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Dans ce chapitre et sauf mentionné, la notation K désigne R ou C. F et F' deux espaces vectoriels de dimension

finie et X une partie de E.

Modes de convergences d’une suite de fonctions

On désigne par ( fn)n une suite de fonctions de X vers F i.e. pour chaque n, f, est une fonction de X vers F’

et f une fonction définie de X vers F.

Convergence simple

( Définition 1.1. convergence simple (CS)

CS
On dit que (f”)n converge simplement vers f sur X et on note f, —— fsi| Ve e X, f,(z) —— f(z) |
n—-+0oo n—+0o

Autrement dit

VreX, Ve>0, INeN, n>N = |fu(x) - f(z)|r<e|

Dans ce cas, on dit ! alors que f est la limite simple de ( f")n’

1. Il y a unicité de la fonction vers laquelle une suite de fonctions peut converger simplement.

.

Exemple 1.1. ® f,(z) = 2" sur [0,1].
0 si x€[0,1]

(ON}
donc f, —— f sur [0,1].
1 si z=1. In n—+oo / [0:1]

Soit x €[0,1] fixé. On a f,(z) — f(x) = {



https://supspé.com 2 APPROXIMATIONS UNIFORMES

Convergence uniforme

Définition 1.2. convergence uniforme (CU)

. . . CU 3
On dit que ( f")n converge uniformément vers f sur X et on note f,, —— f si
n—>+oo

Ve>0, INeN,VneN, n>N = VzeX, |fu(z)-f(z)|r<e|

Dans ce cas, On dit alors que f est la limite uniforme de ( f")n'

( Proposition 1.1. CU vs CS
(078) Cs
fn— fswr X = f, —— fsur X.
n—+oo n—+oo
( Théoréme 1.1. condition nécessaire et suffisante de la CU

CSs
Y e e

fn ICUIN fsur X «—
n—+oo ° SLI)I()an(:E)_f(J")HFmO

Exemple 1.2. m Convergence uniforme de f,(z) = /nz"(1 - z) sur [0,1].
o Par croissances comparées, si z € [0, 1], on a liIP Vvnz"™ =0. De plus f,(1) =0 pour tout n € N* donc pour
n—+oo
CS
tout z €[0,1], on obtient lim f,(z)=0et f, —— 0 sur [0,1].
n—+oo n—>+00

o Soit n e N*. Pour tout z € [0,1], on a f}(z) = \/nz" '(n— (n+1)z).

x 0 % 1
fa(2) + 0 -
; i (2)
sup |fn(z) - 0] = f, ( ~ )= v/ ( z )n: vn (1+1)_n: Vi a1y C VT oy,
2€[0,1] " "\n+1 n+l1\n+1 n+1 n n+1 n+1 +oo /M

D’ou f, U0 sur [0,1].

n—>+00

Convergence en norme uniforme

On menu 'espace vectoriel B(X, F') des fonctions bornées de X vers F' par la norme de la convergence uniforme :

VeB(X,F), |fleox = SU)Igllf(w)llF-

Théoreme 1.2. caractérisation a I’aide de la norme de la convergence uniforme
. CU
Soient f e B(X,F) et f, e B(X,F) pour tout neN. | f, —— f = |[fn - flloox ——
n—>+0oo n—>+00

Approximations uniformes

Soit (a,b) € R? tels que a < b.
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( Définition 2.1. subdivision, fonction en escalier

1. On appelle subdivision d’un segment [a,b] toute suite réelle finie o = (ag, a1, ...,a,) avec
ap=a<a;<...<ap_1<ap=>.

2. Une fonction ¢ : [a,b] — K est dite en escalier s’il existe une subdivision o = (ag,a,...,a,) de [a,b]

telle que, pour tout i € [[1,n]], la restriction de ¢ & Ja;_1,a;[ est constante!.

1. Une telle subdivision est alors dite adaptée a .

L

( Théoreme 2.1. approximation par des fonctions en escalier

Soit f :[a,b] — K une fonction continue par morceaux.

Ve >0, 3p:[a,b] — K fonction en escalier telle que | f —¢|lco 0] <€ |

.
Remarque 2.1. m En d’autres termes, toute fonction continue par morceaux sur un segment est limite uniforme

d’une suite de fonctions en escalier.

m L’espace des fonctions en escaliers de [a, b] vers K est une partie dense de l'espace des fonctions continues par

morceaux de [a,b] vers K normé par la norme de la convergence uniforme |.||o [q,5]-

Application 2.1 (Lemme de Riemann-Lebesgue).

b .
m Si f:[a,b] — K est continue par morceaux, alors f f(z)e™dx —— 0.
a n—+oo

inz 10
-pE] [
in
a
e Cas f en escalier.
Soit (ag,ar,...,ap) une subdivision de [a,b] adaptée & f. On a

d @ inx
_ Z[ f|]aj717aj[(:z:)e dz
j=17aj-1. ,

J

e Cas f constante.
einb _eina 2|)\|
IreK, Vze[a,b], f(z)=A Ona S——+>0.
o n n—>+oo

fab f(z)e™ dx

m

Lb f(x)e™ dx

constant=\;

P aj :
<) f ’ Aje™dr| —— 0 (d’apres le premier cas)
j=1 aj-1 n—+oo
e Cas f continue par morceaux.
Soit € > 0. Il existe ¢ : [a,b] — K en escalier telle que : Vz € [a,b], |f(x) - ¢(z)] < ﬁ D’apres le
-a
b . b .
deuxieme cas, f p(x)e™ dx —— 0, donc il existe N € N; tel que : n > N — ‘/ o(x) ™ dx| < g.
a n—+oo
Pour n> N, on a ¢
b . b . b .
‘/ flx)e™de| < ‘f (f(z) - p(z))e™ da|+ f o(x) e dx‘
a a a
b b .
< [1r@ -e@laz+| [ p(r)em dz
a a
<egf2+¢f2=¢.
b .
Par suite, [ f(x)e™*de —— 0.
a n—+oo
Théoreme 2.2. théoreme de Weierstrass

Soit f :[a,b] — K une fonction continue.

Ve >0, 3p:[a,b] — K fonction polynomiale telle que || f ¢ [qp] € |
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Remarque 2.2. B En d’autres termes, toute fonction continue sur un segment est limite uniforme d’une suite de

fonctions polynomiales.

m L’espace des fonctions polynomiales de [a,b] vers K est une partie dense de I'espace des fonctions continues

de [a,b] vers K normé par H‘”oo,[a,b]'

Analyse de la limite d’une suite de fonctions

Soit ( f”)n une suite de fonctions définies sur X a valeurs dans F' et f une fonction définie sur X vers F.

Continuité par convergence uniforme

( Théoreme 3.1. continuité locale
e VYneN, f,est continue en xge X
U o = f est continue en x.
e fn —— f sur un voisinage de xg dans X

n—+oo

.

( Théoreme 3.2. continuité globale
e VYneN, f, est continue sur X

v = f est continue sur X.
o fn — f sur tout compact c X

n—+oo

On remplace la CU sur tout compact par la CU sur tout segment lorsque la variable est réelle.

.

Exemple 3.1. ® La suite de fonctions ( f”)n définie par f,(z) = 2" ne converge pas uniformément sur [0, 1] car la

limite simple n’est pas continue sur [0, 1].

Théoreme de la double limite

( Théoréme 3.3. interversion des limites
Soit a € X.
e VneN, f,(x) — ¢y, (limite finie) o la suite (¢,), admet une limite finie

p— .
o fn G f sur un voisinage de a dans X g }/,l_r% (nl_l,rfloo f"(x)) - nl—l}-Poo (}cl—{% f"(x))
n—>+00

Ce résultat peut étre adapté en a = +oo d’une fonction définie sur un intervalle réel non borné.

.

Intégration sur un segment

( Théoréme 3.4.
Ici X est un intervalle de R et g € X.

. CU
On suppose que les f,, sont continues sur X et f,, ——— f sur tout segment c X. Posons, pour z € X et ne N :
n—+oo

cpn(x):]:fn(t)dt et @(w):[z:f(t)dt.

CU
Alors ®,, —— & sur tout segment c X.

n—+00
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( Corollaire 3.1. interversion limite intégrale
On suppose X = [a,b].

e VneN, f,est continue sur [a,b] o f est continue sur [a,b]
cU and b b .
o fu =0 fsur [a,b] « lim ([ fn(t)dt):f (lirjl fn(t))dt
Dérivation

Ici, le domaine de définition X est un intervalle réel I d’intérieur non vide.

[ Théoreme 3.5. caractére C!
e VneN, f,estde classeC! sur I o fest de classe C! sur [
CS
L] fnmfsurf . f’:g
!
C q .
o f) —U>gsur tout segment c I o Vtel, ( lim fn(t)) = lim f (%)
( Théoreme 3.6. caractere CP

Soit p e N*.

e VYneN, f, est de classe CP sur I o
e la limite simple f de ( fn)nest de classe CP sur

o Vke[[0,p-1]], (ék))n CSsurl —s » '
(p) « Viel, Vke[[0,p]], (lim fn(t)) = lim M @)
0 (fnp )n CU sur tout segment c [ n—>+00 n—+00

.

[ Corollaire 3.2. caractére C*

e VneN, f,est declasse C* sur ]
o f est de classe C* sur I

Cs
P e —

& Gy

. VeI, VkeN, (lim fn(t)) - lim fP )
n—+oo n—+o00

o VkeN*, ( T(Lk))n CU sur tout segment c [

.

n Modes de convergences d’une série de fonctions

On désigne par Z fn une série de fonctions de X vers F i.e. pour chaque n, f, est une fonction de X vers F.

n
On note, pour z € X et neN, Sy(z) =) fu(z) : la somme partielle d’ordre n de la série Y fy.
k=0

Convergence simple et convergence uniforme

( Définition 4.1. convergence simple et uniforme d’une série de fonctions

1. On dit que Z fn converge simplement sur X si, pour tout x € X, la série Z fn(x) converge i.e. la suite

(S")n de ses sommes partielles converge simplement sur X. Dans le cas de convergence, on note :

+00
o Sla somme de la série Y f, : Vo e X, S(z)= n]iIJ}loo Sp(z) =) fulz).

n=0
+00
e R, le reste d’ordre n de la série Y f, : Vo e X, Rp(z)= Y fi(z).
k=n+1
2. On dit que Z fn converge uniformément sur X lorsque la suite (S”)n de ses sommes partielles converge

uniformément sur X.

.
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n

Exemple 4.1. W f,(x) = . e ™ n e N*. Convergence simple de an sur [0,1].

NG

e Soit z € [0,1]. On a [n?f,(x)| < n®?2" ——— 0 pour z € [0, 1[ par croissances comparées, et pour z = 1, on
n—+00

1
a n?f,(1) =n??e™ —— 0. Donc pour tout z € [0,1], fo(z) = 0(—2) et la série Y f, CS sur [0,1].
n

n—+oo n—+oo

Théoreme 4.1. condition nécessaire et suffisante de la CU
. Z frn CSsur X
Z fnCUsur X <=

CU
e R, —— Osur X.
n—+oo

Remarque 4.1 (Pratique).

B Pour étudier la convergence uniforme de la suite (Rn)n des restes, on peut déterminer une suite réelle (0471)n

telle que

VeeX, VneN, |R,(z)|p<a, et a,——0]

n—+oo

$’n
Exemple 4.2. W f,(z) = —=e"*, n e N*. Convergence uniforme de ) f, sur [0,1].

Vn
e La série ). f,, CS sur [0,1].

e Pour tout z €[0,1], on a :

e) ek

+00
IR (x) =] Y. fulz)| < Z (e 7). Z (z —> ze ™ est croissante sur [0,1])
k=n+1 k=n+1 \/_ k n+l
+oo -k
Or la série Z converge d’apres la régle de d’Alembert et donc le reste Z — — 0 et par suite
\/_ k=n+1 k notee
CU
R, —— 0 sur [0,1].
n—+oo

D’ot la série ) f,, CU sur [0,1].
Convergence normale
( Définition 4.2. convergence normale (CN)

On dit que Z fn converge normalement sur X lorsque :

e Pour tout n, f, est bornée sur X.

* La série numérique Y| fn]o,x converge.

Remarque 4.2 (Pratique).

m Pour étudier la convergence normale de la série Z fn, on peut déterminer une suite réelle (an)n telle que

VeeX, VneN, |fu(z)|r <, etlasérie Zan converge |.

l,n

Exemple 4.3. m f,(z) = —

vn
e e 1

o Vxel0,1],VneN* |fu(z)]< \/_ La série ) 7 étant convergente car 7 = O(ﬁ)'

e™"® n e N*. Convergence normale de Y f,, sur [0,1].

D’ou la série Y f, CN sur [0,1].

Proposition 4.1. CN vs CU
> fn CNsur X = ) f,, CUsur X.
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Convergence absolue

[ Définition 4.3. convergence absolue (CA)

On dit que ) f, converge absolument sur X lorsque la série Y | fn(z)|F est convergente pour tout z € X.

.

[ Proposition 4.2. CN vs CA
> fn CNsur X = ) f,, CAsur X.

.

Remarque 4.3. B En résumé, on a les implications suivantes, pour une série de fonctions :

’ Convergence uniforme ‘

Convergence normale ‘ ’ Convergence simple

Y

’ Convergence absolue ‘

Toute implication non écrite étant fausse.

BAnaIyse de la somme d’une série de fonctions

+00

Soit )" f, une série de fonctions de X vers F de somme S : S(z) = ). fo(z) otz € X tel que ). fn(x) converge.
n=0

Continuité de la somme d’une série de fonctions

[ Théoreme 5.1.
{. VneN, f, est continue en xge X

continuité locale

= la somme S est continue en xg.
. Z fn CU sur un voisinage de x¢ dans X

L

( Théoréme 5.2. continuité globale
{. VneN, f, est continue sur X

= la somme S est continue sur X.
. Z frn CU sur un tout compact de X

On remplace la CU sur tout compact par la CU sur tout segment lorsque la variable est réelle.

.

+00 (_1)n+1
Exemple 5.1. m L’application x — Z — est continue sur 10, +o0[.
-1 n
" (_1)n+1
On pose, pour x € |0, +oo et n e N*,  fy(z) = ~———.
n

e VneN, f, est continue sur ]0,+oo[.

e Par le critéere de Leibniz, la série Z fn converge simplement sur 0, +oo].

e Soit a>0et x€[a,+oo[. On a

1 1

< <
(n+1)* ~ (n+1)% notoo

Jio fu(z)

k=n+1

VneN, |Rn($)| =

majoration du reste
par le premier terme

Donc la série ) f, CU sur [a, +oo[ pour tout a > 0.
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( )n+1
D’ou I'application x — Z

n=1

est continue sur [a,+oo[ pour tout a > 0, donc continue sur ]0, +oco|.
n®

( Proposition 5.1.

Soit A une algébre normée de dimension finie d’élément unité e et B la boule unité ouverte.

+o00 +o00 n
1. a— (e—a)™' =) a" est continue sur B. 2. ar—exp(a) = Y, — est continue sur A.
n=0 n=0 n!

Limite et comportement asymptotique

( Théoréeme 5.3. interversion des limites
Soit a € X.
o VneN, f,(z) — £, (limite finie) * 2 converge
e — +o00
° an CU sur un voisinage de a dans X C hm (Z fn(l“)) Z (glcl_rgfn(m))
Ce résultat peut étre adapté en a = +oco d’une série de fonctions définie sur un intervalle réel non borné.
(_1)n+1
Exemple 5.2. W f,(x) = ——, nE N*, 2 €]0, +oo].
n
1 sin=1 L.
On a fp(z) —— 4y, = . et la série Y f, CU sur [c, +oo[ pour tout ¢ >0 donc
T—>+00 0 sin>2

I—+00

lim (f fn<:r)) =3t fu(@)= 3 b= 1.
n=1 n=1 n=1

En revanche, la série Z fn ne converge pas uniformément sur ]0,+oco[ car sinon, on obtient la convergence de la
série Z(—l)wr1 puisque fy(z) — by = (-1)"*,
€T —>

Intégration sur un segment

( Théoreme 5.4. interversion somme intégrale
On suppose X = [a,b].

S UnEl), e coime w60 o la somme S est continue sur [a,b]

S f CU sur [a, b] — . Lb(gfn(t))dt:z(fabfn(t)dt).

L

Exemple 5.3. m Soit z € C tel que |z| > 1. Calculer I = f

2 — elt
1 1 1 +00 it\"™  +oo eint
e Soit |[z]|>1 et te[0,27]. On a o elt = Z( ) Z sy
z
eint
e On pose f,(t) = ey

e VneN, f, est continue sur [0, 27].

o VneN, |fulo027] = o
CU sur [0,27]. Par suite

o 2r [ +oo eint +00 2 eint too 1 2T . ; 27
- [ t=/ o)=Y [ )= | [ emar |-
z—e' =0 2" oo \Jo 2" =0 2" 0 z

—_—
=2md0,n

1
ry T converge car |z| > 1, donc la série »_ f, CN sur [0,27] donc
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Dérivation
Ici, le domaine de définition X est un intervalle réel I d’intérieur non vide.

( Théoréme 5.5. caractére C!

e VneN t de classe C! sur I
naEN, i et de diages O g e la somme S est de classe C! sur T

« £, CSsur I — IS R
3 fa CS s . Viel, (an(t)) S NA0)
n=0 n=0

e > fr CU sur tout segment c I

L

( Théoreme 5.6. caractere CP
Soit p € N*.

° P
Vn €N, fn est de classe C¥ sur I e la somme S est de classe CP sur [

e Yee[[0,p-1], Y P CSswrl = - ) 1o
Z o Vtel, Vke[[0,p]], (Z fn(t)) = Z fr(Lk)(t)-
> fP) CU sur tout segment c I n=0 n=0
[ Corollaire 5.1. caractére C*

e VReN, fnest deiclasse C= sur [ e la somme S est de classe C* sur [

+0oo

4o (k)
e Vtel, VkeN, (Z fn(t)) =Y P @).
n=0

n=0

. anCSSUI"I —

o VkeN*, folk) CU sur tout segment c [

.

1
Exemple 5.4. m f,(x) = —, nE N*,x € |1, +o0].
n

e VneN, f, est de classe C* sur |1,+o0[ et V€ |1, +0o[, Vk € N*, fr(lk)(x) =
* > fn CSsur ]1,+ool.

“Inn)k| _ (Inn)*
e Soit [a,b] c ]1,+00[. On a Vz € [a,b], Vk € N, |f,gk)(x)| = ‘M‘ < (nn)? = ap. La série ) ay
n® e

n
+a 1+
converge car anan 0 et 5 a5 1, donc la série Zfr(bk) CN donc CU sur [a,b].
n—+oo
+00
Par suite, la somme Z fn est de classe C* sur |1, +oo[ et
n=1

Vae]l, +oo[, VkeN, (Z —

( Proposition 5.2.
Soit A une algebre normée de dimension finie et a € A.

+o00 tTL
1. Dapplication eq : t —> eq(t) = ) —'a" est définie et de classe C*° sur R. De plus
n=0 -

VteR, VkeN, e (t)=akeq(t) = eq(t)a” |

2. Vs, teR, |eq(s+t)=eq(s)eq(t) =es(t)eq(s)| et (ea(t))_1 =eq(-t) |
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