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Dans ce chapitre et sauf mentionné, la notation K désigne R ou C. E et F deux espaces vectoriels de dimension
finie et X une partie de E.

1 Modes de convergences d’une suite de fonctions

On désigne par (fn)n une suite de fonctions de X vers F i.e. pour chaque n, fn est une fonction de X vers F

et f une fonction définie de X vers F .

Convergence simple

Définition 1.1. convergence simple (CS)

On dit que (fn)n converge simplement vers f sur X et on note fn
CSÐÐÐ→

n→+∞ f si ∀x ∈X, fn(x) ÐÐÐ→
n→+∞ f(x) .

Autrement dit

∀x ∈X, ∀ε > 0, ∃N ∈ N, n ≥ N Ô⇒ ∥fn(x) − f(x)∥F ≤ ε .

Dans ce cas, on dit 1 alors que f est la limite simple de (fn)n.

1. Il y a unicité de la fonction vers laquelle une suite de fonctions peut converger simplement.

Exemple 1.1. ∎ fn(x) = xn sur [0, 1].

Soit x ∈ [0, 1] fixé. On a fn(x) ÐÐÐ→
n→+∞ f(x) =

⎧⎪⎪⎨⎪⎪⎩

0 si x ∈ [0, 1[
1 si x = 1.

donc fn
CSÐÐÐ→

n→+∞ f sur [0, 1].
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https://supspé.com 2 APPROXIMATIONS UNIFORMES

Convergence uniforme

Définition 1.2. convergence uniforme (CU)

On dit que (fn)n converge uniformément vers f sur X et on note fn
CUÐÐÐ→

n→+∞ f si

∀ε > 0, ∃N ∈ N,∀n ∈ N, n ≥ N Ô⇒ ∀x ∈X, ∥fn(x) − f(x)∥F ≤ ε .

Dans ce cas, On dit alors que f est la limite uniforme de (fn)n.

Proposition 1.1. CU vs CS

fn
CUÐÐÐ→

n→+∞ f sur X Ô⇒ fn
CSÐÐÐ→

n→+∞ f sur X.

Théorème 1.1. condition nécessaire et suffisante de la CU

fn
CUÐÐÐ→

n→+∞ f sur X ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

• fn
CSÐÐÐ→

n→+∞ f sur X

• sup
x∈X
∥fn(x) − f(x)∥F ÐÐÐ→

n→+∞ 0.

Exemple 1.2. ∎ Convergence uniforme de fn(x) =
√

nxn(1 − x) sur [0, 1].

• Par croissances comparées, si x ∈ [0, 1[, on a lim
n→+∞

√
nxn = 0. De plus fn(1) = 0 pour tout n ∈ N∗ donc pour

tout x ∈ [0, 1], on obtient lim
n→+∞ fn(x) = 0 et fn

CSÐÐÐ→
n→+∞ 0 sur [0, 1].

• Soit n ∈ N∗. Pour tout x ∈ [0, 1], on a f ′n(x) =
√

nxn−1(n − (n + 1)x).

x

f ′n(x)

fn

0 n
n+1 1

+ 0 −

00

fn ( n
n+1)fn ( n
n+1)

00

sup
x∈[0,1]

∣fn(x) − 0∣ = fn (
n

n + 1
) =
√

n

n + 1
( n

n + 1
)

n

=
√

n

n + 1
(1 + 1

n
)
−n

=
√

n

n + 1
e−n ln(1+ 1

n
) =
√

n

n + 1
e−1+o(1) ∼+∞

e−1
√

n
.

D’où fn
CUÐÐÐ→

n→+∞ 0 sur [0, 1].

Convergence en norme uniforme

On menu l’espace vectoriel B(X, F ) des fonctions bornées de X vers F par la norme de la convergence uniforme :

∀f ∈ B(X, F ), ∥f∥∞,X = sup
x∈X
∥f(x)∥F .

Théorème 1.2. caractérisation à l’aide de la norme de la convergence uniforme

Soient f ∈ B(X, F ) et fn ∈ B(X, F ) pour tout n ∈ N. fn
CUÐÐÐ→

n→+∞ f ⇐⇒ ∥fn − f∥∞,X ÐÐÐ→
n→+∞ 0 .

2 Approximations uniformes

Soit (a, b) ∈ R2 tels que a < b.
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Définition 2.1. subdivision, fonction en escalier
1. On appelle subdivision d’un segment [a, b] toute suite réelle finie σ = (a0, a1, . . . , an) avec

a0 = a < a1 < . . . < an−1 < an = b.

2. Une fonction φ ∶ [a, b] Ð→ K est dite en escalier s’il existe une subdivision σ = (a0, a1, . . . , an) de [a, b]
telle que, pour tout i ∈ [[1, n]], la restriction de φ à ]ai−1, ai[ est constante 1.

1. Une telle subdivision est alors dite adaptée à φ.

Théorème 2.1. approximation par des fonctions en escalier
Soit f ∶ [a, b] Ð→ K une fonction continue par morceaux.

∀ε > 0, ∃φ ∶ [a, b] Ð→ K fonction en escalier telle que ∥f − φ∥∞,[a,b] ≤ ε .

Remarque 2.1. ∎ En d’autres termes, toute fonction continue par morceaux sur un segment est limite uniforme
d’une suite de fonctions en escalier.

∎ L’espace des fonctions en escaliers de [a, b] vers K est une partie dense de l’espace des fonctions continues par
morceaux de [a, b] vers K normé par la norme de la convergence uniforme ∥.∥∞,[a,b].

Application 2.1 (Lemme de Riemann-Lebesgue).

∎ Si f ∶ [a, b] Ð→ K est continue par morceaux, alors ∫
b

a
f(x) einx dxÐÐÐ→

n→+∞ 0.

• Cas f constante.

∃λ ∈ K, ∀x ∈ [a, b] , f(x) = λ. On a ∣∫
b

a
f(x) einx dx∣ = ∣λ [e

inx

in
]

b

a

∣ = ∣λ∣ ∣e
inb − eina

in
∣ ≤ 2∣λ∣

n
ÐÐÐ→
n→+∞ 0.

• Cas f en escalier.
Soit (a0, a1, . . . , ap) une subdivision de [a, b] adaptée à f . On a

∣∫
b

a
f(x) einx dx∣ =

RRRRRRRRRRRRRR

p

∑
j=1
∫

aj

aj−1
f∣]aj−1,aj[(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

constant=λj

einx dx
RRRRRRRRRRRRRR

≤
p

∑
j=1
∣∫

aj

aj−1
λj einx dx∣ ÐÐÐ→

n→+∞ 0 (d’après le premier cas)

• Cas f continue par morceaux.
Soit ε > 0. Il existe φ ∶ [a, b] Ð→ K en escalier telle que : ∀x ∈ [a, b] , ∣f(x) − φ(x)∣ ≤ ε

2(b − a) . D’après le

deuxième cas, ∫
b

a
φ(x) einx dx ÐÐÐ→

n→+∞ 0, donc il existe N ∈ N, tel que : n ≥ N Ô⇒ ∣∫
b

a
φ(x) einx dx∣ ≤

ε

2
.

Pour n ≥ N , on a

∣∫
b

a
f(x) einx dx∣ ≤ ∣∫

b

a
(f(x) − φ(x)) einx dx∣ + ∣∫

b

a
φ(x) einx dx∣

≤ ∫
b

a
∣f(x) − φ(x)∣dx + ∣∫

b

a
φ(x) einx dx∣

≤ ε/2 + ε/2 = ε.

Par suite, ∫
b

a
f(x) einx dxÐÐÐ→

n→+∞ 0.

Théorème 2.2. théorème de Weierstrass
Soit f ∶ [a, b] Ð→ K une fonction continue.

∀ε > 0, ∃φ ∶ [a, b] Ð→ K fonction polynomiale telle que ∥f − φ∥∞,[a,b] ≤ ε .
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Remarque 2.2. ∎ En d’autres termes, toute fonction continue sur un segment est limite uniforme d’une suite de
fonctions polynomiales.

∎ L’espace des fonctions polynomiales de [a, b] vers K est une partie dense de l’espace des fonctions continues
de [a, b] vers K normé par ∥.∥∞,[a,b].

3 Analyse de la limite d’une suite de fonctions

Soit (fn)n une suite de fonctions définies sur X à valeurs dans F et f une fonction définie sur X vers F .

Continuité par convergence uniforme

Théorème 3.1. continuité locale
⎧⎪⎪⎪⎨⎪⎪⎪⎩

• ∀n ∈ N, fn est continue en x0 ∈X

• fn
CUÐÐÐ→

n→+∞ f sur un voisinage de x0 dans X
Ô⇒ f est continue en x0.

Théorème 3.2. continuité globale
⎧⎪⎪⎪⎨⎪⎪⎪⎩

• ∀n ∈ N, fn est continue sur X

• fn
CUÐÐÐ→

n→+∞ f sur tout compact ⊂X
Ô⇒ f est continue sur X.

On remplace la CU sur tout compact par la CU sur tout segment lorsque la variable est réelle.

Exemple 3.1. ∎ La suite de fonctions (fn)n définie par fn(x) = xn ne converge pas uniformément sur [0, 1] car la
limite simple n’est pas continue sur [0, 1].

Théorème de la double limite

Théorème 3.3. interversion des limites
Soit a ∈X.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• ∀n ∈ N, fn(x) ÐÐ→
x→a

ℓn (limite finie)

• fn
CUÐÐÐ→

n→+∞ f sur un voisinage de a dans X
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• la suite (ℓn)n admet une limite finie

• lim
x→a
( lim

n→+∞ fn(x)) = lim
n→+∞(limx→a

fn(x))
.

Ce résultat peut être adapté en a = ±∞ d’une fonction définie sur un intervalle réel non borné.

Intégration sur un segment

Théorème 3.4.
Ici X est un intervalle de R et x0 ∈X.
On suppose que les fn sont continues sur X et fn

CUÐÐÐ→
n→+∞ f sur tout segment ⊂X. Posons, pour x ∈X et n ∈ N :

Φn(x) = ∫
x

x0
fn(t)dt et Φ(x) = ∫

x

x0
f(t)dt.

Alors Φn
CUÐÐÐ→

n→+∞ Φ sur tout segment ⊂X.
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Corollaire 3.1. interversion limite intégrale
On suppose X = [a, b].

⎧⎪⎪⎪⎨⎪⎪⎪⎩

• ∀n ∈ N, fn est continue sur [a, b]

• fn
CUÐÐÐ→

n→+∞ f sur [a, b]
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• f est continue sur [a, b]

• lim
n→+∞(∫

b

a
fn(t)dt) = ∫

b

a
( lim

n→+∞ fn(t))dt
.

Dérivation

Ici, le domaine de définition X est un intervalle réel I d’intérieur non vide.

Théorème 3.5. caractère C1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• ∀n ∈ N, fn est de classe C1 sur I

• fn
CSÐÐÐ→

n→+∞ f sur I

• f ′n
CUÐÐÐ→

n→+∞ g sur tout segment ⊂ I

Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

• f est de classe C1 sur I

• f ′ = g

• ∀t ∈ I, ( lim
n→+∞ fn(t))

′
= lim

n→+∞ f ′n(t)

.

Théorème 3.6. caractère Cp

Soit p ∈ N∗.
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

• ∀n ∈ N, fn est de classe Cp sur I

• ∀k ∈ [[0, p − 1]], (f (k)n )n CS sur I

• (f (p)n )n CU sur tout segment ⊂ I

Ô⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

• la limite simple f de (fn)nest de classe Cp sur I

• ∀t ∈ I, ∀k ∈ [[0, p]], ( lim
n→+∞ fn(t))

(k)
= lim

n→+∞ f
(k)
n (t)

.

Corollaire 3.2. caractère C∞
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

• ∀n ∈ N, fn est de classe C∞ sur I

• fn
CSÐÐÐ→

n→+∞ f sur I

• ∀k ∈ N∗, (f (k)n )n CU sur tout segment ⊂ I

Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• f est de classe C∞ sur I

• ∀t ∈ I, ∀k ∈ N, ( lim
n→+∞ fn(t))

(k)
= lim

n→+∞ f
(k)
n (t)

.

4 Modes de convergences d’une série de fonctions

On désigne par∑ fn une série de fonctions de X vers F i.e. pour chaque n, fn est une fonction de X vers F .

On note, pour x ∈X et n ∈ N, Sn(x) =
n

∑
k=0

fk(x) : la somme partielle d’ordre n de la série ∑ fn.

Convergence simple et convergence uniforme

Définition 4.1. convergence simple et uniforme d’une série de fonctions

1. On dit que ∑ fn converge simplement sur X si, pour tout x ∈X, la série ∑ fn(x) converge i.e. la suite
(Sn)n de ses sommes partielles converge simplement sur X. Dans le cas de convergence, on note :

• S la somme de la série ∑ fn : ∀x ∈X, S(x) = lim
n→+∞Sn(x) =

+∞
∑
n=0

fn(x).

• Rn le reste d’ordre n de la série ∑ fn : ∀x ∈X, Rn(x) =
+∞
∑

k=n+1
fk(x).

2. On dit que∑ fn converge uniformément sur X lorsque la suite (Sn)n de ses sommes partielles converge
uniformément sur X.
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Exemple 4.1. ∎ fn(x) =
xn

√
n

e−nx, n ∈ N∗. Convergence simple de ∑ fn sur [0, 1].

• Soit x ∈ [0, 1]. On a ∣n2fn(x)∣ ≤ n3/2xn ÐÐÐ→
n→+∞ 0 pour x ∈ [0, 1[ par croissances comparées, et pour x = 1, on

a n2fn(1) = n3/2 e−n ÐÐÐ→
n→+∞ 0. Donc pour tout x ∈ [0, 1] , fn(x) =

n→+∞ o( 1
n2) et la série ∑ fn CS sur [0, 1].

Théorème 4.1. condition nécessaire et suffisante de la CU

∑ fn CU sur X ⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• ∑ fn CS sur X

• Rn
CUÐÐÐ→

n→+∞ 0 sur X.

Remarque 4.1 (Pratique).

∎ Pour étudier la convergence uniforme de la suite (Rn)n des restes, on peut déterminer une suite réelle (αn)n
telle que

∀x ∈X, ∀n ∈ N, ∥Rn(x)∥F ≤ αn et αn ÐÐÐ→
n→+∞ 0 .

Exemple 4.2. ∎ fn(x) =
xn

√
n

e−nx, n ∈ N∗. Convergence uniforme de ∑ fn sur [0, 1].

• La série ∑ fn CS sur [0, 1].

• Pour tout x ∈ [0, 1], on a :

∣Rn(x)∣ = ∣
+∞
∑

k=n+1
fk(x)∣ ≤

+∞
∑

k=n+1

(x e−x)k√
k
≤
+∞
∑

k=n+1

e−k

√
k

. (xz→ x e−x est croissante sur [0, 1])

Or la série ∑
e−n

√
n

converge d’après la règle de d’Alembert et donc le reste
+∞
∑

k=n+1

e−k

√
k
ÐÐÐ→
n→+∞ 0 et par suite

Rn
CUÐÐÐ→

n→+∞ 0 sur [0, 1].

D’où la série ∑ fn CU sur [0, 1].

Convergence normale

Définition 4.2. convergence normale (CN)

On dit que ∑ fn converge normalement sur X lorsque :

• Pour tout n, fn est bornée sur X.

• La série numérique ∑∥fn∥∞,X converge.

Remarque 4.2 (Pratique).

∎ Pour étudier la convergence normale de la série ∑ fn, on peut déterminer une suite réelle (αn)n telle que

∀x ∈X, ∀n ∈ N, ∥fn(x)∥F ≤ αn et la série ∑αn converge .

Exemple 4.3. ∎ fn(x) =
xn

√
n

e−nx, n ∈ N∗. Convergence normale de ∑ fn sur [0, 1].

• ∀x ∈ [0, 1] ,∀n ∈ N∗, ∣fn(x)∣ ≤
e−n

√
n

. La série ∑
e−n

√
n

étant convergente car e−n

√
n
= o( 1

n2).

D’où la série ∑ fn CN sur [0, 1].

Proposition 4.1. CN vs CU

∑ fn CN sur X Ô⇒ ∑ fn CU sur X.
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Convergence absolue

Définition 4.3. convergence absolue (CA)

On dit que ∑ fn converge absolument sur X lorsque la série ∑∥fn(x)∥F est convergente pour tout x ∈X.

Proposition 4.2. CN vs CA

∑ fn CN sur X Ô⇒ ∑ fn CA sur X.

Remarque 4.3. ∎ En résumé, on a les implications suivantes, pour une série de fonctions :

Convergence normale Convergence simple

Convergence uniforme

Convergence absolue

Toute implication non écrite étant fausse.

5 Analyse de la somme d’une série de fonctions

Soit∑ fn une série de fonctions de X vers F de somme S ∶ S(x) =
+∞
∑
n=0

fn(x) où x ∈X tel que∑ fn(x) converge.

Continuité de la somme d’une série de fonctions

Théorème 5.1. continuité locale
⎧⎪⎪⎨⎪⎪⎩

• ∀n ∈ N, fn est continue en x0 ∈X

• ∑ fn CU sur un voisinage de x0 dans X
Ô⇒ la somme S est continue en x0.

Théorème 5.2. continuité globale
⎧⎪⎪⎨⎪⎪⎩

• ∀n ∈ N, fn est continue sur X

• ∑ fn CU sur un tout compact de X
Ô⇒ la somme S est continue sur X.

On remplace la CU sur tout compact par la CU sur tout segment lorsque la variable est réelle.

Exemple 5.1. ∎ L’application xz→
+∞
∑
n=1

(−1)n+1

nx
est continue sur ]0,+∞[.

On pose, pour x ∈ ]0,+∞[ et n ∈ N∗, fn(x) =
(−1)n+1

nx
.

• ∀n ∈ N, fn est continue sur ]0,+∞[.

• Par le critère de Leibniz, la série ∑ fn converge simplement sur ]0,+∞[.

• Soit a > 0 et x ∈ [a,+∞[. On a

∀n ∈ N, ∣Rn(x)∣ = ∣
+∞
∑

k=n+1
fk(x)∣ ≤®

majoration du reste
par le premier terme

1
(n + 1)x ≤

1
(n + 1)a ÐÐÐ→n→+∞ 0.

Donc la série ∑ fn CU sur [a,+∞[ pour tout a > 0.
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D’où l’application xz→
+∞
∑
n=1

(−1)n+1

nx
est continue sur [a,+∞[ pour tout a > 0, donc continue sur ]0,+∞[.

Proposition 5.1.
Soit A une algèbre normée de dimension finie d’élément unité e et B la boule unité ouverte.

1. az→ (e − a)−1 =
+∞
∑
n=0

an est continue sur B. 2. az→ exp(a) =
+∞
∑
n=0

an

n!
est continue sur A.

Limite et comportement asymptotique

Théorème 5.3. interversion des limites
Soit a ∈X.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

• ∀n ∈ N, fn(x) ÐÐ→
x→a

ℓn (limite finie)

• ∑ fn CU sur un voisinage de a dans X
Ô⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

• ∑ ℓn converge

• lim
x→a
(
+∞
∑
n=0

fn(x)) =
+∞
∑
n=0
(lim

x→a
fn(x)).

Ce résultat peut être adapté en a = ±∞ d’une série de fonctions définie sur un intervalle réel non borné.

Exemple 5.2. ∎ fn(x) =
(−1)n+1

nx
, n ∈ N∗, x ∈ ]0,+∞[.

On a fn(x) ÐÐÐ→
x→+∞ ℓn =

⎧⎪⎪⎨⎪⎪⎩

1 si n = 1
0 si n ≥ 2

et la série ∑ fn CU sur [c,+∞[ pour tout c > 0 donc

lim
x→+∞(

+∞
∑
n=1

fn(x)) =
+∞
∑
n=1

lim
x→+∞ fn(x) =

+∞
∑
n=1

ℓn = 1.

En revanche, la série ∑ fn ne converge pas uniformément sur ]0,+∞[ car sinon, on obtient la convergence de la
série ∑(−1)n+1 puisque fn(x) ÐÐ→

x→0
ℓn = (−1)n+1.

Intégration sur un segment

Théorème 5.4. interversion somme intégrale
On suppose X = [a, b].

⎧⎪⎪⎪⎨⎪⎪⎪⎩

• ∀n ∈ N, fn est continue sur [a, b]

• ∑ fn CU sur [a, b]
Ô⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

• la somme S est continue sur [a, b]

• ∫
b

a
(
+∞
∑
n=0

fn(t))dt =
+∞
∑
n=0
(∫

b

a
fn(t)dt).

Exemple 5.3. ∎ Soit z ∈ C tel que ∣z∣ > 1. Calculer I = ∫
2π

0

dt

z − eit .

• Soit ∣z∣ > 1 et t ∈ [0, 2π]. On a 1
z − eit =

1
z

1
1 − eit

z

= 1
z

+∞
∑
n=0
(eit

z
)

n

=
+∞
∑
n=0

eint

zn+1 .

• On pose fn(t) =
eint

zn+1 .

• ∀n ∈ N, fn est continue sur [0, 2π].

• ∀n ∈ N, ∥fn∥∞,[0,2π] =
1
∣z∣n+1 . Or ∑

1
∣z∣n+1 converge car ∣z∣ > 1, donc la série ∑ fn CN sur [0, 2π] donc

CU sur [0, 2π]. Par suite

I = ∫
2π

0

dt

z − eit = ∫
2π

0
(
+∞
∑
n=0

eint

zn+1)dt =
+∞
∑
n=0
(∫

2π

0

eint

zn+1 dt) =
+∞
∑
n=0

1
zn+1

⎛
⎜⎜⎜⎜
⎝
∫

2π

0
eint dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2πδ0,n

⎞
⎟⎟⎟⎟
⎠
= 2π

z
.
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Dérivation

Ici, le domaine de définition X est un intervalle réel I d’intérieur non vide.

Théorème 5.5. caractère C1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

• ∀n ∈ N, fn est de classe C1 sur I

• ∑ fn CS sur I

• ∑ f ′n CU sur tout segment ⊂ I

Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• la somme S est de classe C1 sur I

• ∀t ∈ I, (
+∞
∑
n=0

fn(t))
′
=
+∞
∑
n=0

f ′n(t).

Théorème 5.6. caractère Cp

Soit p ∈ N∗.
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

• ∀n ∈ N, fn est de classe Cp sur I

• ∀k ∈ [[0, p − 1]], ∑ f (k)n CS sur I

• ∑ f (p)n CU sur tout segment ⊂ I

Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• la somme S est de classe Cp sur I

• ∀t ∈ I, ∀k ∈ [[0, p]], (
+∞
∑
n=0

fn(t))
(k)
=
+∞
∑
n=0

f (k)n (t).

Corollaire 5.1. caractère C∞
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

• ∀n ∈ N, fn est de classe C∞ sur I

• ∑ fn CS sur I

• ∀k ∈ N∗, ∑ f (k)n CU sur tout segment ⊂ I

Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• la somme S est de classe C∞ sur I

• ∀t ∈ I, ∀k ∈ N, (
+∞
∑
n=0

fn(t))
(k)
=
+∞
∑
n=0

f (k)n (t).

Exemple 5.4. ∎ fn(x) =
1

nx
, n ∈ N∗, x ∈ ]1,+∞[.

• ∀n ∈ N, fn est de classe C∞ sur ]1,+∞[ et ∀x ∈ ]1,+∞[ , ∀k ∈ N∗, f
(k)
n (x) =

(− ln n)k
nx

.

• ∑ fn CS sur ]1,+∞[.

• Soit [a, b] ⊂ ]1,+∞[. On a ∀x ∈ [a, b] , ∀k ∈ N∗, ∣f (k)n (x)∣ = ∣(− ln n)k
nx

∣ ≤ (ln n)k
na

= αn. La série ∑αn

converge car n
1+a

2 αn ÐÐÐ→
n→+∞ 0 et 1 + a

2
> 1, donc la série ∑ f (k)n CN donc CU sur [a, b].

Par suite, la somme
+∞
∑
n=1

fn est de classe C∞ sur ]1,+∞[ et

∀x ∈ ]1,+∞[ , ∀k ∈ N, (
+∞
∑
n=1

1
nx
)
(k)
=
+∞
∑
n=1

(− ln n)k
nx

.

Proposition 5.2.
Soit A une algèbre normée de dimension finie et a ∈ A.

1. l’application ea ∶ tz→ ea(t) =
+∞
∑
n=0

tn

n!
an est définie et de classe C∞ sur R. De plus

∀t ∈ R, ∀k ∈ N, e(k)a (t) = ak ea(t) = ea(t)ak .

2. ∀s, t ∈ R, ea(s + t) = ea(s) ea(t) = ea(t) ea(s) et (ea(t))
−1 = ea(−t) .

9 / 9 Binyze Mohamed

https://supsp%C3%A9.com

	Modes de convergences d'une suite de fonctions
	Approximations uniformes
	Analyse de la limite d'une suite de fonctions
	Modes de convergences d'une série de fonctions
	Analyse de la somme d'une série de fonctions

