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Dans ce paragraphe et sauf mentionné, la notation K désigne R ou C.

1 Suites et séries

Généralités

Soit (un)n une suite d’éléments de K.

Définition 1.1. série, somme, reste

1. On appelle série de terme général un la suite (Sn)n définie par Sn =
n

∑
k=0

uk. On la note ∑un.

2. Pour n fixé, Sn s’appelle somme partielle de la série ∑un.

3. On dit que la série ∑un converge lorsque la suite (Sn)n converge. Dans ce cas :

a. Sa limite est alors appelée somme de la série et notée
+∞

∑
n=0

un : lim
n→+∞

Sn =
+∞

∑
n=0

un.

b. La différence Rn =
+∞

∑
n=0

un −
n

∑
k=0

uk =
+∞

∑
k=n+1

uk est appelé reste d’ordre n de la série.

4. Lorsque la série ne converge pas, on dit qu’elle diverge.

Remarque 1.1. ∎ Si ∑un converge alors Rn ÐÐÐ→
n→+∞

0.

Proposition 1.1. condition nécessaire de convergence

Si ∑un converge alors un ÐÐÐ→
n→+∞

0. (La réciproque est fausse.)

Remarque 1.2. ∎ Si la suite (un)n ne tend pas vers 0, on dit que la série ∑un diverge grossièrement.
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Proposition 1.2. série géométrique

Soit z ∈ C. La série géométrique ∑ zn converge si, et seulement si, ∣z∣ < 1 et
+∞

∑
n=0

zn
=

1
1 − z

pour ∣z∣ < 1 .

Proposition 1.3. lien suite-série

La suite (un)n converge si, et seulement si, la série télescopique ∑(un+1 − un) converge. Dans ce cas 1,

+∞

∑
n=0
(un+1 − un) = lim

n→+∞
un − u0 .

1. La série télescopique ∑(un+1 − un) et la suite (un)n sont de même nature.

Espace vectoriel des suites dont la série converge

Proposition 1.4. linéarité de la somme

Si ∑un et ∑ vn convergent, alors pour tout (λ, µ) ∈ K2, la série ∑(λun + µvn) converge. De plus

+∞

∑
n=0
(λun + µvn) = λ

+∞

∑
n=0

un + µ
+∞

∑
n=0

vn .

Proposition 1.5.

Soit ∑un une série à termes complexes. La série ∑un converge si, et seulement si, les séries ∑Re(un) et

∑ Im(un) convergent. Dans ce cas,
+∞

∑
n=0

un =
+∞

∑
n=0

Re(un) + i
+∞

∑
n=0

Im(un) .

2 Séries à termes positifs

Proposition 2.1. convergence d’une série à termes positifs

Soit∑un une série à termes positifs. La série∑un converge si, et seulement si, la suite (
n

∑
k=0

uk)

n

est majorée.

Dans ce cas,
+∞

∑
n=0

un = sup
n∈N
(

n

∑
k=0

uk) . Dans le cas où la série ∑un diverge, on note
+∞

∑
n=0

un = +∞.

Proposition 2.2. comparaison

Soient ∑un et ∑ vn deux séries à termes positifs.

1.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∀n ∈ N, un ≤ vn

et
∑ vn converge

Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑un converge
et

+∞

∑
n=0

un ≤
+∞

∑
n=0

vn

.

2.

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

un =
+∞

O(vn)

et
∑ vn converge

Ô⇒∑un converge.

3.

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

un =
+∞

o(vn)

et
∑ vn converge

Ô⇒∑un converge.

4. un ∼
+∞

vn Ô⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑un et ∑ vn sont

de même nature.

Proposition 2.3. séries de Riemann

Soit α ∈ R. La série de Riemann ∑
1

nα
converge si, et seulement si, α > 1.
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Proposition 2.4. comparaison aux séries de Riemann

Soit ∑un une série à termes positifs.

1. S’il existe α > 1 tel que nαun ÐÐÐ→
n→+∞

0, alors ∑un converge.

2. S’il existe α ≤ 1 et ℓ ∈ R∗+ ∪ { +∞} tel que nαun ÐÐÐ→
n→+∞

ℓ, alors ∑un diverge.

3 Séries de nombres réels ou complexes

Convergence absolue et comparaison

Définition 3.1. convergence absolue

La série ∑un est dite absolument convergente lorsque la série à termes positifs ∑∣un∣ converge.

Théorème 3.1. convergence vs convergence absolue

Si ∑un converge absolument, alors ∑un converge (La réciproque est fausse). De plus ∣
+∞

∑
n=0

un∣ ≤
+∞

∑
n=0
∣un∣ .

Proposition 3.1. comparaison et convergence absolue

Soient ∑un une série numérique et ∑ vn une série à termes positifs.

1.

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

un =
+∞

O(vn)

et
∑ vn converge

Ô⇒ ∑un converge absolument 2.

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

un =
+∞

o(vn)

et
∑ vn converge

Ô⇒ ∑un converge absolument

Théorème 3.2. série exponentielle

Soit z ∈ C. La série exponentielle ∑
zn

n!
converge absolument et exp(z) déf

=
+∞

∑
n=0

zn

n!
.

Théorème 3.3. règle de d’Alembert

Soit (un)n une suite numérique non nulle à partir d’un certain rang telle que lim
n→+∞

∣
un+1
un
∣ = ℓ ∈ R+⋃{+∞}.

1. Si ℓ < 1, la série ∑un est absolument convergente.

2. Si ℓ > 1, la série ∑un diverge grossièrement.

3. Si ℓ = 1, on ne peut rien dire sur la nature de ∑un.

Théorème 3.4. sommation des relations de comparaison

Soit (un) une suite numérique et (vn) une suite de réels positifs à partir d’un certain rang.

1. Supposons que la série ∑ vn converge.

a. un =
+∞

O(vn) Ô⇒
+∞

∑
k=n+1

uk =
n→+∞

O (
+∞

∑
k=n+1

vk).

b. un =
+∞

o(vn) Ô⇒
+∞

∑
k=n+1

uk =
n→+∞

o(
+∞

∑
k=n+1

vk).

c. un ∼
+∞

vn Ô⇒
+∞

∑
k=n+1

uk ∼
n→+∞

+∞

∑
k=n+1

vk.

2. Supposons que la série ∑ vn diverge.

a. un =
+∞

O(vn) Ô⇒
n

∑
k=0

uk =
n→+∞

O (
n

∑
k=0

vk).

b. un =
+∞

o(vn) Ô⇒
n

∑
k=0

uk =
n→+∞

o(
n

∑
k=0

vk).

c. un ∼
+∞

vn Ô⇒
n

∑
k=0

uk ∼
n→+∞

n

∑
k=0

vk.
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Séries alternées

Définition 3.2. série alternée
On appelle série alternée une série de la forme ∑(−1)nun avec un ≥ 0.

Théorème 3.5. critère de Leibniz

Soit (un) une suite réelle décroissante, positive et de limite nulle. On note Sn =
n

∑
k=0
(−1)kuk.

1. La série ∑(−1)nun converge.

2. Les suites extraites paires et impaires (S2n)n et (S2n+1)n sont adjacentes de même limite S =
+∞

∑
n=0
(−1)nun.

3. Le reste d’ordre n, Rn =
+∞

∑
k=n+1

(−1)kuk, est du signe de (−1)n+1 et ∣Rn∣ ≤ un+1 .

Comparaison d’une série à une intégrale

Proposition 3.2. encadrement

Soit f ∶ [0,+∞[ Ð→ R une fonction continue par morceaux et monotone.

Pour tout (p, q) ∈ N2 tel que p < q,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

q+1

p+1
f(t)dt ≤

q

∑
n=p+1

f(n) ≤ ∫
q

p
f(t)dt si f est décroissante

∫

q

p
f(t)dt ≤

q

∑
n=p+1

f(n) ≤ ∫
q+1

p+1
f(t)dt si f est croissante

Théorème 3.6. comparaison à une intégrale

Soit f ∶ [0,+∞[ Ð→ R une fonction continue par morceaux, positive et décroissante.

∑
n≥0

f(n) converge ⇐⇒ ∫

+∞

0
f(t)dt converge.

4 Analyse asymptotique

Proposition 4.1. croissances comparées

Soit (α, β) ∈ R2 avec α, β > 0 et q > 1.

1. q−n =
+∞

o(
1

nα
).

2. 1
nα
=
+∞

o (lnβ n).

3. lnβ n =
+∞

o (nα).

4. nα =
+∞

o (qn).

5. qn =
+∞

o (n!).

6. n! =
+∞

o (nn).

Proposition 4.2.

Soit (α, β) ∈ R2 avec α, β > 0.

1. lnβ x =
+∞

o (xα). 2. xβ =
+∞

o (eαx). 3. ∣ln x∣β =
0

o(
1

xα
). 4. eαx =

−∞
o(

1
xβ
).

Proposition 4.3. équivalents classiques au voisinage de 0

1. ex −1 ∼
0

x.

2. ln(1 + x) ∼
0

x.

3. sin x ∼
0

x.

4. tan x ∼
0

x.

5. arcsin x ∼
0

x.

6. arctan x ∼
0

x.

7. sinh x ∼
0

x.

8. tanh x ∼
0

x.

9. (1 + x)α − 1 ∼
0

αx avec α ∈ R∗.

10. 1 − cos x ∼
0

x2

2
.

11. 1 − cosh x ∼
0
−

x2

2
.
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Développements limités en 0 des fonctions usuelles

ex =
0

n

∑
k=0

xk

k!
+ o(xn

) =
0

1 + x +
x2

2
+

x3

6
+ . . . +

xn

n!
+ o(xn

)

cos x =
0

n

∑
k=0
(−1)k x2k

(2k)!
+ o(x2n+1

) =
0

1 − x2

2
+

x4

24
+ . . . + (−1)n x2n

(2n)!
+ o(x2n+1

)

sin x =
0

n

∑
k=0
(−1)k x2k+1

(2k + 1)!
+ o(x2n+2

) =
0

x −
x3

6
+ . . . + (−1)n x2n+1

(2n + 1)!
+ o(x2n+2

)

cosh x =
0

n

∑
k=0

x2k

(2k)!
+ o(x2n+1

) =
0

1 + x2

2
+

x4

24
+ . . . +

x2n

(2n)!
+ o(x2n+1

)

sinh x =
0

n

∑
k=0

x2k+1

(2k + 1)!
+ o(x2n+2

) =
0

x +
x3

6
+ . . . +

x2n+1

(2n + 1)!
+ o(x2n+2

)

(1 + x)α =
0

1 +
n

∑
k=1

α(α − 1) . . . (α − k + 1)
k!

xk
+ o(xn

) =
0

1 + αx + α(α − 1)x
2

2
+ . . . + α(α − 1) . . . (α − k + 1)x

n

n!
+ o(xn

)

1
1 − x

=
0

n

∑
k=0

xk
+ o(xn

) =
0

1 + x + x2
+ . . . + xn

+ o(xn
)

ln(1 − x) =
0
−

n

∑
k=1

xk

k
+ o(xn

) =
0
−x −

x2

2
−

x3

3
+ . . . −

xn

n
+ o(xn

)

arctan x =
0

n

∑
k=0
(−1)k x2k+1

2k + 1
+ o(x2n+2

) =
0

x −
x3

3
+ . . . + (−1)n x2n+1

2n + 1
+ o(x2n+2

)

5 Une sélection d’exercices

Exercice 5.1 : Étudier la convergence des séries ∑un suivantes :

1. un = cos n.

2. un =
1

n n
√

n
.

3. un =
n

2n + n
.

4. un =
arctan n

n2 .

5. un = ln(1 + 2
n(n + 3)

).

6. un = e−
√

n.

7. un =
(n!)3

(3n)!
.

8. un =
sin n

n2 + n + 1
.

9. un =
n!
nn

.

10. un =
1

ln(1 + n2)
.

11. un =
(−1)n

n!
.

12. un =
ln n

n2 .

13. un =
ln
√

n

n + 1
.

14. un = (−1)n ln n

n
.

15. un =
(−1)n
√

n + n
.

16. un =
(−1)n

n
sin( 1

n
).

17. un = (−1)n ln n

en
.

18. un =
1

n ln n
.

19. un =
n!

nan
, a ∈ R.

20. un =
(n!)a

(2n)!
, a ∈ R.

Exercice 5.2 : Série harmonique. On note, pour n ≥ 1, Sn =
n

∑
k=1

1
k

la somme partielle de la série harmonique ∑
1
n

.

Montrer que S2n − Sn ≥
1
2

. En déduire que la série ∑
1
n

est divergente.

Exercice 5.3 : Série harmonique alternée.

1. Justifier la convergence de la série ∑
(−1)n

n
.

2. Montrer ∀N ∈ N∗,
N

∑
n=1

(−1)n

n
= − ln 2 + (−1)N ∫

1

0

tN

1 + t
dt. Indication : remarquons que 1

n
= ∫

1

0
tn−1dt.

3. En déduire la somme de la série harmonique alternée ∑
(−1)n

n
.

Exercice 5.4 : Étudier la convergence des séries∑un suivantes : un = ln(1 + (−1)n

n
) , un =

(−1)n
√

n + (−1)n
, un = e−(1 + 1

n
)

n

.

Exercice 5.5 : Calculer la somme des séries∑un suivantes : un =
1

n(n + 1)
, n ∈ N∗, un = ln(1 − 1

n2 ) , n ≥ 2, un =
n

3n
, n ∈ N.

Exercice 5.6 : Classique.

1. Montrer ∀α ∈ R, n−α ∼
+∞
∫

n+1

n
t−αdt. Indication : utiliser la monotonie de la fonction tz→ t−α.

2. En déduire
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a.
+∞

∑
k=n+1

1
kα
∼
+∞

n1−α

α − 1
si α > 1. b.

n

∑
k=1

1
kα
∼
+∞

n1−α

1 − α
si α < 1. c.

n

∑
k=1

1
k
∼
+∞

ln n.

3. Exemple : Donner un équivalent, quand n→ +∞, de Rn =
+∞

∑
k=n+1

1
k4 +
√

k + 1
.

4. Application : Montrer que, si lim
n→+∞

un = ℓ ∈ R, alors lim
n→+∞

1
n + 1

n

∑
k=0

uk = ℓ. (moyenne ce Cesàro)

Exercice 5.7 : Transformation d’Abel. Soit θ ∈ ]0, π[. Pour tout N ≥ 2, on pose SN =
N

∑
n=2

cos(nθ).

1. Montrer ∣SN ∣ ≤
1

∣sin(θ/2)∣
.

2. Montrer que pour tout N ≥ 2,
N

∑
n=2

√
n

n − 1
cos(nθ) =

N

∑
n=2
(

√
n

n − 1
−

√
n + 1
n
)Sn +

√
N + 1
N

SN .

Indication : cos(nθ) = Sn − Sn−1 avec la convention S1 = 0.

3. Montrer que la série ∑
n≥2
(

√
n

n − 1
−

√
n + 1
n
)Sn converge.

4. En déduire que la série ∑
n≥2

√
n

n − 1
cos(nθ) converge.

Exercice 5.8 : Déterminer la nature de la série ∑un où un =
+∞

∑
k=n+1

(−1)k

(k ln k)2
. Indication : utiliser la majoration du reste.

Exercice 5.9 : Classique. Soit s > 1.

1. Montrer que, pour tout N ≥ 2, ∫
N+1

2

dt

ts
≤

N

∑
n=2

1
ns
≤ ∫

N

1

dt

ts
. Indication : utiliser la décroissance de tz→

1
ts

sur [1,+∞[.

2. Montrer 1 + 21−s

s − 1
≤
+∞

∑
n=1

1
ns
≤ 1 + 1

s − 1
.

3. En déduire que
+∞

∑
n=1

1
ns

∼
s→1+

1
s − 1

.

Exercice 5.10 : Lien suite-série. Soit (un) la suite récurrente définie par u0 ∈ ]0, 1[ et ∀n ∈ N, un+1 = un − u2
n.

1. Étudier la convergence de la suite (un).
2. Étudier la convergence et donner la somme de la série ∑u2

n.
3. Étudier la convergence de la série ∑ ln(1 − un).
4. Quelle est la nature de la série ∑un ?

Exercice 5.11 : Comparaison à une intégrale. Déterminer un équivalent simple quand nÐ→ +∞ de :

1.
n

∑
k=2
(ln k)2. 2.

n

∑
k=2

1
k ln k

.

Exercice 5.12 : Formule de Stirling. On considère la suite (un) définie par ∀n ∈ N, un =
nn e−n√n

n!
.

1. Montrer ln(un+1

un
) =
+∞

O (
1
n2 ).

2. En déduire qu’il existe k > 0 tel que n! ∼
+∞

k
√

nnn e−n. (k =
√

2π)

3. Application : Quelle est la nature de la série ∑
n!
nn

en.

Exercice 5.13 : Séries de Bertrand. Soit α et β deux réels. Pour tout n ≥ 2, on pose un =
1

nα(ln n)β
.

1. Supposons α = 1. Montrer que la série ∑un converge si, et seulement si, β > 1.

2. Supposons α < 1. Montrer que 1
n
=
+∞

o(un). En déduire la nature de la série ∑un.

3. Supposons α > 1. Chercher un réel γ > 1 tel que un =
+∞

o(
1

nγ
). En déduire la nature de la série ∑un.

4. En déduire que la série ∑
n≥2

1
nα(ln n)β

converge si, et seulement si, α > 1 ou (α = 1 et β > 1).

5. Application : Étudier la convergence des séries ∑un suivantes : un =
1

ln n!
, un = nln n/n − 1, un = (ln a)

ln n
, a > 1.
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