienne sur I si, et seulement si, f' est bornée sur I.
 - En particulier, si I est un segment de \mathbb{R} et $f \in \mathcal{C}^1(I,\mathbb{R})$, alors f est lipschitzienne sur I.

Définition 4.5 (continuité uniforme).

On dit que $f: X \longrightarrow F$ est *uniformément continue* sur X si¹

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall (x,y) \in X^2, \ \|x - y\|_E \le \delta \implies \|f(x) - f(y)\|_F \le \varepsilon$$

La fonction $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}_+ . En effet : pour tout $(x,y) \in (\mathbb{R}_+)^2$, on a l'inégalité suivante :

$$\left|\sqrt{x} - \sqrt{y}\right| \le \sqrt{|x - y|}.$$

Soit $\varepsilon > 0$, pour $\delta = \varepsilon^2$, on a pour tout $(x, y) \in (\mathbb{R}_+)^2$,

$$|x-y| \le \varepsilon^2 \implies \left|\sqrt{x} - \sqrt{y}\right| \le \sqrt{|x-y|} \le \varepsilon.$$

 $^{^{1}}$ Remarquons que, dans la définition, δ ne dépend que de ε .

Proposition 4.5 (lien entre la continuité, continuité uniforme et lipschitziennité).

Soit $f: X \longrightarrow F$. On a

f lipschitzienne $\implies f$ uniformément continue $\implies f$ continue .

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel normé
- 3 Topologie d'un espace vectoriel normé
- 4 Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Continuité des applications linéaires

Théorème 5.1 (caractérisation des applications linéaires continues).

Soit $f \in \mathcal{L}(E,F)$. On a équivalence entre :

- $\mathbf{1}$ f continue sur E;
- $\exists M \in \mathbb{R}_+, \ \forall x \in E, \ \|f(x)\|_F \le M \|x\|_E.$

On note $\mathcal{L}_c(E,F)$ l'espace vectoriel des applications linéaires continues de E dans F.

L'application linéaire

$$\varphi : \left(\mathcal{C}([0,\pi],\mathbb{K}), \|.\|_{\infty} \right) \longrightarrow \mathbb{K}$$

$$f \longmapsto \int_{0}^{\pi} f(t) \sin(t) dt$$

est continue. En effet :

$$\forall f \in \mathcal{C}([0,\pi],\mathbb{K}), \quad |\varphi(f)| \le \int_0^{\pi} |f(t)| |\sin(t)| dt \le \left(\int_0^{\pi} |\sin(t)| dt\right) ||f||_{\infty} = 2||f||_{\infty}.$$

Théorème 5.2 (linéarité en dimension finie).

Toute application linéaire au départ d'un espace de dimension finie est continue¹.

¹Ainsi, lorsque l'espace E est de dimension finie, $\mathcal{L}(E,F) = \mathcal{L}_c(E,F)$.

Les applications

$$\begin{array}{cccc}
\operatorname{Tr} & : & \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathbb{K} \\
 & A & \longmapsto & \operatorname{Tr}(A)
\end{array}$$

et

$$\varphi : \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$$

$$A \longmapsto A^{\mathsf{T}}$$

sont continues.

Continuité des applications polynomiales

Supposons E de dimension finie, $\mathcal{B} = (e_1, \dots, e_p)$ une base de E. Soit $f: E \longrightarrow \mathbb{K}$ une application.

- f est dite **polynomiale** si $f = \varphi \circ \phi$ avec $\varphi : \mathbb{K}^p \longrightarrow \mathbb{K}$ polynomiale et $\phi : E \longrightarrow \mathbb{K}^p$. $x = \sum_{i=1}^p x_i e_i \longmapsto (x_1, \dots, x_p)$
- Une telle application est continue : c'est la composée de deux applications continues.

L'application $\det: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ est continue car $A \longmapsto \det(A)$ polynomiale en les coefficients de la matrice.

Continuité des applications multilinéaires

Théorème 5.3 (caractérisation des applications multilinéaires continues).

Soit $(E_i, \|.\|_{E_i})_{1 \le i \le p}$ des evn et $f: E_1 \times \ldots \times E_p \longrightarrow F$ multilinéaire. On a équivalence entre :

- **1** f continue sur $E_1 \times \ldots \times E_p$;
- $\exists M \in \mathbb{R}_+, \ \forall (x_1, \dots, x_p) \in E_1 \times \dots \times E_p, \\ \|f(x_1, \dots, x_p)\|_F \leq M \|x_1\|_{E_1} \dots \|x_p\|_{E_p}.$

Théorème 5.4 (continuité des applications multilinéaires en dimension finie).

Toute application multilinéaire au départ d'un produit d'espaces de dimensions finies est continue.

L'application produit matriciel

$$\varphi : \mathcal{M}_n(\mathbb{K}) \times \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$$

$$(A, B) \longmapsto AB$$

est continue.

Norme d'une application linéaire continue

Définition 5.1 (norme subordonnée (cas vectoriel)).

L'application ||| . ||| définie sur $\mathcal{L}_c(E,F)$ par 1 :

$$\forall u \in \mathcal{L}_c(E, F), \ ||| \ u \ |||=\inf \{C > 0, \ \forall x \in E, \ \|u(x)\|_F \le C \|x\|_E \}$$

est une norme sur $\mathcal{L}_c(E,F)$ appelée **norme subordonnée** (ou **norme d'opérateur**) aux normes $\|.\|_E$ et $\|.\|_F$.

 $^{^1\}Big\{C>0,\ \forall x\in E,\ \|u(x)\|_F\leq C\|x\|_E\Big\} \text{ est une partie non vide (car }u\text{ est continue) de }\mathbb{R}_+\text{ donc admet une borne inférieure.}$

Proposition 5.1.

Soit $u \in \mathcal{L}_c(E, F)$. Pour tout $x \in E$, on a

$$||u(x)||_F \le |||u||| ||x||_E$$

L'application

$$\varphi : \left(\mathcal{C}([0,\pi],\mathbb{K}), \|.\|_{\infty} \right) \longrightarrow \mathbb{K}$$

$$f \longmapsto \int_{0}^{\pi} f(t) \sin(t) dt$$

est linéaire continue. De plus $\forall f \in \mathcal{C}(\left[0,\pi\right],\mathbb{K}), \ |\varphi(f)| \leq 2\|f\|_{\infty}$ donc $|||\varphi||| \leq 2$. Pour f = 1, on a

$$\frac{|\varphi(f)|}{\|f\|} = 2 \le |||\varphi|||.$$

D'où $||| \varphi ||| = 2$.

Définition 5.2 (norme subordonnée (cas matriciel)).

On munit \mathbb{K}^n d'une norme $\|.\|_n$ et \mathbb{K}^p d'une norme $\|.\|_p$. L'application ||| . ||| définie sur $\mathcal{M}_{n,p}(\mathbb{K})$ par 1 :

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \ ||| A |||=\inf \{C > 0, \ \forall x \in \mathbb{K}^p, \ \|A.x\|_n \le C \|x\|_p \}$$

est une norme sur $\mathcal{M}_{n,p}(\mathbb{K})$ appelée **norme subordonnée** (ou **norme d'opérateur**) aux normes $\|.\|_n$ et $\|.\|_p$.

 $^{{}^1\}Big\{C>0,\ \forall x\in\mathbb{K}^p,\ \|A.x\|_n\leq C\|x\|_p\Big\} \text{ est une partie non vide (car }x\longmapsto A.x$ est linéaire en dimension finie donc continue) de \mathbb{R}_+ donc admet une borne inférieure.

On munit \mathbb{K}^n et \mathbb{K}^p de la norme usuelle $\|.\|_1$. Alors la norme usuelle $\|.\|_1$ définie sur $\mathcal{M}_{n,p}(\mathbb{K})$ est une norme d'opérateur sur $\mathcal{M}_{n,p}(\mathbb{K})$:

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \|A\|_1 = \inf \{C > 0, \ \forall x \in \mathbb{K}^p, \|A.x\|_1 \le C \|x\|_1 \}$$

• Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$. Pour tout $x \in \mathbb{K}^p$, on a

$$||A.x||_1 = \sum_{i=1}^n \left| \sum_{j=1}^p a_{i,j} x_j \right| \le \sum_{i=1}^n \sum_{j=1}^p |a_{i,j}| |x_j| \le \sum_{j=1}^p |x_j| \sum_{i=1}^n |a_{i,j}| \le \sum_{j=1}^n |x_j| \sum_{i=1}^n |a_{i,j}| \le \sum_{j=1}^n |a_{i,j}| \le \sum_{j=1}^$$

Donc $\inf \{C > 0, \ \forall x \in \mathbb{K}^p, \ \|A.x\|_1 \le C \|x\|_1 \} \le \|A\|_1.$

• D'autre part, il existe $j_0 \in [[1, p]]$ tel que

$$\sum_{i=1}^n |a_{i,j_0}| = \sup_{1 \le j \le p} \sum_{i=1}^n |a_{i,j}|.$$

Soit e_{j_0} le j_0 -ème vecteur de base canonique de \mathbb{K}^p . Alors

$$||e_{j_0}||_1 = 1 \text{ et } ||A.e_{j_0}||_1 = \sum_{i=1}^n |a_{i,j_0}| = \left(\sup_{1 \le j \le p} \sum_{i=1}^n |a_{i,j}|\right) ||e_{j_0}||_1.$$

 $\label{eq:definition} \text{Donc inf}\left\{C>0,\ \forall x\in\mathbb{K}^p,\ \|A.x\|_1\leq C\|x\|_1\right\}\geq \|A\|_1.$

Finalement,

$$||A||_1 = \inf \{C > 0, \ \forall x \in \mathbb{K}^p, \ ||A.x||_1 \le C ||x||_1 \}.$$

Théorème 5.5 (caractérisation de la norme subordonnée).

1 Soit $u \in \mathcal{L}_c(E, F)$.

$$|||| u ||| = \sup_{\|x\|_E = 1} \|u(x)\|_F = \sup_{\|x\|_E \le 1} \|u(x)\|_F = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|_F}{\|x\|_E}$$

2 Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

$$|||| A ||| = \sup_{\|x\|_p = 1} \|A.x\|_n = \sup_{\|x\|_p \le 1} \|A.x\|_n = \sup_{x \in \mathbb{K}^p \setminus \{0\}} \frac{\|A.x\|_n}{\|x\|_p} ||$$

Proposition 5.2 (sous-multiplicativité de la norme subordonnée).

Soit E, F et G trois evn. Si $u \in \mathcal{L}_c(E, F)$ et $v \in \mathcal{L}_c(F, G)$ alors $v \circ u \in \mathcal{L}_c(E, G)$ et on a

$$||| v \circ u ||| \le ||| v ||| \times ||| u |||$$

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace vectoriel normé
- Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Partie compacte

E et F désignent deux \mathbb{K} -evn.

Définition 6.1 (partie compacte).

On dit qu'une partie K de E est compacte si toute suite de K possède au moins une valeur d'adhérence dans K.

- **1** Dans \mathbb{R} , le segment [a,b] est compact³.
- f 2 Dans $\Bbb C$, le disque fermé

$$D_f(0,r) = \left\{ z \in \mathbb{C}, \ |z| \le r \right\}$$

est compact⁴.

³D'après le théorème de Bolzano-Weierstrass (cas réel).

⁴D'après le théorème de Bolzano-Weierstrass (cas complexe).

Proposition 6.1 (propriétés).

- 1 Tout compact est¹ fermée et bornée.
- Tout fermé relatif d'un compact est compact.
- 3 Tout produit fini de compacts est compact.

Théorème 6.1 (compacité en dimension finie).

En dimension finie, les compacts sont exactement les fermés bornés.

En dimension finie, les boules fermées sont compacts.

¹La réciproque est fausse en général.

Théorème 6.2 (Bolzano-Weierstrass en dimension finie).

En dimension finie, toute suite bornée possède au moins une valeur d'adhérence.

Corollaire 6.1 (ferméture d'un sev en dimension finie).

Si E est de dimension finie, alors tout sous-espace vectoriel de E est fermé.

Théorème 6.3 (CNS de convergence d'une suite d'un compact).

Une suite d'un compact est convergente si, et seulement si, elle admet une unique valeur d'adhérence.

Continuité et compacité

Théorème 6.4 (image continue d'un compact).

L'image directe d'un compact par une application continue est compact.

Si K_1 et K_2 sont deux compacts de E, alors K_1+K_2 est un compact de E. En effet : $K_1+K_2=\varphi(K_1\times K_2)$ où

$$\varphi: E \times E \longrightarrow E, (x,y) \longmapsto x+y$$

qui est une application continue et $K_1 \times K_2$ est compact.

Théorème 6.5 (théorème des bornes atteintes).

Soit K un compact de E et $f:K\longrightarrow \mathbb{R}$ continue. Alors f est bornée et atteint ses bornes.

Théorème 6.6 (Heine).

Soit K un compact de E et $f: K \longrightarrow F$ continue. Alors f est uniformément continue sur K.

Plan

- Espaces normés
- 2 Suites d'éléments d'un espace vectoriel normé
- Topologie d'un espace vectoriel normé
- 4 Etude locale d'une application, continuité
- 5 Applications linéaires et multilinéaires continues
- 6 Compacité
- Connexité par arcs

Partie convexe, partie étoilée

E et F désignent deux \mathbb{K} -evn et X une partie de E.

Définition 7.1 (segment, partie convexe).

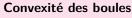
1 On appelle **segment d'extrémités** $x \in E$ et $y \in E$ l'ensemble

$$\left| \left[[x,y] \stackrel{\text{déf}}{=} \left\{ tx + (1-t)y, \ t \in [0,1] \right\} \right|.$$

f 2 On dit que X est $\it convexe$ si

$$\forall (x,y) \in X^2, [x,y] \subset X$$

c-à-d:
$$\forall (x,y) \in X^2, \ \forall t \in [0,1], \ tx + (1-t)y \in X.$$



Toute boule (ouverte ou fermé) de E est convexe. En effet : soit x et y dans $B_f(a,r)$ et $t \in [0,1]$. On a :

$$||tx + (1-t)y - a||_{E} = ||tx - ta + ta + (1-t)y - a||_{E}$$

$$= ||t(x-a) + (1-t)(y-a)||_{E}$$

$$\leq t||x - a||_{E} + (1-t)||y - a||_{E}$$

$$\leq tr + (1-t)r = r.$$

Donc $tx + (1-t)y \in B_f(a,r)$. Ainsi $B_f(a,r)$ est convexe.

Proposition 7.1 (convexes de \mathbb{R}).

Les convexes de \mathbb{R} sont exactement les intervalles¹ de \mathbb{R} .

¹On dit que I est un intervalle de \mathbb{R} si : $\forall (x,y) \in I^2, \ x < t < y \implies t \in I$.

Définition 7.2 (partie étoilée).

1 Soit $a \in X$. On dit que X est **étoilée par rapport à** a si¹

$$\forall x \in X, \ [a, x] \subset X$$

2 On dit que X est **étoilée** si $\exists a \in X, \ \forall x \in X, \ [a,x] \subset X$.

- **2** Les parties étoilées de \mathbb{R} sont les intervalles de \mathbb{R} .

¹Une partie est convexe si, et seulement si, elle est étoilée par rapport à chacun de ses points.

Partie connexe par arcs

Définition 7.3 (chemin).

On appelle *chemin inscrit dans* X toute application continue $\gamma:[0,1]\longrightarrow X$.

La relation binaire ${\cal R}$ définie par

$$a \, \mathcal{R} \, b \iff \begin{cases} \text{ il existe un chemin } \gamma \text{ inscrit dans } X \\ \\ \text{tel que } \gamma(0) = a \text{ et } \gamma(1) = b \end{cases}$$

est une relation d'équivalence sur X. Les classes d'équivalences de cette relation sont appelées les **composantes connexes par arcs** de X.

Définition 7.4 (partie connexe par arcs).

On dit que X est **connexe par arcs** si^1 , pour tous a et b dans X, il existe un chemin γ inscrit dans X tel que $\gamma(0)$ = a et $\gamma(1)$ = b.

 1 c-à-d X ne possède qu'une seule composante connexe par arcs.

- 1 Toute partie convexe est connexe par arcs.
- 2 \mathbb{R}^* n'est pas connexe par arcs : il admet deux composantes connexes par arcs, \mathbb{R}_+^* et \mathbb{R}_-^* .

Proposition 7.2 (connexes par arcs de \mathbb{R}).

Les connexes par arcs de \mathbb{R} sont les intervalles de \mathbb{R} .

Théorème 7.1 (connexité par arcs d'une parte étoilée).

Toute partie étoilée est connexe par arcs. (La réciproque est fausse)

Continuité et connexité par arcs

Théorème 7.2 (image continue d'un connexe par arcs).

L'image directe d'un connexe par arcs par une application continue est connexe par arcs.

Corollaire 7.1 (TVI généralisé).

Si X est connexe par arcs et $f: X \longrightarrow \mathbb{R}$ continue, alors f(X) est un intervalle de \mathbb{R} .

Merci pour votre attention!