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Dans ce chapitre et sauf mentionné, la notation K désigne R ou C et £ un K-ev normé de dimension finie.

Séries dans un espace vectoriel normé de dimension finie
Généralités
Soit (un)n une suite d’éléments de F.

( Définition 1.1. série, somme, reste

n
1. On appelle série de terme général u, la suite (S”)n définie par S, = Z ug. On la note Zun
k=0

2. Pour n fixé, S, s’appelle somme partielle de la série Zun

3. On dit que la série Zun converge' lorsque la suite (S")n converge. Dans ce cas :

+00 +o00
a. Sa limite est alors appelée somme de la série et notée Z Up . lim S, = Z Up,-
n=0 n=+oo n=0
+0o n +o00
b. La différence R, = Z Uy, — Z U = Z uy est appelé reste d’ordre n de la série.
n=0 k=0 k=n+1
1. Lorsque la série ne converge pas, on dit qu’elle diverge.
.
Remarque 1.1. ®m Si Zun converge alors R,, — 0.
n—+oo
Proposition 1.1. condition nécessaire de convergence

Si la série Z uy, converge alors u, —— 0. (La réciproque est fausse).
n—+oo

Remarque 1.2. ® Si la suite (“”)n ne tend pas vers 0, on dit que la série Zun diverge grossiérement.
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( Proposition 1.2. lien suite-série

La suite (un)n converge si, et seulement si, la série télescopique Z(“nﬂ - un) converge. Dans ce cas !,

+ 00
gb(unu —up) = lm up —up |

1. La série télescopique Z(un+1 —up) et la suite (un)n sont de méme nature.

.
[ Proposition 1.3. linéarité de la somme

Si Zun et Zvn convergent, alors pour tout (A, i) € K2, la série Z(Aun + ;wn) converge. De plus

+00 +00 +o00
Z()\un+uvn):/\2un+u2vn |
n=0 n=0 n=0
( Théoréme 1.1. caractérisation a I'aide d’une base
p .
Soit B = (el, e ep) une base de F. On écrit chaque u,, dans la base B: u, = Zuff)ei pour tout n € N.
i=1
La série Zun converge si, et seulement si, pour tout 1 <7 < p, la série numérique Z ugf) converge. De plus :
n>0

+00 p [+oo
> up = Z(Z ugf))ei L
n=0

=1 \n=0

L

Exemple 1.1. m Soient (A")n une suite de M,(K) avec A, = (a(") la base canonique de

1] )l§i7j§p ot (Ei’j)léi,jSp
M, (K). La série " A, converge si, et seulement si, pour tout (4, j) € [1,p]]?, la série numérique ». agg) converge

n>0
+00 P +00 (n)
et on a : ZAn: Z ( a; ; )E”
0

n=0 2,j=1 \n=

[ Définition 1.2. convergence absolue

La série Zun est dite absolument convergente lorsque la série a termes positifs Z”UnH converge.

L

( Théoreme 1.2. convergence vs convergence absolue

+o00o +00
n=0 n=0

Si Z“n converge absolument alors ! Zun converge (La réciproque est fausse). De plus

1. on rappelle ici que (un)rn est une suite d’éléments de l'espace E qui est de dimension finie.

Séries dans une algebre normée de dimension finie
Soit (A, +, x,.) une algebre normée de dimension finie d’élément unité e. La norme ici est une norme d’algebre :
¥ (u,v) € A%, [u x| < ul]v].

Théoreme 1.3. série géométrique de Neumann

+o00
Soit a € A tel que |a| < 1. La série géométrique ) a” converge absolument et| Y a™ = (e - o)t (a®=e)
n>0 n=0
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Théoréme 1.4. série exponentielle

a” (o T T
Soit a € A. La série exponentielle Z — converge absolument et | exp(a) ey

n>0 "% n=

Ensembles dénombrables

Définition 2.1. ensemble dénombrable, au plus dénombrable.
Un ensemble est dit dénombrable s’il est en bijection avec N, il est dit au plus dénombrable s’il est en

bijection avec une partie de N.

Exemple 2.1. m N* est dénombrable via ¢ : N — N* donnée par ¢(n) =n + 1.
® 7 est dénombrable via ¢ : N — Z donnée par ¢(n) = n/2 si n est pair et p(n) = —(n+1)/2 si n est impair.
m N2 est dénombrable via ¢ : N2 — N* donnée par o(n,m) = 2"(2m + 1).

( Théoréeme 2.1. parties infinies de N
Toute partie infinie de N est dénombrable.

.

( Corollaire 2.1.
Un ensemble est au plus dénombrable si, et seulement si, il est fini ou dénombrable.

.
( Théoreme 2.2. opérations sur les ensembles dénombrables

1. Un produit cartésien fini d’ensembles au plus dénombrables est au plus dénombrable.
2. Une réunion finie ou dénombrable d’ensembles dénombrables est dénombrable.

3. Une réunion finie ou dénombrable d’ensembles au plus dénombrables est au plus dénombrable.

.

Exemple 2.2. ® Pour p > 1, NP est dénombrable.

mQ-=

b
U {5} est dénombrable comme réunion dénombrable d’ensembles au plus dénombrables.
(p,q)€ZxN*

( Théoréeme 2.3.
Soit I un ensemble au plus dénombrable. Si (FZ)ZE ; est une partition ' de I, alors J est au plus dénombrable.

1. I=U F; avec F;nF; =@ pour i # j et I} # @ pour tout ¢ € J.
1eJ

[ Théoreme 2.4.
L’ensemble R n’est pas dénombrable.

.

Familles sommables

Familles sommables de nombres réels positifs
Rappelle des propriétés basiques dans R = [0, +oo] = [0, +oo[U{ + oo} :
o VaeR, a<+oo, (+00)+a=a+(+00)=+00 et (+00)+ (+00)=+00.

e Toute partie non vide de R* admet une borne supérieure : max R+ = +oo.
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[ Définition 3.1. somme d’une famille de R+
Soit (u;)ser une famille de R*. On appelle somme de la famille (u;);e; Pélément sup Z u;. Cet élément de
FFﬁCnIie ek
R+ est noté Z U; - Z U; det sup Z Uu; = sup Z u; tel que F finie c I} € R+
iel iel Fcl  4eF ieF
F finie
( Proposition 3.1. invariance de la somme par permutation

Soit (u;)ser une famille de R* et o : I —> I une bijection. On a dans R+ 1'égalité : Zua(j) = Zul .
jgel iel

L

( Définition 3.2. famille sommable de réels positifs

On dit qu'une famille (u;);; de R* est sommable si' Zul < +o00, cela revient a dire qu’il existe M > 0 tel
iel
que, pour toute partie finie F' de I, 0< Z u; < M.
ieF

1. Dans le cas ou la famille (u;);er n’est pas sommable, on pose Zui 1= +00.
iel

.

Exemple 3.1. m Les familles finies sont assurément sommables.

1
m Soit g € [0,1] et u, = ¢ pour n € Z. La famille (tn)nez est sommable et Z Up = ﬂ

nez -9
o Pour toute partie F' finie de Z, il existe N €N tel que F' c [[-N, N]], donc
N

N N
1- 1+
Yu< Zq|n|:1+22q”:1+2q ¢ -79
i€l n=—N n=1 1 —-q 1 —-q
N In| 1+q 1+q
o La famille (uy)nez est donc sommable. De plus Z ¢ —— ——. D’on Z Uy = —.
ne—N N->oco 1—q el l—q

Remarque 3.1 (Support d'une famille de R").
m Le support d'une famille (u;);c; est par définition ’ensemble S = {z el, u; # O}.

m Le support d’une famille sommable (u;);c; de R est au plus dénombrable. En effet :

1 1 1
e S= U jiel, uy>=t= U I.Soit M= u; eR*.Ona: M > U; > — = —Card I, donc ’ensemble
keN*{ ‘ k‘} pee z; ' zezI;c l 1€zlzkk k ’
| —
=1
I}, est fini.

e S g’exprime alors comme une réunion dénombrable d’ensembles finis, ¢’est donc un ensemble au plus dé-

nombrable.

On se restreindra par la suite au cas ou le domaine d’indexation I est au plus dénombrable.

( Proposition 3.2. sommabilité des familles de réels positifs indexées par N

+00
La famille (uy, )ney de R est sommable si, et seulement si, la série Z uy, converge. Dans ce cas, Z Uy = Z Uy |-
neN n=0

L

( Proposition 3.3. critére de comparaison

Si 0 < u; < v; pour tout i € I et (v;)ser est sommable alors! (u;);e; sommable et on a : |0 < Euz < Z”i L
iel iel

1. La non sommabilité de (u;)ir entraine la non sommabilité de (v;)ier.
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( Proposition 3.4. opérations

Soient (u;)er et (v;)ser deux familles sommables de R™ et A € R*. Les familles ()\ui)iE ; et (uz + vi)ie ; sont

sommables et on a :

S (M) =A> u et > (up+v;) =Y ui+ Y v |

iel iel iel iel iel

L

( Théoréeme 3.1. sommation par paquets positif

Soit (u;)ier une famille de R* et (I;);es une partition de I. On a dans R+ égalité : Zuz = Z (Z u,) L
iel jeJ \iel;

En particulier, il est équivalent de dire :

(i) (wi)ier est sommable;

(i) VjeJ, (ui)ier; est sommable et la famille (Z u,) est sommable.
jeJ

ZEI]‘

L

1
Considérons la, partition (I,,)pey de N? définie par I, = {(z’,j) eN?, j+j= n} pour tout n € N.

Exemple 3.2. m On pose, pour tout (7,5) € N2, Ui j =

e Pour tout n €N, I, est fini donc la famille (ui,j)(i,j)eln est sommable. De plus, Cardl, =n+1et on a :

1 1 1 Card [ 1
Z Uij = Z W: Z 12n: Tam Z 1:—1;”:2_71.
(ij)eln igyet, (P T+1) Ggyer, (120 (n+1)2m 5 - (n+1)
A 3 1 Id 7’ .
e La série Z - converge car géométrique.
n>0
+00o +00 1
D’ot la famille (u; ;) (; jyenz est sommable et > wij=Y | > wij|=), o 9.
(1,5)eN? n=0 \ (i,7)el, n=0

[ Théoreme 3.2. théoreme de Fubini positif

Soit (i j)(i,j)erxs une famille de R*. On a dans R* P'égalité : Yoouig=> D uig =D (Z u”) :
(irj)elxJ iel \jeJ jeJ \iel

En particulier, il est équivalent de dire :

(i) (wij)(,j)erxs est sommable;

(i) Viel, (u;;)jes est sommable et la famille (Z u”) est sommable.
iel

jeJ

L

( Théoréme 3.3. théoréme de Fubini positif (cas des suites doubles)

+oo [ +oo +oo f+00
Soit (Um,n) (m,n)en2 une famille de R™. On a dans R* I'égalité : Z U = Z ( Um,n) = Z ( um’n) L
0 =0 \n=0

(m,n)eN? n=0 \m=

En particulier, il est équivalent de dire :

(1) (Wmn)(mnyen> est sommable;

+0o0
(i) Vn eN, la série Z Um,n, converge et la série Z ( Z umn) converge.

m>0 n>0 \m=0

L

m
Exemple 3.3. m Considérons uy, , = ——, (m,n) € NZ2.
m!n!
L. R U1, n
e Vn eN, la série Z U, converge par la regle de d’Alembert : UAELIL 0. De plus
m20 Um,n m+1 m—oo
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+00 +00 nm en
2 tmn = X o=
flowr momin!  nl
+00 en+1 n! e
o La série Z Z Um,n | converge par la regle de d’Alembert : ——~— = —— —— 0.
n>0 \m=0 (n+1)'e” n+1 n—oo

Dot la famille (Umn)(m,n)enz est sommable et

s (S ) EL(E ) S g

(m,n)eN2 n=0 \m=0 mln! n=0 n! m=0 m!

Familles sommables de nombres réels ou de complexes

Dans ce paragraphe, I désigne un ensemble au plus dénombrable (finie ou dénombrable).

o Soit (u;)ier une famille de réels. Pour tout ¢ € I, on introduit | u; = max(w;,0) | et | u; = max(-u;,0) |

o Les familles (u; )ier et (u; )ier étant a termes positifs et pour tout i € I, |u; = u —u; |et||u;| =u] +u; |

( Définition 3.3. famille sommable de réels ou de complexes

On dit qu’une famille (u;);er de réels ou de complexes est sommable si la famille (|ul|) ; de R™ est sommable.

i€
Youi = uy si (u;)ier est réelles.
iel iel

Dans ce cas, on pose : Zul def
el ZRe(ui) +iZIm(ui) si (u;)ier est complexes.
iel iel

Le scalaire Zuz est appelé la somme de la famille (u;)ges.
iel

( Proposition 3.5.

Si (u;)ier est une famille de réels ou de complexes sommable et € > 0, alors il existe une partie finie F' de I

telle que DU Y Ui < e,
iel el
.
( Proposition 3.6. sommabilité des familles de réels ou de complexes indexées par N

La famille (uy, )ney de réels ou de complexes est sommable si, et seulement si, la série Z Uy, converge absolument.

+00
Dans ce cas, Z Up = Z Up |-
neN n=0

.

( Proposition 3.7. invariance de la sommabilité et de la valeur de la somme par permutation

Soient (u;);e; une famille de réels ou de complexes et o : I — I une bijection. La famille (u;);c; est sommable

si, et seulement si, la famille (ug(j)) est sommable. Dans ce cas, Z U (j) = Zuz .

jel
J jel iel

.

( Proposition 3.8. critere de comparaison
Soit (u;)ie; une familles de réels ou de complexes et (v;);e; une familles de R*.

== (u;)ie; est sommable.

Viel, [uj| <y
(vi)ier est sommable

L

On note ¢'(I) I'ensemble des familles de réels ou de complexes sommables.

6 /8 Binyze Mohamed


https://supsp%C3%A9.com

https://supspé.com 3 FAMILLES SOMMABLES

( Proposition 3.9. propriétés
1. Si (ug)ier et (v3)ier € £1(I) et A €K, alors (u; + Av;) o€ ¢*(I) et on a :

7

S(ui+Av;) = > i+ AN v |

iel iel iel

En particulier, ¢*(I) est un K-ev.

2, ui

iel

2. Si (u;)ier € £2(I), alors < > Jug| | (Inégalité triangulaire)

iel

3. Si Jcl et (u;)ier € 2(I), alors (u;)ics € £1(J). (Une sous-famille d'une famille sommable est sommable)

L

( Théoreme 3.4. sommation par paquets

Si (1) jes est une partition de I et (u;)ser une famille de réels ou de complexes sommable, alors

STl

1el jeJ \iel;

En particulier, la famille (Z ul) est sommable et elle a la méme somme que (u;)er-
iGIj
jed

Remarque 3.2 (Critére suffisant de sommabilité.).

m On vérifie 'hypothese de sommabilité d’une famille (u;);e; de réels ou de complexes en appliquant le théoréeme

de sommation par paquets positifs, a la famille (\uz|)lE I

[ Théoreme 3.5. théoréme de Fubini
Si la famille (u; ;) j)erxs de réels ou de complexes est sommable, alors

> Ui = Z(Z uu) =3 (Zui,j) |

(i,9)eIxJ iel \jeJ jeJ \iel

.

( Théoreme 3.6. théoréme de Fubini (cas des suites doubles)

Si la famille (4m 5 ) (m,n)enz de réels ou de complexes est sommable, alors

+o0 [ +00 +00 [ +00
Z Um,n = Z ( um,n) = Z ( um,n) .
0 m=0 \n=0

(m,n)eN2 n=0 \m=

L

n,,m
L 2"n
Exemple 3.4. m Considérons uy, , = ——, (m,n) € N2 et z € C*.
min!
L. . , Um+1,n n
e VneN, la série Z |um, n| converge par le critere de d’Alembert : = —— 0. De plus
m20 m,n m+1 m-oo
+00 +00 nm n |Z|n en
> il = 3 o2 = B
o oz min! n!

n+l n+l |
|z|"* e n! zle 0.

+o00
o La série Y ( > |umn]) converge par le critére de d’Alembert :

n>0 (n+1)! |z7er  n+1 n-oo

m=0

Dot la famille (Umn)(m n)enz est sommable et

+00 +o00o n,m +00 n +00 m +00 n n
I 3 Do B o
n=0 = :

In!
(m,n)eN2 n=0 \m=0 707
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( Corollaire 3.1. cas d’une famille d’indices séparés
Si les familles de réels ou de complexes (u;)ics et (vj)jes sont sommables, alors la famille (u;v;)(; j)erxs est

sommable et

5 uivj:(zui)(zvj) |

(i,5)eIxJ el jeJ
[ Corollaire 3.2. extension au produit d’'un nombre fini de familles sommables
Soit k € N*. Si les familles de réels ou de complexes (ul(ll)) FETEEE (uf}f)) ; sont sommables, alors la famille
11€l1 Lk€lk
(ugl) .. u(k)) o est sommable et
“ LR CRI I 1 ST /¥

k k
5 ugp...ugg:(z ug))...( 5 ugg) |

(il,...,ik)éflx...xfk i1€l1 ikEIk

Application au produit de Cauchy de deux séries absolument convergentes

( Définition 3.4. produit de Cauchy de deux séries
On appelle produit de Cauchy des séries numériques Z Uy, €t Z vy, la série Z wy, définie par :

n>0 n>0 n>0

n
VneN, wy,= Z Uv; = Zuivn_i .
i=0

i+j=n

L

( Théoreme 3.7. convergence de la série produit de Cauchy

Si les séries numériques Z Uy, et Z vy, sont absolument convergentes, alors leur produit de Cauchy Z Wy,
n>0 n>0 n>0
converge absolument et la famille (uyvy)(p q)en2 est sommable. Dans ce cas

(p,q)eN?

L

( Corollaire 3.3.

Soit A une algebre normée de dimension finie! et (u,v) € A2. Si uv = vu, alors | exp(u +v) = exp(u) exp(v) |.

1. Parmi les cas fréquents : A= M, (K) ou A=L(F) avec E de dimension finie.
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