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Généralités

Dans ce chapitre et sauf mentionné, la notation K désigne un sous-corps
de C et E un espace vectoriel sur K.

Soit (un)n une suite d’éléments de E.

Définition 1.1 (série, somme, reste).
1 On appelle série de terme général un la suite (Sn)n définie par

Sn =
n

∑
k=0

uk. On la note ∑un.

2 Pour n fixé, Sn s’appelle somme partielle de la série ∑un.
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Définition 1.2 (série, somme, reste).
3 On dit que la série ∑un converge1 lorsque la suite (Sn)n converge.

Dans ce cas :
● Sa limite est alors appelée somme de la série et notée

+∞

∑
n=0

un :

lim
n→+∞

Sn =
+∞

∑
n=0

un.

● La différence Rn =
+∞

∑
n=0

un −
n

∑
k=0

uk =
+∞

∑
k=n+1

uk est appelé reste d’ordre

n de la série.
1Lorsque la série ne converge pas, on dit qu’elle diverge.
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+
Si ∑un converge alors Rn ÐÐÐ→

n→+∞ 0.

Proposition 1.1 (condition nécessaire de convergence).
Si la série ∑un converge alors un ÐÐÐ→

n→+∞ 0. (La réciproque est fausse).

+
Si la suite (un)n ne tend pas vers 0, on dit que la série ∑un

diverge grossièrement.
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Proposition 1.2 (lien suite-série).
La suite (un)n converge si, et seulement si, la série télescopique
∑(un+1 − un) converge. Dans ce cas1,

+∞
∑
n=0
(un+1 − un) = lim

n→+∞un − u0 .

1La série télescopique ∑(un+1 − un) et la suite (un)n sont de même nature.

Proposition 1.3 (linéarité de la somme).
Si ∑un et ∑ vn convergent, alors pour tout (λ, µ) ∈ K2, la série
∑(λun + µvn) converge. De plus

+∞
∑
n=0
(λun + µvn) = λ

+∞
∑
n=0

un + µ
+∞
∑
n=0

vn .
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Théorème 1.1 (caractérisation à l’aide d’une base).
Soit B = (e1, . . . , ep) une base de E. On écrit chaque un dans la base

B ∶ un =
p

∑
i=1

u(i)n ei pour tout n ∈ N.

La série ∑un converge si, et seulement si, pour tout 1 ≤ i ≤ p, la série
numérique ∑

n≥0
u(i)n converge. De plus :

+∞
∑
n=0

un =
p

∑
i=1
(
+∞
∑
n=0

u(i)n ) ei .
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�
Soient (An)n une suite de Mp(K) avec An = (a(n)i,j

)
1≤i,j≤p et

(Ei,j)1≤i,j≤p la base canonique de Mp(K).

La série ∑An converge si, et seulement si, pour tout (i, j) ∈
[[1, p]]2, la série numérique ∑

n≥0
a
(n)
i,j converge et on a :

+∞
∑
n=0

An =
p

∑
i,j=1
(
+∞
∑
n=0

a
(n)
i,j )Ei,j .
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Définition 1.3 (convergence absolue).
La série ∑un est dite absolument convergente lorsque la série à termes
positifs ∑∥un∥ converge.

Théorème 1.2 (convergence vs convergence absolue).
Si ∑un converge absolument alors1 ∑un converge (La réciproque est
fausse). De plus

∥
+∞
∑
n=0

un∥ ≤
+∞
∑
n=0
∥un∥ .

1on rappelle ici que (un)n est une suite d’éléments de l’espace E qui est de
dimension finie.
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Séries dans une algèbre normée de dimension finie

Soit (A,+,×, .) une algèbre normée de dimension finie d’élément unité e.
La norme ici est une norme d’algèbre :

∀(u, v) ∈ A2, ∥u × v∥ ≤ ∥u∥∥v∥.

Théorème 1.3 (série géométrique de Neumann).
Soit a ∈ A tel que ∥a∥ < 1. La série géométrique ∑

n≥0
an converge

absolument et

+∞
∑
n=0

an = (e − a)−1 . (a0 = e)
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Théorème 1.4 (série exponentielle).

Soit a ∈ A. La série exponentielle ∑
n≥0

an

n!
converge absolument et

exp(a) déf=
+∞
∑
n=0

an

n!
.
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Ensembles dénombrables

Définition 2.1 (ensemble dénombrable, au plus dénombrable.).
Un ensemble est dit dénombrable s’il est en bijection avec N, il est dit au
plus dénombrable s’il est en bijection avec une partie de N.

� 1 N∗ est dénombrable via φ ∶ NÐ→ N∗ donnée par
φ(n) = n + 1.

2 Z est dénombrable via φ ∶ NÐ→ Z donnée par φ(n) = n/2
si n est pair et φ(n) = −(n + 1)/2 si n est impair.

3 N2 est dénombrable via φ ∶ N2 Ð→ N∗ donnée par
φ(n, m) = 2n(2m + 1).
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Théorème 2.1 (parties infinies de N).
Toute partie infinie de N est dénombrable.

Corollaire 2.1.
Un ensemble est au plus dénombrable si, et seulement si, il est fini ou
dénombrable.

Théorème 2.2 (opérations sur les ensembles dénombrables).
1 Un produit cartésien fini d’ensembles au plus dénombrables est au

plus dénombrable.
2 Une réunion finie ou dénombrable d’ensembles dénombrables est

dénombrable.
3 Une réunion finie ou dénombrable d’ensembles au plus dénombrables

est au plus dénombrable.
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� 1 Pour p ≥ 1, Np est dénombrable.

2 Q = ⋃
(p,q)∈Z×N∗

{
p

q
} est dénombrable comme réunion

dénombrable d’ensembles au plus dénombrables.

Théorème 2.3.
Soit I un ensemble au plus dénombrable. Si (Fi)i∈J est une partition1 de
I, alors J est au plus dénombrable.

1I = ⋃
i∈J

Fi avec Fi ∩ Fj = ∅ pour i ≠ j et Fi ≠ ∅ pour tout i ∈ J .

Théorème 2.4.
L’ensemble R n’est pas dénombrable.

M. BINYZE (https://supspé.com) Séries dans un evn de dimension finie, familles sommables 2025-2026 16 / 45

https://supsp%C3%A9.com


Plan

1 Séries dans un espace vectoriel normé de dimension finie

2 Ensembles dénombrables

3 Familles sommables

M. BINYZE (https://supspé.com) Séries dans un evn de dimension finie, familles sommables 2025-2026 17 / 45

https://supsp%C3%A9.com


Familles sommables de nombres réels positifs

Rappelle des propriétés basiques dans R+ = [0,+∞] = [0,+∞[⋃{ +∞} :
● ∀a ∈ R, a < +∞, (+∞) + a = a + (+∞) = +∞ et
(+∞) + (+∞) = +∞.
● Toute partie non vide de R+ admet une borne supérieure :

maxR+ = +∞.

M. BINYZE (https://supspé.com) Séries dans un evn de dimension finie, familles sommables 2025-2026 18 / 45

https://supsp%C3%A9.com


Définition 3.1 (somme d’une famille de R+).
Soit (ui)i∈I une famille de R+. On appelle somme de la famille (ui)i∈I
l’élément sup

F⊂I
F finie

∑
i∈F

ui. Cet élément de R+ est noté ∑
i∈I

ui :

∑
i∈I

ui
déf= sup

F⊂I
F finie

∑
i∈F

ui = sup
⎧⎪⎪⎨⎪⎪⎩
∑
i∈F

ui tel que F finie ⊂ I

⎫⎪⎪⎬⎪⎪⎭
∈ R+ .

Proposition 3.1 (invariance de la somme par permutation).
Soit (ui)i∈I une famille de R+ et σ ∶ I Ð→ I une bijection. On a dans R+
l’égalité :

∑
j∈I

uσ(j) = ∑
i∈I

ui .
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Définition 3.2 (famille sommable de réels positifs).
On dit qu’une famille (ui)i∈I de R+ est sommable si1 ∑

i∈I
ui < +∞, cela

revient à dire qu’il existe M > 0 tel que, pour toute partie finie F de I,

0 ≤ ∑
i∈F

ui ≤M .

1Dans le cas où la famille (ui)i∈I n’est pas sommable, on pose ∑
i∈I

ui ∶= +∞.

� 1 Les familles finies sont assurément sommables.
2 Soit q ∈ [0, 1[ et un = q∣n∣ pour n ∈ Z. La famille (un)n∈Z

est sommable et

∑
n∈Z

un =
1 + q

1 − q
.
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� ● Pour toute partie F finie de Z, il existe N ∈ N tel que
F ⊂ [[−N, N]], donc

∑
i∈F

ui ≤
N

∑
n=−N

q∣n∣ = 1 + 2
N

∑
n=1

qn = 1 + 2q
1 − qN

1 − q
≤ 1 + q

1 − q
.

● La famille (un)n∈Z est donc sommable. De plus
N

∑
n=−N

q∣n∣ ÐÐÐ→
N→∞

1 + q

1 − q
.

D’où :

∑
n∈Z

un =
1 + q

1 − q
.
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Support d’une famille de R+

+ 1 Le support d’une famille (ui)i∈I est par définition
l’ensemble

S = {i ∈ I, ui ≠ 0}.

2 Le support d’une famille sommable (ui)i∈I de R+ est au
plus dénombrable. En effet :
● S = ⋃

k∈N∗
{i ∈ I, ui >

1
k
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Ik

= ⋃
k∈N∗

Ik. Si M = ∑
i∈I

ui ∈ R+ alors

M ≥ ∑
i∈Ik

ui ≥ ∑
i∈Ik

1
k
= 1

k
Card Ik,

donc l’ensemble Ik est fini.
● S s’exprime alors comme une réunion dénombrable

d’ensembles finis, c’est donc un ensemble au plus
dénombrable.
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On se restreindra par la suite au cas où le domaine d’indexation I est au
plus dénombrable.

Proposition 3.2 (sommabilité des familles de réels positifs indexées par N).
La famille (un)n∈N de R+ est sommable si, et seulement si, la série ∑un

converge. Dans ce cas,

∑
n∈N

un =
+∞
∑
n=0

un .
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Proposition 3.3 (critère de comparaison).
Si 0 ≤ ui ≤ vi pour tout i ∈ I et (vi)i∈I est sommable alors1 (ui)i∈I
sommable et on a :

0 ≤ ∑
i∈I

ui ≤ ∑
i∈I

vi .

1La non sommabilité de (ui)i∈I entraine la non sommabilité de (vi)i∈I .

Proposition 3.4 (opérations).
Soient (ui)i∈I et (vi)i∈I deux familles sommables de R+ et λ ∈ R+. Les
familles (λui)i∈I et (ui + vi)i∈I sont sommables et on a :

∑
i∈I
(λui) = λ∑

i∈I
ui et ∑

i∈I
(ui + vi) = ∑

i∈I
ui +∑

i∈I
vi .
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Théorème 3.1 (sommation par paquets positif).
Soit (ui)i∈I une famille de R+ et (Ij)j∈J une partition de I. On a dans R+
l’égalité :

∑
i∈I

ui = ∑
j∈J

⎛
⎝∑i∈Ij

ui
⎞
⎠

.

En particulier, il est équivalent de dire :
1 (ui)i∈I est sommable;

2 ∀j ∈ J, (ui)i∈Ij est sommable et la famille
⎛
⎝∑i∈Ij

ui
⎞
⎠

j∈J
est sommable.
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�
On pose, pour tout (i, j) ∈ N2, ui,j =

1
(i + j + 1)2i+j

.

Considérons la partition (In)n∈N de N2 définie par

In = {(i, j) ∈ N2, i + j = n} pour tout n ∈ N.

● Pour tout n ∈ N, In est fini donc la famille (ui,j)(i,j)∈In
est

sommable. De plus, Card In = n + 1 et on a :
∑

(i,j)∈In

ui,j = ∑
(i,j)∈In

1
(i + j + 1)2i+j

= ∑
(i,j)∈In

1
(n + 1)2n

= 1
(n + 1)2n ∑

(i,j)∈In

1

= Card In

(n + 1)2n
= 1

2n
.

● La série ∑
n≥0

1
2n

converge car géométrique.
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�
D’où la famille (ui,j)(i,j)∈N2 est sommable et

∑
(i,j)∈N2

ui,j =
+∞
∑
n=0

⎛
⎝ ∑(i,j)∈In

ui,j
⎞
⎠

=
+∞
∑
n=0

1
2n

= 2.
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Théorème 3.2 (théorème de Fubini positif).
Soit (ui,j)(i,j)∈I×J une famille de R+. On a dans R+ l’égalité :

∑
(i,j)∈I×J

ui,j = ∑
i∈I

⎛
⎝∑j∈J

ui,j
⎞
⎠
= ∑

j∈J
(∑

i∈I
ui,j) .

En particulier, il est équivalent de dire :
1 (ui,j)(i,j)∈I×J est sommable;

2 ∀i ∈ I, (ui,j)j∈J est sommable et la famille
⎛
⎝∑j∈J

ui,j
⎞
⎠

i∈I
est

sommable.
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Théorème 3.3 (théorème de Fubini positif (cas des suites doubles)).
Soit (um,n)(m,n)∈N2 une famille de R+. On a dans R+ l’égalité :

∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0
um,n) =

+∞
∑

m=0
(
+∞
∑
n=0

um,n) .

En particulier, il est équivalent de dire :
1 (um,n)(m,n)∈N2 est sommable;

2 ∀n ∈ N, la série ∑
m≥0

um,n converge et la série ∑
n≥0
(
+∞
∑

m=0
um,n) converge.
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�
Considérons um,n =

nm

m!n!
, (m, n) ∈ N2.

● ∀n ∈ N, la série ∑
m≥0

um,n converge par la règle de

d’Alembert :
um+1,n

um,n
= n

m + 1
ÐÐÐ→
m→∞ 0.

De plus
+∞
∑

m=0
um,n =

+∞
∑

m=0

nm

m!n!
= 1

n!

+∞
∑

m=0

nm

m!
= en

n!
.

● La série ∑
n≥0
(
+∞
∑

m=0
um,n) converge par la règle de d’Alembert

:
en+1

(n + 1)!
n!
en
= e

n + 1
ÐÐÐ→
n→∞ 0.
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�
D’où la famille (um,n)(m,n)∈N2 est sommable et

∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0

nm

m!n!
)

=
+∞
∑
n=0

1
n!
(
+∞
∑

m=0

nm

m!
)

=
+∞
∑
n=0

en

n!
= ee .
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Familles sommables de nombres réels ou de
complexes

Dans ce paragraphe, I désigne un ensemble au plus dénombrable (finie ou
dénombrable).
● Soit (ui)i∈I une famille de réels. Pour tout i ∈ I, on introduit

u+i =max(ui, 0) et u−i =max(−ui, 0) .
● Les familles (u+i )i∈I et (u−i )i∈I étant à termes positifs et pour tout

i ∈ I,

ui = u+i − u−i et ∣ui∣ = u+i + u−i .
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Définition 3.3 (famille sommable de réels ou de complexes).
On dit qu’une famille (ui)i∈I de réels ou de complexes est sommable si la
famille (∣ui∣)i∈I de R+ est sommable. Dans ce cas, on pose :

∑
i∈I

ui
déf=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
i∈I

u+i −∑
i∈I

u−i si (ui)i∈I est réelles.

∑
i∈I

Re(ui) + i∑
i∈I

Im(ui) si (ui)i∈I est complexes.

Le scalaire ∑
i∈I

ui est appelé la somme de la famille (ui)i∈I .
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Proposition 3.5.
Si (ui)i∈I est une famille de réels ou de complexes sommable et ε > 0,
alors il existe une partie finie F de I telle que

∣∑
i∈I

ui − ∑
i∈F

ui∣ < ε.

Proposition 3.6 (sommabilité des familles de réels ou de complexes indexées par N).
La famille (un)n∈N de réels ou de complexes est sommable si, et seulement
si, la série ∑un converge absolument. Dans ce cas,

∑
n∈N

un =
+∞
∑
n=0

un .
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Proposition 3.7 (invariance de la sommabilité et de la valeur de la somme par

permutation).
Soient (ui)i∈I une famille de réels ou de complexes et σ ∶ I Ð→ I une
bijection. La famille (ui)i∈I est sommable si, et seulement si, la famille
(uσ(j))j∈I est sommable. Dans ce cas,

∑
j∈I

uσ(j) = ∑
i∈I

ui .

Proposition 3.8 (critère de comparaison).
Soit (ui)i∈I une familles de réels ou de complexes et (vi)i∈I une familles
de R+.

{ ∀i ∈ I, ∣ui∣ ≤ vi

(vi)i∈I est sommable Ô⇒ (ui)i∈I est sommable.
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On note ℓ1(I) l’ensemble des familles de réels ou de complexes sommables.

Proposition 3.9 (propriétés).
1 Si (ui)i∈I et (vi)i∈I ∈ ℓ1(I) et λ ∈ K, alors (ui + λvi)i∈I ∈ ℓ1(I) et on

a :

∑
i∈I
(ui + λvi) = ∑

i∈I
ui + λ∑

i∈I
vi .

En particulier, ℓ1(I) est un K-ev.

2 Si (ui)i∈I ∈ ℓ1(I), alors ∣∑
i∈I

ui∣ ≤ ∑
i∈I
∣ui∣ . (Inégalité triangulaire)

3 Si J ⊂ I et (ui)i∈I ∈ ℓ1(I), alors (ui)i∈J ∈ ℓ1(J). (Une sous-famille
d’une famille sommable est sommable)
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Théorème 3.4 (sommation par paquets).
Si (Ij)j∈J est une partition de I et (ui)i∈I une famille de réels ou de
complexes sommable, alors

∑
i∈I

ui = ∑
j∈J

⎛
⎝∑i∈Ij

ui
⎞
⎠

.

En particulier, la famille
⎛
⎝∑i∈Ij

ui
⎞
⎠

j∈J
est sommable et elle a la même

somme que (ui)i∈I .

Critère suffisant de sommabilité

+
On vérifie l’hypothèse de sommabilité d’une famille (ui)i∈I de
réels ou de complexes en appliquant le théorème de sommation
par paquets positifs, à la famille (∣ui∣)i∈I .
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Théorème 3.5 (théorème de Fubini).
Si la famille (ui,j)(i,j)∈I×J de réels ou de complexes est sommable, alors

∑
(i,j)∈I×J

ui,j = ∑
i∈I

⎛
⎝∑j∈J

ui,j
⎞
⎠
= ∑

j∈J
(∑

i∈I
ui,j) .

Théorème 3.6 (théorème de Fubini (cas des suites doubles)).
Si la famille (um,n)(m,n)∈N2 de réels ou de complexes est sommable, alors

∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0
um,n) =

+∞
∑

m=0
(
+∞
∑
n=0

um,n) .
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�
Considérons um,n =

znnm

m!n!
, (m, n) ∈ N2 et z ∈ C∗.

● ∀n ∈ N, la série ∑
m≥0
∣um,n∣ converge par le critère de

d’Alembert :
∣
um+1,n

um,n
∣ = n

m + 1
ÐÐÐ→
m→∞ 0.

De plus
+∞
∑

m=0
∣um,n∣ =

+∞
∑

m=0

nm

m!n!
∣z∣n = ∣z∣

n

n!

+∞
∑

m=0

nm

m!
= ∣z∣

n en

n!
.

● La série ∑
n≥0
(
+∞
∑

m=0
∣um,n∣) converge par le critère de

d’Alembert :
∣z∣n+1 en+1

(n + 1)!
n!
∣z∣n en

= ∣z∣ e
n + 1

ÐÐÐ→
n→∞ 0.
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�
D’où la famille (um,n)(m,n)∈N2 est sommable et

∑
(m,n)∈N2

um,n =
+∞
∑
n=0
(
+∞
∑

m=0

znnm

m!n!
)

=
+∞
∑
n=0

zn

n!
(
+∞
∑

m=0

nm

m!
)

=
+∞
∑
n=0

zn en

n!
= ez e

.
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Corollaire 3.1 (cas d’une famille d’indices séparés).
Si les familles de réels ou de complexes (ui)i∈I et (vj)j∈J sont sommables,
alors la famille (uivj)(i,j)∈I×J est sommable et

∑
(i,j)∈I×J

uivj = (∑
i∈I

ui)
⎛
⎝∑j∈J

vj
⎞
⎠

.

Corollaire 3.2 (extension au produit d’un nombre fini de familles sommables).

Si les familles de réels ou de complexes (u(1)i1
)

i1∈I1
, . . . , (u(k)ik

)
ik∈Ik

sont

sommables, alors la famille (u(1)i1
. . . u

(k)
ik
)(i1,...,ik)∈I1×...×Ik

est sommable et

∑
(i1,...,ik)∈I1×...×Ik

u
(1)
i1

. . . u
(k)
ik
=
⎛
⎝ ∑i1∈I1

u
(1)
i1

⎞
⎠

. . .
⎛
⎝ ∑ik∈Ik

u
(k)
ik

⎞
⎠

.

M. BINYZE (https://supspé.com) Séries dans un evn de dimension finie, familles sommables 2025-2026 41 / 45

https://supsp%C3%A9.com


Application au produit de Cauchy de deux séries
absolument convergentes

Définition 3.4 (produit de Cauchy de deux séries).
On appelle produit de Cauchy des séries numériques ∑

n≥0
un et ∑

n≥0
vn la

série ∑
n≥0

wn définie par :

∀n ∈ N, wn = ∑
i+j=n

uivj =
n

∑
i=0

uivn−i .
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Théorème 3.7 (convergence de la série produit de Cauchy).
Si les séries numériques ∑

n≥0
un et ∑

n≥0
vn sont absolument convergentes,

alors leur produit de Cauchy ∑
n≥0

wn converge absolument et la famille

(upvq)(p,q)∈N2 est sommable. Dans ce cas

(
+∞
∑
n=0

un)(
+∞
∑
n=0

vn) = ∑
(p,q)∈N2

upvq =
+∞
∑
n=0

wn .
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Corollaire 3.3.
Soit A une algèbre normée de dimension finie.1
Si (u, v) ∈ A2 tels que uv = vu, alors

exp(u + v) = exp(u) exp(v) .

1Parmi les cas fréquents : A =Mn(K) ou A = L(E) avec E de dimension
finie.
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