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Dérivation d’une fonction vectorielle d’une variable
réelle

Dans ce chapitre est sauf indication contraire, la notation K désigne R ou
C. I et J sont des intervalles de R non triviaux et E, F et G des K-ev de
dimension finie.

Soit f ∶ I Ð→ F une application et t0 ∈ I.
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Définition 1.1 (dérivation).
1 On dit que f est dérivable en t0 si le taux d’accroissement

τt0 ∶ I ∖ {t0} Ð→ F

t z→ f(t) − f(t0)
t − t0

admet une limite en t0. Cette limite est alors appelée vecteur dérivé
de f en t0, on la note f ′(t0).

f ′(t0) = lim
t→t0

f(t) − f(t0)
t − t0

= lim
h→0

f(t + h) − f(t)
h

.

2 On dit que f est dérivable si f est dérivable en tout point de I. On
peut alors introduire l’application dérivée f ′ ∶ I Ð→ F, tz→ f ′(t).
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Proposition 1.1 (caractérisation par le développement limité à l’ordre 1).
On a équivalence entre :

1 f est dérivable en t0;
2 f admet un développement limité1 à l’ordre 1 en t0 :

∃v ∈ F, f(t0 + h) = f(t0) + h.v + o(h) .

Dans ce cas, f ′(t0) = v .

1o(h) = h.ε(h) avec ε(h) ÐÐ→
h→0

0F .
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Définition 1.2 (dérivabilité à gauche et à droite).
Soit t0 un point intérieur à I.

1 On dit que f est dérivable à droite en t0 si le taux
d’accroissement τt0 admet une limite quand t→ t+0 . Cette limite est
alors appelée vecteur dérivé à droite de f en t0, on la note f ′d(t0).

f ′d(t0) = lim
t→t+0

f(t) − f(t0)
t − t0

= lim
h→0+

f(t + h) − f(t)
h

.

2 On dit que f est dérivable à gauche en t0 si le taux
d’accroissement τt0 admet une limite quand t→ t−0 . Cette limite est
alors appelée vecteur dérivé à gauche de f en t0, on la note f ′g(t0).

f ′g(t0) = lim
t→t−0

f(t) − f(t0)
t − t0

= lim
h→0−

f(t + h) − f(t)
h

.
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Proposition 1.2.
Soit t0 un point intérieur à I. On a équivalence entre :

1 f est dérivable en t0;

2 f est dérivable à droite et à gauche en t0 avec f ′g(t0) = f ′d(t0) .

Proposition 1.3 (caractérisation à l’aide d’une base).

Soit (e1, . . . , ep) une base de F . On écrit f(t) =
p

∑
i=1

fi(t).ei pour tout

t ∈ I. On a équivalence entre :
1 f est dérivable en t0 (resp. sur I);
2 ∀i ∈ [[1, p]], fi est dérivable en t0 (resp. sur I).

Dans ce cas, f ′(t0) =
p

∑
i=1

f ′i(t0).ei (resp. ∀t ∈ I, f ′(t) =
p

∑
i=1

f ′i(t).ei) .
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�
A ∶ I Ð→Mn,p(K) est dérivable si, et seulement si, les fonctions
coefficients tz→ ai,j(t) le sont. On a alors

A′(t) =
n

∑
i=1

p

∑
j=1

a′i,j(t).Ei,j

=
⎛
⎜
⎝

a′1,1(t) . . . a′1,p(t)
⋮ ⋮

a′n,1(t) . . . a′n,p(t)

⎞
⎟
⎠

.

M. BINYZE (https://supspé.com) Fonctions vectorielles d’une variable réelle 2025-2026 9 / 36

https://supsp%C3%A9.com


Opérations sur les fonctions dérivables

Soit f ∶ I Ð→ F une application. On note D(I, F ) l’ensemble des
fonctions dérivables sur I à valeurs dans F .

Proposition 1.4 (combinaison linéaire, produit).
Soient f, g ∈ D(I, F ), φ ∈ D(I,K) et λ ∈ K. Alors

1 λf + g ∈ D(I, F ) et (λf + g)′ = λf ′ + g′ .

2 φ.f ∈ D(I, F ) et (φ.f)′ = φ′.f + φ.f ′ .

+
L’ensemble D(I, F ) est un sev de F(I, F ) et l’application

f z→ f ′

y est linéaire.
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Proposition 1.5 (linéarité et composition).
Si f ∈ D(I, F ) et L ∈ L(F, G), alors L ○ f ∈ D(I, G) et

(L ○ f)′ = L ○ f ′ .

�
Si A ∶ I Ð→ Mn(K) est dérivable alors t z→ Tr (A(t)) est
dérivable et pour tout t ∈ I,

(Tr (A(t)))′ = Tr(A′(t))
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Proposition 1.6 (bilinéarité et composition).
Soit B ∶ F ×GÐ→ E une application bilinéaire.
Si f ∈ D(I, F ) et g ∈ D(I, G), alors l’application B(f, g) ∶ I Ð→ E définie
par B(f, g)(t) = B(f(t), g(t)) est dérivable et

(B(f, g))′ = B(f ′, g) +B(f, g′) .
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�
Soient (E,< ., . >) un espace euclidien et ∥.∥ = √< ., . > la norme
euclidienne associée.
Si f, g ∈ D(I, E) alors
● l’application u ∶ I Ð→ R

t z→ < f(t), g(t) >
est dérivable

sur I et pour tout t ∈ I,
u′(t) =< f ′(t), g(t) > + < f(t), g′(t) >.

● l’application v ∶ I Ð→ R
t z→ ∥f(t)∥2

est dérivable sur I

et pour tout t ∈ I,
v′(t) = 2 < f ′(t), f(t) >.
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Corollaire 1.1 (cas où F est une algèbre).
Soit F une K-algèbre de dimension finie.
Si f, g ∈ D(I, F ) alors fg ∈ D(I, F ) et

(fg)′ = f ′g + fg′ .

Proposition 1.7 (composition).
Si f ∈ D(I, F ) et φ ∈ D(J,R) avec φ(J) ⊂ I, alors f ○ φ ∈ D(J, F ) et

∀t ∈ J, (f ○ φ)′(t) = φ′(t).f ′(φ(t)) .
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Proposition 1.8 (multilinéarité et dérivation).
Soit m ∶ F1 × . . . × Fk Ð→ F une application multilinéaire.
Si chaque fi ∶ I Ð→ Fi, 1 ≤ i ≤ k est dérivable, alors l’application
m(f1, . . . , fk) ∶ tz→m(f1(t), . . . , fk(t)) est dérivable et

(m(f1, . . . , fk))
′ =

k

∑
i=1

m(f1, . . . , f ′i , . . . , fk) .
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�
Soit A ∶ I Ð→Mn(K) dérivable.
Notons C1(t), . . . , Cn(t) les colonnes de A(t) et B = (e1, . . . , en)
la base canonique de Mn,1(K).
● Les fonctions C1, . . . , Cn sont dérivables sur I et

det(A(t)) = detB(C1(t), . . . , Cn(t)).
● Comme detB est une application multilinéaire, alors

tz→ det(A(t)) est dérivable sur I et pour tout t ∈ I,

(det(A(t)))′ =
n

∑
i=1

detB (C1(t), . . . , C ′i(t), . . . , Cn(t)).
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Dérivées d’ordre supérieur

Soit f ∶ I Ð→ F une application et k ∈ N.

Définition 1.3 (dérivation d’ordre k, classe d’une fonction).
1 Lorsqu’elle existe, la dérivée k-ème de f est l’application notée f (k)

définie par récurrence par :

f (k) = f si k = 0 et f (k) = (f (k−1))′ si k ∈ N∗ .

2 On dit que f est de classe Ck sur I si1 f est k-fois dérivable sur I et
f (k) est continue sur I.

3 On dit que f est de classe C∞ sur I si f est de classe Ck sur I pour
tout k ∈ N.

1On dit que f est de classe C0 si f est continue.
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On note :
● Dk(I, F ) l’ensemble des fonctions k-fois dérivables sur I pour k ∈ N.
● Ck(I, F ) l’ensemble des fonctions de classe Ck sur I pour

k ∈ N ∪ {∞}.

Proposition 1.9 (caractérisation à l’aide d’une base).

Soit (e1, . . . , ep) une base de F . On écrit f(t) =
p

∑
i=1

fi(t).ei pour tout

t ∈ I. On a équivalence entre1 :

1 f ∈ Dk(I, F ); 2 ∀i ∈ [[1, p]], fi ∈ Dk(I, F ).

Dans ce cas, ∀j ∈ [[1, k]], ∀t ∈ I, f (j)(t) =
p

∑
i=1

f
(j)
i (t).ei .

1On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.
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Proposition 1.10 (combinaison linéaire, produit).
Soient f, g ∈ Dk(I, F ), φ ∈ Dk(I,K) et λ ∈ K. Alors1

1 λf + g ∈ Dk(I, F ) et ∀j ∈ [[1, k]], (λf + g)(j) = λf (j) + g(j) .

En particulier, Dk(I, F ) est un sev de F(I, F ).
2 φ.f ∈ Dk(I, F ).
1On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.

Proposition 1.11 (linéarité et composition).
Si f ∈ Dk(I, F ) et L ∈ L(F, G), alors L ○ f ∈ Dk(I, G) et1

∀j ∈ [[1, k]], (L ○ f)(j) = L ○ f (j) .

1On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.
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Théorème 1.1 (formule de Leibniz).
Soit B ∶ F ×GÐ→ E bilinéaire.
Si f ∈ Dk(I, F ) et g ∈ Dk(I, G), alors B(f, g) ∈ Dk(I, E) et1

∀t ∈ I, (B(f, g))(k)(t) =
k

∑
j=0
(k

j
)B(f (k−j)(t), g(j)(t)) .

1On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.

Corollaire 1.2 (cas où F est une algèbre).
Soit F une K-algèbre de dimension finie.
Si f, g ∈ Ck(I, F ) alors fg ∈ Ck(I, F ) et

(fg)(k) =
k

∑
j=0
(k

j
)f (k−j)g(j) .
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Proposition 1.12 (composition).
Soit k ∈ N ∪ {∞}. Si f ∈ Ck(I, F ) et φ ∈ Ck(J,R) avec φ(J) ⊂ I, alors
f ○ φ ∈ Ck(J, F ).
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Intégrale d’une fonction continue par morceaux sur
un segment

Soit [a, b] un segment de R et f ∶ [a, b] Ð→ F une application.

Soit B = (e1, . . . , ep) une base de F .

Définition 2.1 (fonction continue par morceaux).
On dit que f est continue par morceaux (cpm) sur [a, b] s’il existe une
subdivision σ = (a = a0 < a1 < . . . < ak = b) de [a, b] telle que :
● ∀i ∈ [[1, k]], f∣]ai−1,ai[ est continue;
● f à des limites finies à gauche en tout les ai, 1 ≤ i ≤ k et à droite en

tout les ai, 0 ≤ i ≤ k − 1.
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Proposition 2.1 (caractérisation à l’aide d’une base).

On écrit, pour t ∈ [a, b] , f(t) =
p

∑
i=1

fi(t).ei. La fonction f est cpm si, et

seulement si, chaque fi est cpm.

+ 1 La notion ci-dessus ne dépend pas du choix de la base B de
F .

2 L’ensemble Cpm([a, b] , F ) des fonctions continues par
morceaux sur [a, b] est un sev de F([a, b] , F ).
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Définition 2.2 (intégration entre deux bornes).

Soit f ∈ Cpm([a, b] , F ). On écrit f(t) =
p

∑
i=1

fi(t).ei pour tout t ∈ [a, b].

On appelle intégrale de f de a à b le vecteur

∫
b

a
f(t)dt

déf=
p

∑
i=1
(∫

b

a
fi(t)dt) ei .

+
La valeur de l’intégrale ci-dessus ne dépend pas du choix de la
base B de F .
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Proposition 2.2 (propriétés de l’intégrale).
Soient f, g ∈ Cpm([a, b] , F ), L ∈ L(F, G), λ ∈ K et c ∈ [a, b].

1 ∫
b

a
(λf + g) = λ∫

b

a
f + ∫

b

a
g. (Linéarité)

2 ∫
b

a
f = ∫

c

a
f + ∫

b

c
f . (Relation de Chasles)

3 ∥∫
b

a
f∥ ≤ ∫

b

a
∥f∥. (Inégalité triangulaire)

4 L(∫
b

a
f) = ∫

b

a
L ○ f .

M. BINYZE (https://supspé.com) Fonctions vectorielles d’une variable réelle 2025-2026 26 / 36

https://supsp%C3%A9.com


Théorème 2.1 (sommes de Riemann).
Si f ∈ Cpm([a, b] , F ), alors

b − a

n

n−1
∑
k=0

f (a + k
b − a

n
) ÐÐÐ→

n→+∞ ∫
b

a
f(t)dt .

+
On a aussi b − a

n

n

∑
k=1

f (a + k
b − a

n
) ÐÐÐ→

n→+∞ ∫
b

a
f(t)dt.
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�
Calculer lim

n→+∞
1
n2

n

∑
k=1

k sin(kπ

n
).

● Sn =
1
n2

n

∑
k=1

k sin(kπ

n
) = 1

n

n

∑
k=1

k

n
sin(kπ

n
) = 1

n

n

∑
k=1

f (k

n
)

avec f(t) = t sin(πt).
● f est continue sur [0, 1] et Sn est une somme de Riemann

de f sur [0, 1] donc

lim
n→+∞Sn = ∫

1

0
f(t)dt

= ∫
1

0
t sin(πt)dt

= 1
π

.
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Intégrale fonction de sa borne supérieure et
applications

Soit f ∶ I Ð→ F une fonction et a ∈ I.

Définition 2.3 (primitive).
On appelle primitive de f , s’il en existe, toute fonction G ∶ I Ð→ F
dérivable vérifiant G′ = f .
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Théorème 2.2 (théorème fondamental du calcul intégral).
Toute fonction continue sur un intervalle possède une primitive.
Plus précisément : Si f est continue, alors
● La fonction xz→ ∫

x

a
f(t)dt est de classe C1 sur I et c’est l’unique

primitive de f qui s’annule en a.
● De plus, pour toute primitive G de f sur I, on a

∀x ∈ I, G(x) = G(a) + ∫
x

a
f(t)dt.
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Corollaire 2.1.
Si f est continue de primitive G, alors

∀(a, b) ∈ I2, ∫
b

a
f(t)dt = [G(t)]ba = G(b) −G(a) .

Théorème 2.3 (inégalité des accroissements finis).
Soit f ∈ C1(I, F ). S’il existe M ≥ 0 vérifiant ∀t ∈ I, ∥f ′(t)∥ ≤M , alors1

∀(a, b) ∈ I2, ∥f(b) − f(a)∥ ≤M ∣b − a∣ .

1En d’autres termes, la fonction f est lipschitzienne.
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+
Le théorème des accroissements finis n’est plus vérifié si F ≠ R.
En effet : la fonction

f ∶ R Ð→ R2

t z→ (cos t, sin t)

est dérivable sur R et pour tout t ∈ R, f ′(t) ≠ (0, 0) tandis que
f(2π) = f(0).
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Formules de Taylor

Soit f ∶ I Ð→ F une fonction et n ∈ N.

Théorème 2.4 (formule de Taylor avec reste intégrale).
Soit f ∈ Cn+1(I, F ). Pour tout1 (a, x) ∈ I2,

f(x) =
n

∑
k=0

(x − a)k

k!
f (k)(a) + ∫

x

a

(x − t)n

n!
f (n+1)(t)dt .

1Dans le cas n = 0, on retrouve le théorème fondamental de l’analyse :
f(x) = f(a) + ∫

x

a
f ′(t)dt.
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Théorème 2.5 (inégalité de Taylor-Lagrange).
Soit f ∈ Cn+1(I, F ). Si f (n+1) est bornée, alors1 pour tout (a, x) ∈ I2,

∥f(x) −
n

∑
k=0

(x − a)k

k!
f (k)(a)∥ ≤ ∣x − a∣n+1

(n + 1)!
sup
t∈I
∥f (n+1)(t)∥ .

1Dans le cas n = 0, on retrouve inégalité des accroissements finis.
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Théorème 2.6 (formule de Taylor-Young).
Soit f ∈ Cn+1(I, F ). Pour tout a ∈ I,

f(x) =
x→a

n

∑
k=0

(x − a)k

k!
f (k)(a) + (x − a)nε(x) avec ε(x) ÐÐ→

x→a
0F .

Cette formule1 est appelée développement limité de f à l’ordre n en a.
1La formule de Taylor-Young est locale.
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