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Dans ce chapitre est sauf indication contraire, la notation K désigne R ou C. I et J sont des intervalles de R non
triviaux et E, F et G des K-ev de dimension finie.

1 Dérivation

Dérivation d’une fonction vectorielle d’une variable réelle

Soit f ∶ I Ð→ F une application et t0 ∈ I.

Définition 1.1. dérivation

1. On dit que f est dérivable en t0 si le taux d’accroissement τt0 ∶ I ∖ {t0} Ð→ F

t z→ f(t) − f(t0)
t − t0

admet

une limite en t0. Cette limite est alors appelée vecteur dérivé de f en t0, on la note f ′(t0).

f ′(t0) = lim
t→t0

f(t) − f(t0)
t − t0

= lim
h→0

f(t + h) − f(t)
h

.

2. On dit que f est dérivable si f est dérivable en tout point de I. On peut alors introduire l’application
dérivée f ′ ∶ I Ð→ F, tz→ f ′(t).

Proposition 1.1. caractérisation par le développement limité à l’ordre 1
On a équivalence entre :

(i) f est dérivable en t0 ;

(ii) f admet un développement limité 1 à l’ordre 1 en t0 : ∃v ∈ F, f(t0 + h) = f(t0) + h.v + o(h) .

Dans ce cas, f ′(t0) = v .

1. o(h) = h.ε(h) avec ε(h) ÐÐ→
h→0

0F .
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Définition 1.2. dérivabilité à gauche et à droite
Soit t0 un point intérieur à I.

1. On dit que f est dérivable à droite en t0 si le taux d’accroissement τt0 admet une limite quand t→ t+0 .
Cette limite est alors appelée vecteur dérivé à droite de f en t0, on la note f ′d(t0).

f ′d(t0) = lim
t→t+0

f(t) − f(t0)
t − t0

= lim
h→0+

f(t + h) − f(t)
h

.

2. On dit que f est dérivable à gauche en t0 si le taux d’accroissement τt0 admet une limite quand
t→ t−0 . Cette limite est alors appelée vecteur dérivé à gauche de f en t0, on la note f ′g(t0).

f ′g(t0) = lim
t→t−0

f(t) − f(t0)
t − t0

= lim
h→0−

f(t + h) − f(t)
h

.

Proposition 1.2.
Soit t0 un point intérieur à I. On a équivalence entre :

(i) f est dérivable en t0 ;

(ii) f est dérivable à droite et à gauche en t0 avec f ′g(t0) = f ′d(t0) .

Proposition 1.3. caractérisation à l’aide d’une base

Soit (e1, . . . , ep) une base de F . On écrit f(t) =
p

∑
i=1

fi(t).ei pour tout t ∈ I. On a équivalence entre :

(i) f est dérivable en t0 (resp. sur I) ; (ii) ∀i ∈ [[1, p]], fi est dérivable en t0 (resp. sur I).

Dans ce cas, f ′(t0) =
p

∑
i=1

f ′i(t0).ei (resp. ∀t ∈ I, f ′(t) =
p

∑
i=1

f ′i(t).ei) .

Exemple 1.1. ∎ A ∶ I Ð→Mn,p(K) est dérivable si, et seulement si, les fonctions coefficients t z→ ai,j(t) le sont.
On a alors

A′(t) =
n

∑
i=1

p

∑
j=1

a′i,j(t).Ei,j =
⎛
⎜⎜
⎝

a′1,1(t) . . . a′1,p(t)
⋮ ⋮

a′n,1(t) . . . a′n,p(t)

⎞
⎟⎟
⎠

.

Opérations sur les fonctions dérivables

Soit f ∶ I Ð→ F une application. On note D(I, F ) l’ensemble des fonctions dérivables sur I à valeurs dans F .

Proposition 1.4. combinaison linéaire, produit
Soient f, g ∈ D(I, F ), φ ∈ D(I,K) et λ ∈ K. Alors

1. λf + g ∈ D(I, F ) et (λf + g)′ = λf ′ + g′ . 2. φ.f ∈ D(I, F ) et (φ.f)′ = φ′.f + φ.f ′ .

Remarque 1.1. ∎ L’ensemble D(I, F ) est un sev de F(I, F ) et l’application f z→ f ′ y est linéaire.

Proposition 1.5. linéarité et composition

Si f ∈ D(I, F ) et L ∈ L(F, G), alors L ○ f ∈ D(I, G) et (L ○ f)′ = L ○ f ′ .

Exemple 1.2. ∎ Si A ∶ I Ð→ Mn(K) est dérivable alors t z→ Tr (A(t)) est dérivable et (Tr (A(t)))′ = Tr(A′(t))
pour tout t ∈ I.

2 / 6 Binyze Mohamed

https://supsp%C3%A9.com


https://supspé.com 1 DÉRIVATION

Proposition 1.6. bilinéarité et composition
Soit B ∶ F ×GÐ→ E une application bilinéaire. Si f ∈ D(I, F ) et g ∈ D(I, G), alors l’application B(f, g) ∶ I Ð→

E définie par B(f, g)(t) = B(f(t), g(t)) est dérivable et (B(f, g))′ = B(f ′, g) +B(f, g′) .

Exemple 1.3. ∎ Soient (E,< ., . >) un espace euclidien et ∥.∥ = √< ., . > la norme euclidienne associée.
Si f, g ∈ D(I, E) alors

• l’application u ∶ I Ð→ R
t z→ < f(t), g(t) >

est dérivable sur I et ∀t ∈ I, u′(t) =< f ′(t), g(t) > + < f(t), g′(t) >.

• l’application v ∶ I Ð→ R
t z→ ∥f(t)∥2

est dérivable sur I et ∀t ∈ I, v′(t) = 2 < f ′(t), f(t) >.

Corollaire 1.1. cas où F est une algèbre

Soit F une K-algèbre de dimension finie. Si f, g ∈ D(I, F ) alors fg ∈ D(I, F ) et (fg)′ = f ′g + fg′ .

Proposition 1.7. composition

Si f ∈ D(I, F ) et φ ∈ D(J,R) avec φ(J) ⊂ I, alors f ○ φ ∈ D(J, F ) et ∀t ∈ J, (f ○ φ)′(t) = φ′(t).f ′(φ(t)) .

Proposition 1.8. multilinéarité et dérivation
Soit m ∶ F1 × . . . × Fk Ð→ F une application multilinéaire. Si chaque fi ∶ I Ð→ Fi, 1 ≤ i ≤ k est dérivable, alors
l’application m(f1, . . . , fk) ∶ tz→m(f1(t), . . . , fk(t)) est dérivable et

(m(f1, . . . , fk))
′ =

k

∑
i=1

m(f1, . . . , f ′i , . . . , fk) .

Exemple 1.4. ∎ Soit A ∶ I Ð→Mn(K) dérivable. Notons C1(t), . . . , Cn(t) les colonnes de A(t) et B = (e1, . . . , en)
la base canonique de Mn,1(K).

• Les fonctions C1, . . . , Cn sont dérivables sur I et det(A(t)) = detB(C1(t), . . . , Cn(t)).

• Comme detB est une application multilinéaire, alors tz→ det(A(t)) est dérivable sur I et

∀t ∈ I, (det(A(t)))′ =
n

∑
i=1

detB (C1(t), . . . , C ′i(t), . . . , Cn(t)).

Dérivées d’ordre supérieur

Soit f ∶ I Ð→ F une application et k ∈ N.

Définition 1.3. dérivation d’ordre k, classe d’une fonction

1. Lorsqu’elle existe, la dérivée k-ème de f est l’application notée f (k) définie par récurrence par :

f (k) = f si k = 0 et f (k) = (f (k−1))′ si k ∈ N∗ .

2. On dit que f est de classe Ck sur I si 1 f est k-fois dérivable sur I et f (k) est continue sur I.

3. On dit que f est de classe C∞ sur I si f est de classe Ck sur I pour tout k ∈ N.

1. On dit que f est de classe C0 si f est continue.

On note :

• Dk(I, F ) l’ensemble des fonctions k-fois dérivables sur I pour k ∈ N.

3 / 6 Binyze Mohamed

https://supsp%C3%A9.com


https://supspé.com 2 INTÉGRATION SUR UN SEGMENT

• Ck(I, F ) l’ensemble des fonctions de classe Ck sur I pour k ∈ N ∪ {∞}.

Proposition 1.9. caractérisation à l’aide d’une base

Soit (e1, . . . , ep) une base de F . On écrit f(t) =
p

∑
i=1

fi(t).ei pour tout t ∈ I. On a équivalence entre 1 :

(i) f ∈ Dk(I, F ) ; (ii) ∀i ∈ [[1, p]], fi ∈ Dk(I, F ).

Dans ce cas, ∀j ∈ [[1, k]], ∀t ∈ I, f (j)(t) =
p

∑
i=1

f
(j)
i (t).ei .

1. On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.

Proposition 1.10. combinaison linéaire, produit

Soient f, g ∈ Dk(I, F ), φ ∈ Dk(I,K) et λ ∈ K. Alors 1

1. λf +g ∈ Dk(I, F ) et ∀j ∈ [[1, k]], (λf + g)(j) = λf (j) + g(j) . En particulier, Dk(I, F ) est un sev de F(I, F ).

2. φ.f ∈ Dk(I, F ).

1. On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.

Proposition 1.11. linéarité et composition

Si f ∈ Dk(I, F ) et L ∈ L(F, G), alors L ○ f ∈ Dk(I, G) et 1 ∀j ∈ [[1, k]], (L ○ f)(j) = L ○ f (j) .

1. On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.

Théorème 1.1. formule de Leibniz
Soit B ∶ F ×GÐ→ E bilinéaire. Si f ∈ Dk(I, F ) et g ∈ Dk(I, G), alors B(f, g) ∈ Dk(I, E) et 1

∀t ∈ I, (B(f, g))(k)(t) =
k

∑
j=0
(k

j
)B(f (k−j)(t), g(j)(t)) .

1. On peut remplacer Dk par Ck, k ∈ N ∪ {∞}.

Corollaire 1.2. cas où F est une algèbre

Soit F une K-algèbre de dimension finie. Si f, g ∈ Ck(I, F ) alors fg ∈ Ck(I, F ) et (fg)(k) =
k

∑
j=0
(k

j
)f (k−j)g(j) .

Proposition 1.12. composition

Soit k ∈ N ∪ {∞}. Si f ∈ Ck(I, F ) et φ ∈ Ck(J,R) avec φ(J) ⊂ I, alors f ○ φ ∈ Ck(J, F ).

2 Intégration sur un segment

Soit [a, b] un segment de R et f ∶ [a, b] Ð→ F une application.

Intégrale d’une fonction continue par morceaux sur un segment

Soit B = (e1, . . . , ep) une base de F .
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Définition 2.1. fonction continue par morceaux

On dit que f est continue par morceaux (cpm) sur [a, b] s’il existe une subdivision σ = (a = a0 < a1 < . . . <
ak = b) de [a, b] telle que :

• ∀i ∈ [[1, k]], f∣]ai−1,ai[ est continue ;

• f à des limites finies à gauche en tout les ai, 1 ≤ i ≤ k et à droite en tout les ai, 0 ≤ i ≤ k − 1.

Proposition 2.1. caractérisation à l’aide d’une base

On écrit, pour t ∈ [a, b] , f(t) =
p

∑
i=1

fi(t).ei. La fonction f est cpm si, et seulement si, chaque fi est cpm.

Remarque 2.1. ∎ La notion ci-dessus ne dépend pas du choix de la base B de F .

∎ L’ensemble Cpm([a, b] , F ) des fonctions continues par morceaux sur [a, b] est un sev de F([a, b] , F ).

Définition 2.2. intégration entre deux bornes

Soit f ∈ Cpm([a, b] , F ). On écrit f(t) =
p

∑
i=1

fi(t).ei pour tout t ∈ [a, b].

On appelle intégrale de f de a à b le vecteur ∫
b

a
f(t)dt

déf=
p

∑
i=1
(∫

b

a
fi(t)dt) ei .

Remarque 2.2. ∎ La valeur de l’intégrale ci-dessus ne dépend pas du choix de la base B de F .

Proposition 2.2. propriétés de l’intégrale

Soient f, g ∈ Cpm([a, b] , F ), L ∈ L(F, G), λ ∈ K et c ∈ [a, b].

1. ∫
b

a
(λf + g) = λ∫

b

a
f + ∫

b

a
g. (Linéarité)

2. ∫
b

a
f = ∫

c

a
f + ∫

b

c
f . (Relation de Chasles)

3. ∥∫
b

a
f∥ ≤ ∫

b

a
∥f∥. (Inégalité triangulaire)

4. L(∫
b

a
f) = ∫

b

a
L ○ f .

Théorème 2.1. sommes de Riemann

Si f ∈ Cpm([a, b] , F ), alors b − a

n

n−1
∑
k=0

f (a + k
b − a

n
) ÐÐÐ→

n→+∞ ∫
b

a
f(t)dt .

Remarque 2.3. ∎ On a aussi b − a

n

n

∑
k=1

f (a + k
b − a

n
) ÐÐÐ→

n→+∞ ∫
b

a
f(t)dt.

Exemple 2.1. ∎ Calculer lim
n→+∞

1
n2

n

∑
k=1

k sin(kπ

n
).

• Sn =
1
n2

n

∑
k=1

k sin(kπ

n
) = 1

n

n

∑
k=1

k

n
sin(kπ

n
) = 1

n

n

∑
k=1

f (k

n
) avec f(t) = t sin(πt).

• f est continue sur [0, 1] et Sn est une somme de Riemann de f sur [0, 1] donc

lim
n→+∞Sn = ∫

1

0
f(t)dt = ∫

1

0
t sin(πt)dt = 1

π
.

Intégrale fonction de sa borne supérieure et applications

Soit f ∶ I Ð→ F une fonction et a ∈ I.

Définition 2.3. primitive
On appelle primitive de f , s’il en existe, toute fonction G ∶ I Ð→ F dérivable vérifiant G′ = f .
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Théorème 2.2. théorème fondamental du calcul intégral
Toute fonction continue sur un intervalle possède une primitive. Plus précisément : Si f est continue, alors

• La fonction xz→ ∫
x

a
f(t)dt est de classe C1 sur I et c’est l’unique primitive de f qui s’annule en a.

• De plus, pour toute primitive G de f sur I, on a ∀x ∈ I, G(x) = G(a) + ∫
x

a
f(t)dt.

Corollaire 2.1.

Si f est continue de primitive G, alors ∀(a, b) ∈ I2, ∫
b

a
f(t)dt = [G(t)]ba = G(b) −G(a) .

Théorème 2.3. inégalité des accroissements finis

Soit f ∈ C1(I, F ). S’il existe M ≥ 0 vérifiant ∀t ∈ I, ∥f ′(t)∥ ≤M , alors 1 ∀(a, b) ∈ I2, ∥f(b) − f(a)∥ ≤M ∣b − a∣ .

1. En d’autres termes, la fonction f est lipschitzienne.

Remarque 2.4. ∎ Le théorème des accroissements finis n’est plus vérifié si F ≠ R : la fonction f(t) = (cos t, sin t)
est dérivable sur R et pour tout t ∈ R, f ′(t) ≠ (0, 0) tandis que f(2π) = f(0).

Formules de Taylor

Soit f ∶ I Ð→ F une fonction et n ∈ N.

Théorème 2.4. formule de Taylor avec reste intégrale

Soit f ∈ Cn+1(I, F ). Pour tout 1 (a, x) ∈ I2, f(x) =
n

∑
k=0

(x − a)k

k!
f (k)(a) + ∫

x

a

(x − t)n

n!
f (n+1)(t)dt .

1. Dans le cas n = 0, on retrouve le théorème fondamental de l’analyse : f(x) = f(a) + ∫
x

a
f ′(t)dt.

Théorème 2.5. inégalité de Taylor-Lagrange

Soit f ∈ Cn+1(I, F ). Si f (n+1) est bornée, alors 1 pour tout (a, x) ∈ I2,

∥f(x) −
n

∑
k=0

(x − a)k

k!
f (k)(a)∥ ≤ ∣x − a∣n+1

(n + 1)!
sup
t∈I
∥f (n+1)(t)∥ .

1. Dans le cas n = 0, on retrouve inégalité des accroissements finis.

Théorème 2.6. formule de Taylor-Young

Soit f ∈ Cn+1(I, F ). Pour tout a ∈ I, f(x) =
x→a

n

∑
k=0

(x − a)k

k!
f (k)(a) + (x − a)nε(x) avec ε(x) ÐÐ→

x→a
0F .

Cette formule 1 est appelée développement limité de f à l’ordre n en a.

1. La formule de Taylor-Young est locale.

6 / 6 Binyze Mohamed

https://supsp%C3%A9.com

	Dérivation
	Intégration sur un segment

