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Dans ce paragraphe et sauf mentionné, la notation K désigne R ou C.

Suites et séries

Généralités

Soit (uy ), une suite d’éléments de K.

{ Définition 1.1. série, somme, reste
n

1. On appelle série de terme général u, la suite (S")n définie par S, = Z ug. On la note Zun
k=0

2. Pour n fixé, S, s’appelle somme partielle de la série Zun.

3. On dit que la série Zun converge lorsque la suite (S")n converge. Dans ce cas :

+00 too
a. Sa limite est alors appelée somme de la série et notée Z Uy : lim Sy, = Z Uy .
n=0 notoo n=0
+0oo n +00
b. La différence R, = Z Uy — Z Uy, = Z uy est appelé reste d’ordre n de la série.
n=0 k=0 k=n+1
4. Lorsque la série ne converge pas, on dit qu’elle diverge.
.
Remarque 1.1. m Si Zun converge alors R,, — 0.
n—+0o
Proposition 1.1. condition nécessaire de convergence

Si Z uy, converge alors u,, —— 0. (La réciproque est fausse.)

n—+oo

Remarque 1.2. ®m Si la suite (u,), ne tend pas vers 0, on dit que la série Zun diverge grossiérement.
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( Proposition 1.2. série géométrique
+0oo 1
Soit z € C. La série géométrique ) 2" converge si, et seulement si, [z| <1 et| > 2" = T, pour |z| < 1}
n=0 -z
.
( Proposition 1.3. lien suite-série

La suite (uy,), converge si, et seulement si, la série télescopique Z(Uml - un) converge. Dans ce cas =

+o00
T;)(un+1 - un) = nLHPOO Un —UQ |

1. La série télescopique Z(u"“ - un) et la suite (un)n sont de méme nature.

Espace vectoriel des suites dont la série converge

( Proposition 1.4. linéarité de la somme

Si Zun et Zvn convergent, alors pour tout (X, u) € K2, la série Z(/\un + pvy,) converge. De plus

+oo +o00 +00
Y (Aup +pvp) =AY up+p Yy, vn |
n=0 n=0 n=0

( Proposition 1.5.

Soit Zun une série a termes complexes. La série Zun converge si, et seulement si, les séries ZRe(un) et

+00 +00 +00
> Im(uy,) convergent. Dans ce cas, | > un = > Re(uy) +1 ). Im(u,) |
n=0 n=0 n=0

Séries a termes positifs

( Proposition 2.1. convergence d’une série a termes positifs
n
Soit Z Uy, une série a termes positifs. La série Z uy, converge si, et seulement si, la suite Z up | est majorée.
k=0 /o,

+00 n too
Dans ce cas, Z Uy = sup( uk) . Dans le cas ou la série Z“” diverge, on note Z Uy = +00.
n=0 neN \ k=0

n=0

.
( Proposition 2.2. comparaison

Soient » w, et Y v, deux séries a termes positifs.
n n

Uy, CONVErge u, = o(v
VneN, u, <v, Z n & " Yoo (vn)
1. ot " et . ' 3. et — Zun converge.
> vy, converge Dy € D > vy, converge
n=0 n=0
u, = O(v
n oo ( n) Zun et Zvn sont
2. et — Z Uy, converge. 4., u, ~ v, —
+0o0o
Z Uy, converge de méme nature.
.
( Proposition 2.3. séries de Riemann

. . 1 . .
Soit a € R. La série de Riemann Z — converge si, et seulement si, a > 1.
n

L
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( Proposition 2.4. comparaison aux séries de Riemann

Soit Zun une série a termes positifs.
1. S’il existe a > 1 tel que n®*u, —— 0, alors Zun converge.
n—>+oo

2. Sl existe a<let LeR} U { + oo} tel que n%u,, —— ¢, alors Zun diverge.
n—>+oo

L

Séries de nombres réels ou complexes

Convergence absolue et comparaison

( Définition 3.1. convergence absolue

La série » wu,, est dite absolument convergente lorsque la série & termes positifs u,| converge.
n mn

L

( Théoreme 3.1. convergence vs convergence absolue
+00 +00
Si Zun converge absolument, alors Zun converge (La réciproque est fausse). De plus Z Up| < Z [tn] |-
n=0 n=0

.
( Proposition 3.1. comparaison et convergence absolue

Soient Zun une série numérique et Zvn une série a termes positifs.

un, = O(vy) Up = o(vy)
+00 +00
1. et - Z u, converge absolument | 2. et — Z Uy, converge absolument
Z vy, converge Z v, converge
( Théoreme 3.2. série exponentielle
peg asf +00 P
. s . . (S)
Soit z € C. La série exponentielle Z — converge absolument et | exp(z) = Z |
n! —n
.
( Théoreme 3.3. régle de d’Alembert
. . L. R .1 . . Un+1
Soit (uy ), une suite numérique non nulle & partir d’un certain rang telle que lim w | = leR, U { + oo}.
n—>+o0o n

1. Si £< 1, la série Zun est absolument convergente.

2. Si{>1, la série Zun diverge grossierement.

3. Si /=1, on ne peut rien dire sur la nature de Zun
.
( Théoreme 3.4. sommation des relations de comparaison

Soit (uy) une suite numérique et (vy,) une suite de réels positifs a partir d'un certain rang.

1. Supposons que la série Evn converge. 2. Supposons que la série ZU" diverge.
+00 +00 n n
a. u, = O(v,) = Z up = O( Z v | a. u, = O(v,) = Zuk = O(ka).
+0o0 n—+oo 400 n—+oo
k=n+1 k=n+1 k=0 =0
+00 +00 n L
b. up = o(vy) = > w = ol > wl b. up = o(vy) = Y up = O(Z vk).
+0o0o k=n+1 n—+oo k=n+1 +00 k=0 n—>+00 k=0
+00 +00 n 1,
C. Uy ~ Uy —> Z up o~ Z Uk c. un~vn=>Zuk, ~ kaz-
+00 n—>+00 +00 n—+oo
k=n+1 k=n+1 k=0 k=0
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Séries alternées

{ Définition 3.2. série alternée

On appelle série alternée une série de la forme Z(—l)"un avec Uy, > 0.

L

( Théoreme 3.5. critere de Leibniz

n
Soit (uy) une suite réelle décroissante, positive et de limite nulle. On note S, = Z(—l)kuk.
k=0

1. La série ) (~1)"uy converge.

+00
2. Les suites extraites paires et impaires (Sgn)n et (Sgn+1)n sont adjacentes de méme limite S = Z (-1)"up,.
n=0
+00
3. Le reste d’ordre n, R, = ), (~1)*uy, est du signe de (=1)"*! et | |Rp| < tns1 |
k=n+1
Comparaison d’une série a une intégrale
( Proposition 3.2. encadrement

Soit f :[0,+00[ — R une fonction continue par morceaux et monotone.
q+1 q q
f f@®dt< > f(n)< f f(t)dt si f est décroissante
p+l n=p+1 p
Pour tout (p,q) € N? tel que p < q,
q q q+1
f f@)de< > f(n) < f f(t)dt si f est croissante
p n=p+1 ptl
( Théoreme 3.6. comparaison a une intégrale

Soit f:[0,+00[ — R une fonction continue par morceaux, positive et décroissante.

+00
> f(n) converge <= _[0 f(t)dt converge.

n>0

n Analyse asymptotique

( Proposition 4.1. croissances comparées

Soit (a, ) € R? avec o, B3>0 et ¢ > 1.

1. g = 1 3. Pn = o(n®). 5. ¢" = o(n!).

0 q +_oo 0] n—a 5 +00 +00
1
_ = B (0% = n | — n

L2. - +°oo(ln n). 4. n +ooo(q ). 6. n.+ooo(n ).
( Proposition 4.2.

Soit (e, ) € R? avec a, 8 > 0.

_ _ 1 1

1. Iz = o(a®). 2. 28 = o(e*). 3. naf = (x_) 4. o = (x_ﬁ)
( Proposition 4.3. équivalents classiques au voisinage de 0

1. ex—lam. 5. arcsinxax. 9. (1+1:)a—1aom: avec a € R*.

2. n(l+z)~ux. 6. arctanx ~ x. 22

0 0 10. 1 -cosxz ~ —.
3. sinz ~ . 7. sinhz ~ . 0 2
0 0 2

4. tanx ~ x. 8. tanhx ~ x. 11. 1 -coshx ~ ——.

{ 0 0 0o 2
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Développements limités en 0 des fonctions usuelles

n :L'k 1'2 1'3 "
e’ = +o(z" —1+x+—+—+ o+ —+o(z"
0 ,;) k! (@) 2 6 n! (@)
o I —t oo
kT 2n+1 r T n 2n+1
= - =1-—=+—= - +
cona = 33 (1)¢ g ola®™ ) 5 1= v T (1) o ol
sinz = Z(— ) L — i +o(z 2n+2) x - —3 oo+ () ———— i +o(x?"*?)
(2k + 1)! 6 (2n+1)!
O 2n+1 552 at o 2n+1
hx = + =l+—4+—+...+ +
ST ,;] TR I @y o)
n 2k+1 . 1.3 m2n+1 9me2
h —_— Y=+ — . ———— + n
sinhz 3 ,;) @Ery oW gEr g @ o)
1 k+1 z? B
(1+m)a31+za(a ): k'(a +1) k+0(m”)—1+am+a(a 1)—+ +a(a—1)...(o¢—k‘+1)x—'+o(x”)
! n!
L ixk+o(x"):1+:r+x2+...+m"+o(:r")
1-z0 /3 0
n ij .1‘2 .173 n
In(l-z)=->) —+o(z")=-2-—-— - — +o(z"
n(l-z) = ;;1 - o(x )0 T3 o(z™)
n i x2k+1 942 x3 J;2n+1 942
t = -1 + Y= - —+...+(-1)" + n
arcanxokz:;)( ) T o(x )Om 3 (-1 51 o(z“"")
B Une sélection d’exercices
Exercice 5.1 : Etudier la convergence des séries Zun suivantes :
_ _ —n _1 n n
1. u, =cosn. 6. u, =e¢ v 11. Un:( ') ) 16. wu, = (-1) bm( )
1 "3 n! n n
2. up=— 7. U, = (n!) . Inn lnn
nyn (3n)! 12, u, = o 17. u, = (- 1)”
n .
3. up = . 8. y —_omn In\/n 1
n - Un : oy = Y 18. wu, = .
2 :n n2+n+1 13 u n+1 “ nlnn
arctann ! )|
4. un = n2 9. u, = :—n 14. u, = (—1)”1n—n. 19. u, = n—, acR.
n nan
2 1\ !a
5 Up=In{l+ —|. 10. un=¥. 15. un:(l) . 20. un=(n)7aeR
n(n+3) In(1+n?) Vn+n (2n)!

D 1
Exercice 5.2 : Série harmonique. On note, pour n>1, S, = Z z la somme partielle de la série harmonique Z —.
k=1 n

1 1
Montrer que Sa,, — Sy, > 3 En déduire que la série Z — est divergente.
n

Exercice 5.3 : Série harmonique alternée.

_1)"
1. Justifier la convergence de la série Z =) .
n
N (_1)71 1 tN 1 1
2. Montrer YN eN*, =-In2+(-1)V ﬁdt. Indication : remarquons que — = f t"1de.
n o 1+ n Jo

n=1

—1)"
3. En déduire la somme de la série harmonique alternée Z g
n

—~
—
N—’
3
N —
<
3

Exercice 5.4 : Etudier la convergence des séries Z U, suivantes : u, = In (1 +

D" un:e—(1+l)n.

. . 1
Exercice 5.5 : Calculer la somme des séries Z U, suivantes : u,, = ﬁ’
n(n+

1
n e N¥, unzln(l——z), n>2, u,=—
n

Exercice 5.6 : Classique.

n+1
1. Montrer Va e R, n™® ~ / t~*dt. Indication : utiliser la monotonie de la fonction ¢ — ™.
n

+o0

2. En déduire
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too q nl—a noq nl—a noq
a. — ~ si a>1. — si a<l. —
2 ke e a > X eica © X
+o00 1

3. Exemple : Donner un équivalent, quand n — +oco, de R,, = _
b1 K+ VE+1
n

1
4. Application : Montrer que, si hm u, =€ €R, alors lim —— E ug = £. (moyenne ce Cesaro)
n—>+oo N + k=0

Exercice 5.7 : Transformation d’Abel. Soit 6 € ]0,[. Pour tout N > 2, on pose Sy = Y cos(nb).
n=2
1

1. Montrer |Sy|< —— .
ontrer || < 1G]

SN

N N +1 VN +1
2. Montrer que pour tout N > 2, Z ﬂ cos(nb) = Z ( \/ﬁl _vr S, + N
hn— n- n

n=2
Indication : cos(nf) = .5,, — S,,—1 avec la convention Sy =0

(\/‘ n+1

n-1 n

3. Montrer que la série Z

n>2

) S, converge.

4. En déduire que la série Z cos(n&) converge.

n>2 10—

+o00 -1 k
Exercice 5.8 : Déterminer la nature de la série Zun ol Uy, = Z (=1)

———— Indication : utiliser la majoration du reste.
kine1 (KInk)?

Exercice 5.9 : Classique. Soit s> 1.

N+1dt No1 Ndt . _— 1
1. Montrer que, pour tout N > 2, [ =% Z — < f = Indication : utiliser la décroissance de t — - sur [1,+oo].
n=2 1 1
1-s +00 1 1
2. Montrer 1 + — <1 .
Z:: ns s -1
+o00 1 1

3. En déduire que Z

‘ ns o1t s—1°

Exercice 5.10 : Lien suite-série. Soit (uy) la suite récurrente définie par ug € ]0,1[ et YneN, wupi1 =u, —us.
1. Etudier la convergence de la suite (uy, ).

2. Etudier la convergence et donner la somme de la série Zu%

3. Etudier la convergence de la série > In(l - uy,).

4. Quelle est la nature de la série Z“n ?

Exercice 5.11 : Comparaison & une intégrale. Déterminer un équivalent simple quand n — +oo de :

M=

(Ink)?. i

k=2  kInk’
i N : i n"e ™" \/n
Exercice 5.12 : Formule de Stirling. On considére la suite (u,) définie par Vn e N, wu, = '
n!
1
1. Montrer ln(un+l ) =0 (—)
Uy, | +o0 n2
2. En déduire qu’il existe k > 0 tel que n' ~ k\/_n” e ™. (k = \/27r)
n!
3. Application : Quelle est la nature de la série Z n e”.
nn
. . , 1
Exercice 5.13 : Séries de Bertrand. Soit a et [ deux réels. Pour tout n > 2, on pose u,, = ——.
ne(Inn)?

1. Supposons « = 1. Montrer que la série Zun converge si, et seulement si, 5> 1.

1
2. Supposons « < 1. Montrer que — = o(uy,). En déduire la nature de la série Zun.
n +oo
1
3. Supposons a > 1. Chercher un réel v > 1 tel que u,, = o (7) En déduire la nature de la série Zun
+o00 n

4. En déduire que la série Z converge si, et seulement si, « >1 ou (a =let B> 1).

n>2 na(ln n)ﬁ
1

- . , . . Inn
5. Application : Etudier la convergence des séries »_ u,, suivantes : u,, = o Un = pmrln _ 1y, = (ln a) . a>1.
nn!
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