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Dans ce chapitre et sauf mentionné, la notation K désigne R ou C et E un K-ev normé de dimension finie.

1 Séries dans un espace vectoriel normé de dimension finie

Généralités

Soit (un)n une suite d’éléments de E.

Définition 1.1. série, somme, reste

1. On appelle série de terme général un la suite (Sn)n définie par Sn =
n

∑
k=0

uk. On la note ∑un.

2. Pour n fixé, Sn s’appelle somme partielle de la série ∑un.

3. On dit que la série ∑un converge 1 lorsque la suite (Sn)n converge. Dans ce cas :

a. Sa limite est alors appelée somme de la série et notée
+∞
∑
n=0

un : lim
n→+∞Sn =

+∞
∑
n=0

un.

b. La différence Rn =
+∞
∑
n=0

un −
n

∑
k=0

uk =
+∞
∑

k=n+1
uk est appelé reste d’ordre n de la série.

1. Lorsque la série ne converge pas, on dit qu’elle diverge.

Remarque 1.1. ∎ Si ∑un converge alors Rn ÐÐÐ→
n→+∞ 0.

Proposition 1.1. condition nécessaire de convergence
Si la série ∑un converge alors un ÐÐÐ→

n→+∞ 0. (La réciproque est fausse).

Remarque 1.2. ∎ Si la suite (un)n ne tend pas vers 0, on dit que la série ∑un diverge grossièrement.

1



https://supspé.com 1 SÉRIES DANS UN ESPACE VECTORIEL NORMÉ DE DIMENSION FINIE

Proposition 1.2. lien suite-série

La suite (un)n converge si, et seulement si, la série télescopique ∑(un+1 − un) converge. Dans ce cas 1,

+∞
∑
n=0
(un+1 − un) = lim

n→+∞un − u0 .

1. La série télescopique ∑(un+1 − un) et la suite (un)n sont de même nature.

Proposition 1.3. linéarité de la somme

Si ∑un et ∑ vn convergent, alors pour tout (λ, µ) ∈ K2, la série ∑(λun + µvn) converge. De plus

+∞
∑
n=0
(λun + µvn) = λ

+∞
∑
n=0

un + µ
+∞
∑
n=0

vn .

Théorème 1.1. caractérisation à l’aide d’une base

Soit B = (e1, . . . , ep) une base de E. On écrit chaque un dans la base B ∶ un =
p

∑
i=1

u(i)n ei pour tout n ∈ N.

La série ∑un converge si, et seulement si, pour tout 1 ≤ i ≤ p, la série numérique ∑
n≥0

u(i)n converge. De plus :

+∞
∑
n=0

un =
p

∑
i=1
(
+∞
∑
n=0

u(i)n ) ei .

Exemple 1.1. ∎ Soient (An)n une suite de Mp(K) avec An = (a(n)i,j
)

1≤i,j≤p et (Ei,j)1≤i,j≤p la base canonique de

Mp(K). La série∑An converge si, et seulement si, pour tout (i, j) ∈ [[1, p]]2, la série numérique ∑
n≥0

a
(n)
i,j converge

et on a :
+∞
∑
n=0

An =
p

∑
i,j=1
(
+∞
∑
n=0

a
(n)
i,j )Ei,j .

Définition 1.2. convergence absolue
La série ∑un est dite absolument convergente lorsque la série à termes positifs ∑∥un∥ converge.

Théorème 1.2. convergence vs convergence absolue

Si ∑un converge absolument alors 1 ∑un converge (La réciproque est fausse). De plus ∥
+∞
∑
n=0

un∥ ≤
+∞
∑
n=0
∥un∥ .

1. on rappelle ici que (un)n est une suite d’éléments de l’espace E qui est de dimension finie.

Séries dans une algèbre normée de dimension finie

Soit (A,+,×, .) une algèbre normée de dimension finie d’élément unité e. La norme ici est une norme d’algèbre :

∀(u, v) ∈ A2, ∥u × v∥ ≤ ∥u∥∥v∥.

Théorème 1.3. série géométrique de Neumann

Soit a ∈ A tel que ∥a∥ < 1. La série géométrique ∑
n≥0

an converge absolument et
+∞
∑
n=0

an = (e − a)−1 . (a0 = e)
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Théorème 1.4. série exponentielle

Soit a ∈ A. La série exponentielle ∑
n≥0

an

n!
converge absolument et exp(a) déf=

+∞
∑
n=0

an

n!
.

2 Ensembles dénombrables

Définition 2.1. ensemble dénombrable, au plus dénombrable.
Un ensemble est dit dénombrable s’il est en bijection avec N, il est dit au plus dénombrable s’il est en
bijection avec une partie de N.

Exemple 2.1. ∎ N∗ est dénombrable via φ ∶ NÐ→ N∗ donnée par φ(n) = n + 1.

∎ Z est dénombrable via φ ∶ NÐ→ Z donnée par φ(n) = n/2 si n est pair et φ(n) = −(n + 1)/2 si n est impair.

∎ N2 est dénombrable via φ ∶ N2 Ð→ N∗ donnée par φ(n, m) = 2n(2m + 1).

Théorème 2.1. parties infinies de N
Toute partie infinie de N est dénombrable.

Corollaire 2.1.
Un ensemble est au plus dénombrable si, et seulement si, il est fini ou dénombrable.

Théorème 2.2. opérations sur les ensembles dénombrables
1. Un produit cartésien fini d’ensembles au plus dénombrables est au plus dénombrable.

2. Une réunion finie ou dénombrable d’ensembles dénombrables est dénombrable.

3. Une réunion finie ou dénombrable d’ensembles au plus dénombrables est au plus dénombrable.

Exemple 2.2. ∎ Pour p ≥ 1, Np est dénombrable.

∎ Q = ⋃
(p,q)∈Z×N∗

{
p

q
} est dénombrable comme réunion dénombrable d’ensembles au plus dénombrables.

Théorème 2.3.
Soit I un ensemble au plus dénombrable. Si (Fi)i∈J est une partition 1 de I, alors J est au plus dénombrable.

1. I = ⋃
i∈J

Fi avec Fi ∩ Fj = ∅ pour i ≠ j et Fi ≠ ∅ pour tout i ∈ J .

Théorème 2.4.
L’ensemble R n’est pas dénombrable.

3 Familles sommables

Familles sommables de nombres réels positifs

Rappelle des propriétés basiques dans R+ = [0,+∞] = [0,+∞[⋃{ +∞} :

• ∀a ∈ R, a < +∞, (+∞) + a = a + (+∞) = +∞ et (+∞) + (+∞) = +∞.

• Toute partie non vide de R+ admet une borne supérieure : maxR+ = +∞.
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Définition 3.1. somme d’une famille de R+

Soit (ui)i∈I une famille de R+. On appelle somme de la famille (ui)i∈I l’élément sup
F⊂I

F finie

∑
i∈F

ui. Cet élément de

R+ est noté ∑
i∈I

ui : ∑
i∈I

ui
déf= sup

F⊂I
F finie

∑
i∈F

ui = sup
⎧⎪⎪⎨⎪⎪⎩
∑
i∈F

ui tel que F finie ⊂ I

⎫⎪⎪⎬⎪⎪⎭
∈ R+ .

Proposition 3.1. invariance de la somme par permutation

Soit (ui)i∈I une famille de R+ et σ ∶ I Ð→ I une bijection. On a dans R+ l’égalité : ∑
j∈I

uσ(j) = ∑
i∈I

ui .

Définition 3.2. famille sommable de réels positifs
On dit qu’une famille (ui)i∈I de R+ est sommable si 1 ∑

i∈I
ui < +∞, cela revient à dire qu’il existe M > 0 tel

que, pour toute partie finie F de I, 0 ≤ ∑
i∈F

ui ≤M .

1. Dans le cas où la famille (ui)i∈I n’est pas sommable, on pose ∑
i∈I

ui ∶= +∞.

Exemple 3.1. ∎ Les familles finies sont assurément sommables.

∎ Soit q ∈ [0, 1[ et un = q∣n∣ pour n ∈ Z. La famille (un)n∈Z est sommable et ∑
n∈Z

un =
1 + q

1 − q
.

• Pour toute partie F finie de Z, il existe N ∈ N tel que F ⊂ [[−N, N]], donc

∑
i∈F

ui ≤
N

∑
n=−N

q∣n∣ = 1 + 2
N

∑
n=1

qn = 1 + 2q
1 − qN

1 − q
≤ 1 + q

1 − q
.

• La famille (un)n∈Z est donc sommable. De plus
N

∑
n=−N

q∣n∣ ÐÐÐ→
N→∞

1 + q

1 − q
. D’où ∑

n∈Z
un =

1 + q

1 − q
.

Remarque 3.1 (Support d’une famille de R+).

∎ Le support d’une famille (ui)i∈I est par définition l’ensemble S = {i ∈ I, ui ≠ 0}.

∎ Le support d’une famille sommable (ui)i∈I de R+ est au plus dénombrable. En effet :

• S = ⋃
k∈N∗
{i ∈ I, ui >

1
k
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Ik

= ⋃
k∈N∗

Ik. Soit M = ∑
i∈I

ui ∈ R+. On a : M ≥ ∑
i∈Ik

ui ≥ ∑
i∈Ik

1
k
= 1

k
Card Ik, donc l’ensemble

Ik est fini.

• S s’exprime alors comme une réunion dénombrable d’ensembles finis, c’est donc un ensemble au plus dé-
nombrable.

On se restreindra par la suite au cas où le domaine d’indexation I est au plus dénombrable.

Proposition 3.2. sommabilité des familles de réels positifs indexées par N

La famille (un)n∈N de R+ est sommable si, et seulement si, la série∑un converge. Dans ce cas, ∑
n∈N

un =
+∞
∑
n=0

un .

Proposition 3.3. critère de comparaison

Si 0 ≤ ui ≤ vi pour tout i ∈ I et (vi)i∈I est sommable alors 1 (ui)i∈I sommable et on a : 0 ≤ ∑
i∈I

ui ≤ ∑
i∈I

vi .

1. La non sommabilité de (ui)i∈I entraine la non sommabilité de (vi)i∈I .
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Proposition 3.4. opérations

Soient (ui)i∈I et (vi)i∈I deux familles sommables de R+ et λ ∈ R+. Les familles (λui)i∈I et (ui + vi)i∈I sont
sommables et on a :

∑
i∈I
(λui) = λ∑

i∈I
ui et ∑

i∈I
(ui + vi) = ∑

i∈I
ui +∑

i∈I
vi .

Théorème 3.1. sommation par paquets positif

Soit (ui)i∈I une famille de R+ et (Ij)j∈J une partition de I. On a dans R+ l’égalité : ∑
i∈I

ui = ∑
j∈J

⎛
⎝∑i∈Ij

ui
⎞
⎠

.

En particulier, il est équivalent de dire :

(i) (ui)i∈I est sommable ;

(ii) ∀j ∈ J, (ui)i∈Ij est sommable et la famille
⎛
⎝∑i∈Ij

ui
⎞
⎠

j∈J
est sommable.

Exemple 3.2. ∎ On pose, pour tout (i, j) ∈ N2, ui,j =
1

(i + j + 1)2i+j
.

Considérons la partition (In)n∈N de N2 définie par In = {(i, j) ∈ N2, i + j = n} pour tout n ∈ N.

• Pour tout n ∈ N, In est fini donc la famille (ui,j)(i,j)∈In
est sommable. De plus, Card In = n + 1 et on a :

∑
(i,j)∈In

ui,j = ∑
(i,j)∈In

1
(i + j + 1)2i+j

= ∑
(i,j)∈In

1
(n + 1)2n

= 1
(n + 1)2n ∑

(i,j)∈In

1 = Card In

(n + 1)2n
= 1

2n
.

• La série ∑
n≥0

1
2n

converge car géométrique.

D’où la famille (ui,j)(i,j)∈N2 est sommable et ∑
(i,j)∈N2

ui,j =
+∞
∑
n=0

⎛
⎝ ∑(i,j)∈In

ui,j
⎞
⎠
=
+∞
∑
n=0

1
2n
= 2.

Théorème 3.2. théorème de Fubini positif

Soit (ui,j)(i,j)∈I×J une famille de R+. On a dans R+ l’égalité : ∑
(i,j)∈I×J

ui,j = ∑
i∈I

⎛
⎝∑j∈J

ui,j
⎞
⎠
= ∑

j∈J
(∑

i∈I
ui,j) .

En particulier, il est équivalent de dire :

(i) (ui,j)(i,j)∈I×J est sommable ;

(ii) ∀i ∈ I, (ui,j)j∈J est sommable et la famille
⎛
⎝∑j∈J

ui,j
⎞
⎠

i∈I
est sommable.

Théorème 3.3. théorème de Fubini positif (cas des suites doubles)

Soit (um,n)(m,n)∈N2 une famille de R+. On a dans R+ l’égalité : ∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0
um,n) =

+∞
∑

m=0
(
+∞
∑
n=0

um,n) .

En particulier, il est équivalent de dire :

(i) (um,n)(m,n)∈N2 est sommable ;

(ii) ∀n ∈ N, la série ∑
m≥0

um,n converge et la série ∑
n≥0
(
+∞
∑

m=0
um,n) converge.

Exemple 3.3. ∎ Considérons um,n =
nm

m!n!
, (m, n) ∈ N2.

• ∀n ∈ N, la série ∑
m≥0

um,n converge par la règle de d’Alembert : um+1,n

um,n
= n

m + 1
ÐÐÐ→
m→∞ 0. De plus
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+∞
∑

m=0
um,n =

+∞
∑

m=0

nm

m!n!
= en

n!
.

• La série ∑
n≥0
(
+∞
∑

m=0
um,n) converge par la règle de d’Alembert : en+1

(n + 1)!
n!
en
= e

n + 1
ÐÐÐ→
n→∞ 0.

D’où la famille (um,n)(m,n)∈N2 est sommable et

∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0

nm

m!n!
) =

+∞
∑
n=0

1
n!
(
+∞
∑

m=0

nm

m!
) =

+∞
∑
n=0

en

n!
= ee.

Familles sommables de nombres réels ou de complexes

Dans ce paragraphe, I désigne un ensemble au plus dénombrable (finie ou dénombrable).

• Soit (ui)i∈I une famille de réels. Pour tout i ∈ I, on introduit u+i =max(ui, 0) et u−i =max(−ui, 0) .

• Les familles (u+i )i∈I et (u−i )i∈I étant à termes positifs et pour tout i ∈ I, ui = u+i − u−i et ∣ui∣ = u+i + u−i .

Définition 3.3. famille sommable de réels ou de complexes

On dit qu’une famille (ui)i∈I de réels ou de complexes est sommable si la famille (∣ui∣)i∈I de R+ est sommable.

Dans ce cas, on pose : ∑
i∈I

ui
déf=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈I

u+i −∑
i∈I

u−i si (ui)i∈I est réelles.

∑
i∈I

Re(ui) + i∑
i∈I

Im(ui) si (ui)i∈I est complexes.
.

Le scalaire ∑
i∈I

ui est appelé la somme de la famille (ui)i∈I .

Proposition 3.5.
Si (ui)i∈I est une famille de réels ou de complexes sommable et ε > 0, alors il existe une partie finie F de I

telle que ∣∑
i∈I

ui − ∑
i∈F

ui∣ < ε.

Proposition 3.6. sommabilité des familles de réels ou de complexes indexées par N

La famille (un)n∈N de réels ou de complexes est sommable si, et seulement si, la série∑un converge absolument.

Dans ce cas, ∑
n∈N

un =
+∞
∑
n=0

un .

Proposition 3.7. invariance de la sommabilité et de la valeur de la somme par permutation
Soient (ui)i∈I une famille de réels ou de complexes et σ ∶ I Ð→ I une bijection. La famille (ui)i∈I est sommable
si, et seulement si, la famille (uσ(j))j∈I est sommable. Dans ce cas, ∑

j∈I
uσ(j) = ∑

i∈I
ui .

Proposition 3.8. critère de comparaison
Soit (ui)i∈I une familles de réels ou de complexes et (vi)i∈I une familles de R+.

⎧⎪⎪⎨⎪⎪⎩

∀i ∈ I, ∣ui∣ ≤ vi

(vi)i∈I est sommable
Ô⇒ (ui)i∈I est sommable.

On note ℓ1(I) l’ensemble des familles de réels ou de complexes sommables.
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Proposition 3.9. propriétés

1. Si (ui)i∈I et (vi)i∈I ∈ ℓ1(I) et λ ∈ K, alors (ui + λvi)i∈I ∈ ℓ1(I) et on a :

∑
i∈I
(ui + λvi) = ∑

i∈I
ui + λ∑

i∈I
vi .

En particulier, ℓ1(I) est un K-ev.

2. Si (ui)i∈I ∈ ℓ1(I), alors ∣∑
i∈I

ui∣ ≤ ∑
i∈I
∣ui∣ . (Inégalité triangulaire)

3. Si J ⊂ I et (ui)i∈I ∈ ℓ1(I), alors (ui)i∈J ∈ ℓ1(J). (Une sous-famille d’une famille sommable est sommable)

Théorème 3.4. sommation par paquets
Si (Ij)j∈J est une partition de I et (ui)i∈I une famille de réels ou de complexes sommable, alors

∑
i∈I

ui = ∑
j∈J

⎛
⎝∑i∈Ij

ui
⎞
⎠

.

En particulier, la famille
⎛
⎝∑i∈Ij

ui
⎞
⎠

j∈J
est sommable et elle a la même somme que (ui)i∈I .

Remarque 3.2 (Critère suffisant de sommabilité.).

∎ On vérifie l’hypothèse de sommabilité d’une famille (ui)i∈I de réels ou de complexes en appliquant le théorème
de sommation par paquets positifs, à la famille (∣ui∣)i∈I .

Théorème 3.5. théorème de Fubini
Si la famille (ui,j)(i,j)∈I×J de réels ou de complexes est sommable, alors

∑
(i,j)∈I×J

ui,j = ∑
i∈I

⎛
⎝∑j∈J

ui,j
⎞
⎠
= ∑

j∈J
(∑

i∈I
ui,j) .

Théorème 3.6. théorème de Fubini (cas des suites doubles)
Si la famille (um,n)(m,n)∈N2 de réels ou de complexes est sommable, alors

∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0
um,n) =

+∞
∑

m=0
(
+∞
∑
n=0

um,n) .

Exemple 3.4. ∎ Considérons um,n =
znnm

m!n!
, (m, n) ∈ N2 et z ∈ C∗.

• ∀n ∈ N, la série ∑
m≥0
∣um,n∣ converge par le critère de d’Alembert : ∣

um+1,n

um,n
∣ = n

m + 1
ÐÐÐ→
m→∞ 0. De plus

+∞
∑

m=0
∣um,n∣ =

+∞
∑

m=0

nm

m!n!
∣z∣n = ∣z∣

n en

n!
.

• La série ∑
n≥0
(
+∞
∑

m=0
∣um,n∣) converge par le critère de d’Alembert : ∣z∣

n+1 en+1

(n + 1)!
n!
∣z∣n en

= ∣z∣ e
n + 1

ÐÐÐ→
n→∞ 0.

D’où la famille (um,n)(m,n)∈N2 est sommable et

∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0

znnm

m!n!
) =

+∞
∑
n=0

zn

n!
(
+∞
∑

m=0

nm

m!
) =

+∞
∑
n=0

zn en

n!
= ez e.
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Corollaire 3.1. cas d’une famille d’indices séparés
Si les familles de réels ou de complexes (ui)i∈I et (vj)j∈J sont sommables, alors la famille (uivj)(i,j)∈I×J est
sommable et

∑
(i,j)∈I×J

uivj = (∑
i∈I

ui)
⎛
⎝∑j∈J

vj
⎞
⎠

.

Corollaire 3.2. extension au produit d’un nombre fini de familles sommables

Soit k ∈ N∗. Si les familles de réels ou de complexes (u(1)i1
)

i1∈I1
, . . . , (u(k)ik

)
ik∈Ik

sont sommables, alors la famille

(u(1)i1
. . . u

(k)
ik
)(i1,...,ik)∈I1×...×Ik

est sommable et

∑
(i1,...,ik)∈I1×...×Ik

u
(1)
i1

. . . u
(k)
ik
=
⎛
⎝ ∑i1∈I1

u
(1)
i1

⎞
⎠

. . .
⎛
⎝ ∑ik∈Ik

u
(k)
ik

⎞
⎠

.

Application au produit de Cauchy de deux séries absolument convergentes

Définition 3.4. produit de Cauchy de deux séries
On appelle produit de Cauchy des séries numériques ∑

n≥0
un et ∑

n≥0
vn la série ∑

n≥0
wn définie par :

∀n ∈ N, wn = ∑
i+j=n

uivj =
n

∑
i=0

uivn−i .

Théorème 3.7. convergence de la série produit de Cauchy
Si les séries numériques ∑

n≥0
un et ∑

n≥0
vn sont absolument convergentes, alors leur produit de Cauchy ∑

n≥0
wn

converge absolument et la famille (upvq)(p,q)∈N2 est sommable. Dans ce cas

(
+∞
∑
n=0

un)(
+∞
∑
n=0

vn) = ∑
(p,q)∈N2

upvq =
+∞
∑
n=0

wn .

Corollaire 3.3.

Soit A une algèbre normée de dimension finie 1 et (u, v) ∈ A2. Si uv = vu, alors exp(u + v) = exp(u) exp(v) .

1. Parmi les cas fréquents : A =Mn(K) ou A = L(E) avec E de dimension finie.
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