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Dérivation d’une fonction vectorielle d’une variable

réelle

Dans ce chapitre est sauf indication contraire, la notation K désigne R ou
C. I et J sont des intervalles de R non triviaux et E, F' et G des K-ev de

dimension finie.

Soit f: I — F une application et tg € 1.
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Définition 1.1 (dérivation).

On dit que f est dérivable en tg si le taux d’accroissement
Tty * I\{to} — F
f(@) - f(to)
t—to
admet une limite en ty. Cette limite est alors appelée vecteur dérivé
de f en tg, on la note f'(tg).
PO~ () . f(E+h) = (1)

= lim ——————==1i
t=tg  t—tg h—0 h

t

f'(to)

On dit que f est dérivable si f est dérivable en tout point de I. On
peut alors introduire I'application dérivée [': I — F, t — f'(1).
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Proposition 1.1 (caractérisation par le développement limité a I'ordre 1).

On a équivalence entre :
f est dérivable en ty;
f admet un développement limité' & l'ordre 1 en ty :

Dans ce cas,

JueF, f(to+h)=f(to)+hv+o(h)|

f'(to) =v |

Yo(h) = h.e(h) avec e(h) Py OF.
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Définition 1.2 (dérivabilité a gauche et a droite).

Soit g un point intérieur a I.
On dit que f est dérivable a droite en i si le taux
d’accroissement 1, admet une limite quand ¢ — t;. Cette limite est
alors appelée vecteur dérivé a droite de f en ty, on la note f}(to).

fy(to) = lim ORFIC lim f@t+h) - £(t) ]

1
~t5  t—tg B0+ h

On dit que f est dérivable a gauche en t si le taux
d’accroissement 1,, admet une limite quand ¢ — t;. Cette limite est
alors appelée vecteur dérivé a gauche de f en to, on la note f/(to).

()= f(t0) [+ - (©)

"(tp) = lim —>F———= =
fg( 0) t—tg t—1to h—0~ h
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Proposition 1.2.

Soit tg un point intérieur a I. On a équivalence entre :
f est dérivable en ty;

[ est dérivable a droite et a gauche en to avec| fy(to) = f;(to) |

Pl‘OpOSitiOI’I 13 (caractérisation a I'aide d’une base).

P
Soit (e1,...,ep) une base de F. On écrit f(t) =) fi(t).e; pour tout
i=1
tel. On a équivalence entre :

f est dérivable en ty (resp. surI);
Vie[[1,p]], fi est dérivable en ty (resp. surI).

Dans ce cas, | f'(to) = ifi'(to).ei (resp. Vtel, f'(t)= if{(t)-ei) .
i=1 i=1
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A: T — M, ,(K) est dérivable si, et seulement si, les fonctions
coefficients ¢ — a; ;(t) le sont. On a alors

o zz Joy:s
a’1,1‘(t) a’m?(t)
a (1) ... d ()
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Opérations sur les fonctions dérivables

Soit f: I — F une application. On note D(I, F') I'ensemble des
fonctions dérivables sur I a valeurs dans F'.

Proposition 1.4 (combinaison linaire, produit).
Soient f,g € D(I,F), p € D(I,K) et A e K. Alors

M +geD(I,F) et ()\f+g)’:)\f’+g'.

p.feD(I,F) et ((p.f)/:go'.f+<p.f'.

o L'ensemble D(I, F') est un sev de F(I, F) et |'application
f—f

y est linéaire.
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Proposition 1.5 (Iinéarité et composition).
SifeD(I,F)etLeLl(F,G), alors Lo feD(I,G) et

(Lof) =Lof|

@ Si A: I — M,(K) est dérivable alors t — Tr(A(t)) est

dérivable et pour tout t € I,

(Tr (A1) = Tr(A'(t))
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Proposition 1.6 (bilinéarité et composition).

Soit B : F' x G — E une application bilinéaire.
Si feD(I,F) et geD(I,G), alors I'application B(f,g): I — E définie
par B(f,9)(t) = B(f(t),g(t)) est dérivable et

(B(f.9)) = B(f',9) + B(f,d') |
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@ Soient (E,<.,.>) un espace euclidien et .| = /<. > la norme

euclidienne associée.
Si f,geD(I,E) alors
® |'application v : I — R est dérivable
t — <f(t),9(t)>
sur I et pour tout t € I,
w'(t) =< f(t),9(t) >+ < f(2),g'(t) >.
e |'application v : I — R est dérivable sur I

t — JfOI?

et pour tout t eI,

V(1) =2 < (1), £(t) >,

M. BINYZE (https://supspé.com) Fonctions vectorielles d’une variable réelle 2025-2026


https://supsp%C3%A9.com

Corollaire 1.1 (cas ou F' est une algébre).

Soit F' une K-algébre de dimension finie.
Sif,geD(I,F) alors fge D(I,F) et

(f9) =f'g+fg"|

Proposition 1.7 (composition).
Si feD(I,F) et pe D(J,R) avec p(J) c 1, alors fopeD(J,F) et

vted, (fop) () =¢' (t)-f'(¢()) |

M. BINYZE (https://supspé.com) Fonctions vectorielles d'une variable réelle 2025-2026


https://supsp%C3%A9.com

Proposition 18 (multilinéarité et dérivation).

Soit m: Fy x ... x Fy, — F une application multilinéaire.
Si chaque f; : I — F;, 1 <i<k est dérivable, alors I'application
m(fi,..., fr) it — m(fi(t),..., fu(t)) est dérivable et

k
(m(fl,...,fk))’:;m(fl,...,f;,...,fk) _
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Soit A: 1 — M, (K) dérivable.
@ Notons Cy (), ...,Cy(t) les colonnes de A(t) et B = (e1,...,€n)
la base canonique de M,, ; (K).

® |es fonctions C,...,C, sont dérivables sur I et
det(A(t)) = detg(Ci(t),...,Cn(t)).
® Comme detg est une application multilinéaire, alors
t—> det(A(t)) est dérivable sur I et pour tout ¢ € I,

(det(A(1))) = f; dets (C1(8), .., CL(E),s .., Cul(?).
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Dérivées d’ordre supérieur

Soit f: I — F une application et k € N.

Définition 13 (dérivation d’ordre k, classe d’une fonction).

Lorsqu'elle existe, la dérivée k-éme de f est |'application notée f()
définie par récurrence par :

f® = fsi k=0 et & :(f(k‘l)), si keN*|

On dit que f est de classe C* sur I si' f est k-fois dérivable sur I et
f) est continue sur 1.

On dit que f est de classe C™ sur I si f est de classe C* sur I pour
tout k e N.

1On dit que f est de classe C° si f est continue.
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On note :
e D¥(I,F) I'ensemble des fonctions k-fois dérivables sur I pour k € N.

e CF(I,F) I'ensemble des fonctions de classe C* sur I pour
keNu{oo}.

PI’OpOSitiOﬂ 1.9 (caractérisation a l'aide d’une base).

P

Soit (e1,...,ep) une base de F. On écrit f(t) =) fi(t).e; pour tout
i=1

teI. On a équivalence entre* :

feD (I, F); vie[[1,p]l, fieD*(I,F).

, o
Dans ce cas, | Vj € [1,k]], VteI, fO(t)= Zfi(])(t).ei :
i=1

1 0n peut remplacer D* par C*, ke NU {oo}.
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Proposition 1.10 (combinaison linéaire, produit).

Soient f,g e D*(I,F), ¢ e D*(I,K) et A e K. Alorst

A +geDH(ILF) et| Vi e [LE], (Af +9)7 = 270 + 40 |
En particulier, D*(I, F) est un sev de F(I,F).
©.f e DF(I, F).

1 0n peut remplacer D" par C*, ke Nu {oo}.

Proposition 1.11 (Iinéarité et composition).
SifeDN(I,F) et Le L(F,G), alors Lo f e D*(I,G) et

Vie[LE], (Lof)? =Lof®|

1On peut remplacer D* par C*, ke Nu {o0}.
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Théoréme 1.1 (formule de Leibniz).

Soit B: I'x G — E bilinéaire.
Si f e D*(I,F) et ge D*(I,QG), alors B(f,g) € D*(I,E) et*

k
viel, (8(4,9) M0 = ¥ ()B4 00.090) |
3=0\J

1On peut remplacer D* par C*, ke Nu {o0}.

| A

Corollaire 1.2 (cas ou F' est une algébre).

Soit F' une K-algébre de dimension finie.
Si f,geCk(I,F) alors fgeCF(I,F) et

(fg)® = i (?)f<k—j>g<j> _

J=0
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Proposition 1.12 (composition) .

Soit ke NU{oo}. Si feCF(I,F) et peCF(J,R) avec (J) c I, alors
fopeCk(JF).
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© Intégration sur un segment
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Intégrale d’une fonction continue par morceaux sur

un segment

Soit [a,b] un segment de R et f :[a,b] — F' une application.

Soit B = (e, ...,ep) une base de F.

Définition 2.1 (fonction continue par morceaux).

On dit que f est continue par morceaux (cpm) sur [a,b] s'il existe une
subdivision o = (a = ag < aj <...<ay =b) de [a,b] telle que :
® Vie[[L,k]l, fia,.a st continue;

® f a des limites finies a gauche en tout les a;, 1 <7 <k et a droite en
tout les a;, 0<i<k—1.
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Pl‘OpOSitiOI’I 2.1 (caractérisation a I'aide d’une base).

P
On écrit, pour t € [a,b], f(t) =) fi(t).e;. La fonction f est cpm si, et
i=1
seulement si, chaque f; est cpm.

o La notion ci-dessus ne dépend pas du choix de la base B de
F.

L'ensemble Cpm([a,b] ,F) des fonctions continues par
morceaux sur [a,b] est un sev de F([a,b],F).
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Définition 2.2 (intégration entre deux bornes).

Soit f € Cpm([a,b], F). On écrit f(t) = Zfz(t) e; pour tout t € [a, b].

On appelle intégrale de f de a a b le vecteur
[ a3 ([ nnar) e

o ‘ La valeur de l'intégrale ci-dessus ne dépend pas du choix de la

base B de F'.
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Proposition 2.2 (propriétés de lintégrale).
Soient f, g € Cpm([a,b] ,F), LeL(F,G), NeK et cea,b].

[ab(/\f+g):)\[;bf+/;bg. (Linéarité)
_/abfzvfacf+_/cbf. (Relation de Chasles)

b
f S/ [f]. (Inégalité triangulaire)

ws([9)- 1
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Théoreme 2.1 (sommes de Riemann).

Si f €Cpm([a,b],F), alors

a+k:b_—a) [T iwyat ]

n n—>+0o

o Onaau55| - kzz (a+k—) ——— f f(t)dt.
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@ Calculer lim —stm(k—ﬂ)
n—-+oo 2 k=1 n

L)1 E () 1)
avec f(t) = tsin(nt).

® f est continue sur [0,1] et S, est une somme de Riemann
de f sur [0,1] donc

s, < [ o
/ tsin(7t)dt
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Intégrale fonction de sa borne supérieure et

applications

Soit f: I — F une fonction et a € I.

Définition 2.3 (primitive).

On appelle primitive de f, s'il en existe, toute fonction G: [ — F
dérivable vérifiant G’ = f.
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Théoreme 2.2 (théoréme fondamental du calcul intégral).

Toute fonction continue sur un intervalle posséde une primitive.
Plus précisément : Si f est continue, alors
T
* [a fonction x — / f(t)dt est de classe C* sur I et c’est I'unique
a
primitive de f qui s’annule en a.

® De plus, pour toute primitive G de f sur I, on a

Voel, G(:U):G(a)+[xf(t)dt.
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Corollaire 2.1.
Si f est continue de primitive G, alors

V(a,b) € I2, fabf(t)dt -[GM]L = G0) -G(a) |

Théoréeme 2.3 (inégalité des accroissements finis).
Soit f e CY(I, F). S'il existe M >0 vérifiant Yt e I, || f'(t)| < M, alors*

V(a,b) € I2, | f(b) - f(a)] < Mb—al |

YEn d’autres termes, la fonction f est lipschitzienne.
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Le théoreme des accroissements finis n'est plus vérifié si £’ = R.
En effet : la fonction
f : R — R?

t — (cost,sint)

est dérivable sur R et pour tout t € R, f'(¢) # (0,0) tandis que
f(@2m) = £(0).
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Formules de Taylor

Soit f: I — F une fonction et n € N.

Théoréme 2.4 (formule de Taylor avec reste intégrale).
Soit f e C"*Y(I, F). Pour tout' (a,x) € I?,

=Y @=a)* ) a T(E )" e
N A O e AR O

!Dans le cas n = 0, on retrouve le théoréme fondamental de I'analyse :

f@) = f@+ [T 1@
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Théoréme 2.5 (inégalité de Taylor-Lagrange).

Soit f € C™ (I, F). Si f("*1) est bornée, alors* pour tout (a,x) € I?,

Nz —al™

ﬁ Sup”f(ml)( )|| 0

‘f(x) z (o)

!Dans le cas n = 0, on retrouve inégalité des accroissements finis.
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Théoreme 2.6 (formule de Taylor-Young).
Soit f e C"*Y(1,F). Pour tout a €1,

5@ 2, 3 0 1 - a)'e(@) avee (@) Or

=i

Cette formule' est appelée développement limité de f a I'ordre n en a.

!La formule de Taylor-Young est locale.
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