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Dans ce chapitre est sauf indication contraire, la notation K désigne R ou C. I et J sont des intervalles de R non

triviaux et E, F' et G des K-ev de dimension finie.

Dérivation

Dérivation d’une fonction vectorielle d’une variable réelle
Soit f: I — F une application et tg € I.

[ Définition 1.1. dérivation

1. On dit que f est dérivable en ty sile taux d’accroissement 7, : I~ {to} — F admet
f(t) - f(to)

t—to
une limite en ty. Cette limite est alors appelée vecteur dérivé de f en ty, on la note f'(ty).

t

/ 1
f'(to) = lim

[0 -1t) . ferh)-10)]
t—to

h—0 h

2. On dit que f est dérivable si f est dérivable en tout point de I. On peut alors introduire l’application
dérivée f': I — F, t — f'(t).

.

[ Proposition 1.1. caractérisation par le développement limité a I'ordre 1
On a équivalence entre :

(i) f est dérivable en ¢y ;

(i) f admet un développement limité! & ordre 1 en to : | Jve F, f(to+h) = f(to) + h.v+o(h) |

Dans ce cas, | f'(tg) = v |

1. o(h) = h.e(h) avec e(h) s Op.
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( Définition 1.2. dérivabilité a gauche et a droite
Soit ty un point intérieur a I.

1. On dit que f est dérivable a droite en i si le taux d’accroissement 7, admet une limite quand ¢ — ¢j.

Cette limite est alors appelée vecteur dérivé d droite de f en tg, on la note f}(to).

[ f0) S+ -f0) ]

t—1g h—0* h

"(to) = li
fi(to) tg%

2. On dit que f est dérivable a gauche en ij si le taux d’accroissement 1, admet une limite quand

t — t;. Cette limite est alors appelée vecteur dérivé a gauche de f en tg, on la note f;(to).

oy e @) = (o) o f(E+R) - f(2)
Jolto) = fim === = = i, h ‘

0

.

( Proposition 1.2.
Soit tp un point intérieur a I. On a équivalence entre :

(i) f est dérivable en ¢y ;

(ii) f est dérivable a droite et a gauche en tg avec | f;(to) = f;(to) |

.

( Proposition 1.3. caractérisation a I’aide d’une base

p
Soit (e1,...,ep) une base de F. On écrit f(t) =) f;(t).e; pour tout ¢ € I. On a équivalence entre :
i=1

(i) f est dérivable en ¢y (resp. sur I); (i) Vie[[1,p]], fi est dérivable en ty (resp. sur I).

Dans ce cas, | f'(tg) = ifi'(to).ei (resp. Vtel, f'(t)= ifi'(t).ei) ;
i=1 =1

Exemple 1.1. m A: [ — M, ,(K) est dérivable si, et seulement si, les fonctions coefficients ¢ — a; j(t) le sont.
On a alors

Vo Gt .l (1)

A,(t) = Z Z a;j(t).E,-’j = :

al( (1) ()

Opérations sur les fonctions dérivables
Soit f: I — F une application. On note D(I, F') I'ensemble des fonctions dérivables sur I a valeurs dans F.

Proposition 1.4. combinaison linéaire, produit
Soient f,ge D(I,F), ¢ € D(I,K) et A e K. Alors

LAf+geD(IL,F) et |(Af+g) =Af+d | 2. .f €D(I,F) et |(p.f) =@ f+p.f |

Remarque 1.1. ® L’ensemble D(I, F) est un sev de F(I, F') et 'application f — f’ y est linéaire.

Proposition 1.5. linéarité et composition

Si feD(I,F) et Le L(F,G), alors Lo feD(I,G) et|(Lof) =Lof|

Exemple 1.2. m Si A : ] — M,,(K) est dérivable alors ¢ —> Tr (A(t)) est dérivable et (Tr (A(t))), = Tr(A'(1))
pour tout t e I.
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Proposition 1.6. bilinéarité et composition
Soit B : F'x G — FE une application bilinéaire. Si f € D(I, F') et g € D(I,G), alors I'application B(f,g): I —

E définie par B(f,g)(t) = B(f(t),g(t)) est dérivable et | (B(f,9)) = B(f',g9) + B(f,d') |

Exemple 1.3. m Soient (E,< .,.>) un espace euclidien et |.| = /<, > la norme euclidienne associée.
Si f,geD(I,E) alors

o lapplication v : I — R est dérivable sur I et Vi € I, u'(t) =< f'(t),g(t) > + < f(t),q'(t) >.
t — <f(t),9(t) >
o lapplication v : I — R est dérivable sur I et VeI, v'(t) =2< f'(t), f(t) >.
t — Jf@®I°
[ Corollaire 1.1. cas ou F' est une algebre

Soit F' une K-algebre de dimension finie. Si f,g € D(I,F) alors fge D(I,F) et | (fg) =f'g+ fg" |

L

( Proposition 1.7. composition

Si feD(I,F) et ¢ e D(J,R) avec p(J) c I, alors fopeD(J, F) et | VteJ, (fogo),(t) =o' (t).f'(e(1) |

( Proposition 1.8. multilinéarité et dérivation
Soit m : Fy x ... x Fj, — I une application multilinéaire. Si chaque f; : I — F;, 1 <7<k est dérivable, alors
Papplication m(fi,..., fi) : t — m(fi(t),. .., fk(t)) est dérivable et

k
(m(frree s 1)) = Yom(frsees o fi) |
i=1

L

Exemple 1.4. m Soit A : [ — M, (K) dérivable. Notons Cy(t),...,Cy,(t) les colonnes de A(t) et B = (e1,...,€en)
la base canonique de M, 1 (K).

o Les fonctions Cj,...,C, sont dérivables sur I et det(A(t)) = detg(Ci(t),...,Cn(t)).

e Comme detg est une application multilinéaire, alors t — det(A(t)) est dérivable sur I et

Viel, (det(A(1))) = dets (Co(t),....CLD).....Cu(D)).

1=1

Dérivées d’ordre supérieur
Soit f: I — F une application et k € N.

( Définition 1.3. dérivation d’ordre &, classe d’une fonction

1. Lorsquelle existe, la dérivée k-éme de f est Papplication notée f*) définie par récurrence par :

FO = fsi k=0 et f® = (fED) si keN*|

2. On dit que f est de classe C¥ sur I si® f est k-fois dérivable sur I et f(*) est continue sur I.

3. On dit que f est de classe C* sur I si f est de classe C* sur I pour tout k € N.

1. On dit que f est de classe C° si f est continue.

L

On note :

« D¥(I,F) I’ensemble des fonctions k-fois dérivables sur I pour k € N.
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« CF(I,F) I’ensemble des fonctions de classe C* sur I pour ke Nu {co}.

( Proposition 1.9. caractérisation a I’aide d’une base

p
Soit (e1,...,€p) une base de F. On écrit f(t) =" f;(t).e; pour tout ¢ € I. On a équivalence entre ' :
i=1

() feD*(,F); (i) Vie[[1,p]l, fieD*(L,F).

4 P
Dans ce cas, | Vj e [1,k]], VteI, fO(t)= Zfi(])(t).ei i
i=1

1. On peut remplacer D* par C*, ke NuU {o0}.

( Proposition 1.10. combinaison linéaire, produit

Soient f,g e DF(I,F), ¢ e DF(I,K) et A e K. Alors!

1. Mf+ge DM, F) et| Vje [LE], (Af+g)Y) = Af@) + ¢ | Bn particulier, D*(I, F) est un sev de F(I, F).

2. o.f e D*(I, F).

1. On peut remplacer D* par C*, ke NuU {o0}.

.

[ Proposition 1.11. linéarité et composition

Si f e DV(I, F) et Le L(F,G), alors Lo f e DF(I,G) et | Vje[Lk]], (Lof)P =Lof®|

1. On peut remplacer D" par C*, ke NuU {o0}.
[ Théoreme 1.1. formule de Leibniz
Soit B: F x G — E bilinéaire. Si f € D*(I, F) et g e D*(I,G), alors B(f,g) e D*(I,E) et?

k
viel, (B(f,9)™ () = Z(?)B(f(kj)(t),g(j)(t)) .

=0
1. On peut remplacer DF par C*, ke NU{co}.
( Corollaire 1.2. cas ou F' est une algebre
E /k N
Soit F' une K-algebre de dimension finie. Si f,g € C*(I, F) alors fg e C*(I,F) et | (fg)® = ( ) =0 () |
§=0
( Proposition 1.12. composition

Soit ke Nu {co}. Si f e CH(I,F) et ¢ € C*(J,R) avec ¢(J) c I, alors fopeCF(J, F).

Intégration sur un segment
Soit [a,b] un segment de R et f: [a,b] — F une application.

Intégrale d’une fonction continue par morceaux sur un segment

Soit B = (e1,...,ep) une base de F.
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( Définition 2.1. fonction continue par morceaux
On dit que f est continue par morceaux (cpm) sur [a,b] s'il existe une subdivision o = (a =ap<a;<...<
ar = b) de [a,b] telle que :

o Vie[[Lk]l, fia,,a[ est continue;

e f a des limites finies & gauche en tout les a;, 1 <i <k et a droite en tout les a;, 0 <t <k—1.

L

( Proposition 2.1. caractérisation a I’aide d’une base

P
On écrit, pour t € [a,b], f(t)= Z fi(t).e;. La fonction f est cpm si, et seulement si, chaque f; est cpm.
i=1

Remarque 2.1. ® La notion ci-dessus ne dépend pas du choix de la base B de F.

m L’ensemble Cp([a,b], F) des fonctions continues par morceaux sur [a,b] est un sev de F([a,b], F).

[ Définition 2.2. intégration entre deux bornes

Soit f € Cpm([a,b], F). On écrit f(t) = ifi(t).ei pour tout ¢ € [a,b].

i=1

b o P b
On appelle intégrale de f de a d b le vecteur f f(t)dt o > (f fi(t)dt) €
a =1 a

.

Remarque 2.2. B La valeur de l'intégrale ci-dessus ne dépend pas du choix de la base B de F.

( Proposition 2.2. propriétés de l'intégrale
Soient f,g € Cpm([a,b] ,F), LeL(F,G), NeK et cea,b].

1. f()\f+g) )\f f+[ (Linéarité) 3.
2. L f:fa f+fC f. (Relation de Chasles) 4. (f ) [ Lof

( Théoréme 2.1. sommes de Riemann

f [f]- (Inégalité triangulaire)

SifeCpm([a,b],F), alors b_anzlf(a+kb_7a)—> bf(t)dt.

.

— n — b
Remarque 2.3. ® On a aussi b-a Z f (a + kb—a) — f(&)dt.

Exemple 2.1. m Calculer lim — Z ksm( )

n—+ oon2

e S, = 2stm(lm) liﬁsi (lm) ! if( ) avec f(t) = tsin(nt).

n neamn nkl

o [ est continue sur [0,1] et S, est une somme de Riemann de f sur [0,1] donc

1 1 1
lim S, = tdt:ft' H)dt = —.
Jimsu= [ o= [t = 1

Intégrale fonction de sa borne supérieure et applications
Soit f: I — F une fonction et a € I.

Définition 2.3. primitive

On appelle primitive de f, s’il en existe, toute fonction G : [ — F dérivable vérifiant G’ = f.
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( Théoreme 2.2. théoreme fondamental du calcul intégral
Toute fonction continue sur un intervalle possede une primitive. Plus précisément : Si f est continue, alors

x
e La fonction x — / f(t)dt est de classe C! sur I et c’est I'unique primitive de f qui s’annule en a.
a
x
o De plus, pour toute primitive G de f sur I, on a Ve e I, G(x) =G(a)+ [ f(t)dt.
a

L

[ Corollaire 2.1.

b
Si f est continue de primitive G, alors | V(a,b) € I, [z f)dt = [G(t)]z =G(b)-G(a) |

L

( Théoreme 2.3. inégalité des accroissements finis

Soit f € CY(I, F). S'il existe M > 0 vérifiant Vt e I, |f'(t)| < M, alors® | V(a,b) € I, |f(b) - f(a)| < M|b-a] |

1. En d’autres termes, la fonction f est lipschitzienne.

L

Remarque 2.4. B Le théoréme des accroissements finis n’est plus vérifié si F' # R : la fonction f(t) = (cost,sin t)
est dérivable sur R et pour tout t € R, f/(¢) # (0,0) tandis que f(27) = f(0).

Formules de Taylor
Soit f: I — F une fonction et n € N.

( Théoreme 2.4. formule de Taylor avec reste intégrale

Y
Soit f € C™*!(1,F). Pour tout! (a,z) e I%,| f(z) =Y. %
k=0 :

F®(a) + / : (x;—f)n FOD () dt |

1. Dans le cas n = 0, on retrouve le théoréme fondamental de analyse : f(x) = f(a) + f f(t)de.

[ Théoreme 2.5. inégalité de Taylor-Lagrange
Soit f e C™(I,F). Si f(™*1) est bornée, alors! pour tout (a,z) € I?,

+1

5z -a)* |z —al" n+
)= 3 C 19 @) < E=supp e o |

1. Dans le cas n = 0, on retrouve inégalité des accroissements finis.

.

[ Théoreme 2.6. formule de Taylor-Young

n _\k
Soit f e C™*!(I,F). Pour tout ae I, | f(z) = > %f(k)(a) +(zx—a)"e(z) avec e(xr) — Op.
s | T—a

Cette formule ! est appelée développement limité de f a l'ordre n en a.

1. La formule de Taylor-Young est locale.
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