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TD No4

Séries dans un evn de dimension finie, familles sommables (correction)

1 Séries dans un evn de dimension finie

Corrigé de l’exercice 1. La série ∑
n≥1

An est convergente si, et seulement si, les séries ∑
n≥1

1
n!

, ∑
n≥1

(−1)n
n

, ∑
n≥1

1
2n

et ∑
n≥1

n

3n
le

sont. On a :

• ∑
n≥1

1
n!

est convergente car c’est une série exponentielle et on a
+∞
∑
n=1

1
n!
=
+∞
∑
n=0

1
n!
− 1 = e−1.

• ∑
n≥1

(−1)n
n

est convergente car c’est une série alternée vérifie le critère de Leibniz et on a
+∞
∑
n=1

(−1)n
n
= − ln 2.

• ∑
n≥1

1
2n

est convergente car géométrique et on a
+∞
∑
n=1

1
2n
= 1

2
1

1 − 1/2
= 1.

• ∑
n≥1

n

3n
est convergente par la règle de d’Alembert n + 1

3n+1
3n

n
ÐÐÐ→
n→+∞ 0 < 1 et on a

+∞
∑
n=1

n

3n
= 3

4
.

Donc la série ∑
n≥1

An est convergente et on a
+∞
∑
n=1

An =
⎛
⎝

e−1 − ln 2
1 3/4

⎞
⎠

.

Corrigé de l’exercice 2. 1. Soit (λ1, . . . , λn) ∈ Kn. On a :

exp(diag (λ1, . . . , λn)) =
+∞
∑
k=0

1
k!
(diag (λ1, . . . , λn))

k

=
+∞
∑
k=0

1
k!

diag (λk
1 , . . . , λk

n)

= diag (
+∞
∑
k=0

λk
1

k!
, . . . ,

+∞
∑
k=0

λk
n

k!
)

= diag (eλ1 , . . . , eλn).

2. Soit λ ∈ K. On a :

exp(λIn) = exp(diag (λ, . . . , λ)) = diag (eλ, . . . , eλ) = eλ In.

3. Soient (n1, . . . , nr) ∈ N∗r et Ai ∈ Mni
(K). On a :

exp(diag (A1, . . . , Ar)) =
+∞
∑
k=0

1
k!
(diag (A1, . . . , Ar))

k

=
+∞
∑
k=0

1
k!

diag (Ak
1 , . . . , Ak

r)

= diag (
+∞
∑
k=0

1
k!

Ak
1 , . . . ,

+∞
∑
k=0

1
k!

Ak
r)

= diag (exp A1, . . . , exp Ar).
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4. Soient A ∈ Mn(K) et P ∈ GLn(K). On a :

exp(PAP −1) =
+∞
∑
k=0

1
k!
(PAP −1)k

=
+∞
∑
k=0

1
k!

PAkP −1

= lim
N→+∞

N

∑
k=0

1
k!

PAkP −1

= lim
N→+∞

P (
N

∑
k=0

1
k!

PAk)P −1

= P ( lim
N→+∞

N

∑
k=0

1
k!

PAk)P −1 car l’application Mz→P MP−1 est continue
puisque elle est linéaire en dimension finie

= P (
+∞
∑
k=0

1
k!

Ak)P −1

= P exp(A)P −1

5. Soient A ∈ Mn(K) et B ∈ Mn(K) telles que AB = BA. On a :

exp(A +B) =
+∞
∑
k=0

1
k!
(A +B)k

=
+∞
∑
k=0

1
k!

k

∑
j=0
(k

j
)AjBk−j

=
+∞
∑
k=0

k

∑
j=0

1
j!

Aj 1
(k − j)!

Bk−j

série produit de Cauchy puisque la série exponentielle ∑
k≥0

1
k!

Ak converge absolument.

= (
+∞
∑
k=0

1
k!

Ak)(
+∞
∑
k=0

1
k!

Bk)

= exp(A) exp(B).

6. Soit A ∈ Mn(K). Les matrices A et −A commutent, donc d’après la question précédente,

In = exp(On) = exp(A −A) = exp(A) exp(−A) = exp(−A) exp(A)

c-à-d exp(A) ∈ GLn(K) et (exp(A))−1 = exp(−A).
7. Soit A ∈ Mn(K) diagonalisable. Il existe P ∈ GLn(K) et D ∈ Mn(K) diagonale telles que A = PDP −1. On a

exp(A) = exp(PDP −1) = P exp(D)P −1 avec exp(D) matrice diagonale

donc exp(A) est diagonalisable.
8. Soit A ∈ Mn(K). On a :

(exp(A))⊺ = ( lim
N→+∞

N

∑
k=0

1
k!

Ak)
⊺

= lim
N→+∞

(
N

∑
k=0

1
k!

Ak)
⊺

car l’application Mz→M⊺ est continue
puisque elle est linéaire en dimension finie

= lim
N→+∞

N

∑
k=0

1
k!
(Ak)⊺

= lim
N→+∞

N

∑
k=0

1
k!
(A⊺)k

=
+∞
∑
k=0

1
k!
(A⊺)k

= exp(A⊺).

9. Soit A ∈ Mn(K) nilpotente. On sait que An = On donc
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exp(A) =
+∞
∑
k=0

1
k!

Ak =
n−1
∑
k=0

1
k!

Ak +
+∞
∑
k=n

1
k!

Ak

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=On

=
n−1
∑
k=0

1
k!

Ak.

De plus, exp(A) − In =
n−1
∑
k=0

1
k!

Ak − In =
n−1
∑
k=1

1
k!

Ak = A(
n−1
∑
k=1

1
k!

Ak−1). Les matrices A et
n−1
∑
k=1

1
k!

Ak−1 commutent, donc

(exp(A) − In)
n = An

°
=On

(
n−1
∑
k=1

1
k!

Ak−1)
n

= On.

Ainsi, exp(A) − In est nilpotente.
10. Soit A ∈ Mn(K). D’après le cours, K [A] est un sous-espace vectoriel deMn(K) de dimension finie (dimK [A] = deg∏A).

Donc K [A] est un fermé de Mn(K). Aussi, la suite (
N

∑
k=0

1
k!

Ak)
N≥0

est une suite d’éléments de K [A] qui converge vers

exp(A). Ainsi, exp(A) ∈ K [A].

11. Soit A =
⎛
⎜⎜
⎝

λ1 ⋆ ⋆
⋱ ⋆

0 λn

⎞
⎟⎟
⎠
∈Mn(K). On a :

exp(A) =
+∞
∑
k=0

1
k!

⎛
⎜⎜
⎝

λ1 ⋆ ⋆
⋱ ⋆

0 λn

⎞
⎟⎟
⎠

k

=
+∞
∑
k=0

1
k!

⎛
⎜⎜
⎝

λk
1 ⋆ ⋆
⋱ ⋆

0 λk
n

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

+∞
∑
k=0

1
k!

λk
1 ⋆ ⋆

⋱ ⋆

0
+∞
∑
k=0

1
k!

λk
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜
⎝

eλ1 ⋆ ⋆
⋱ ⋆

0 eλn

⎞
⎟⎟
⎠

.

12. A ∈ Mn(K) telle que Sp A = {λ} avec λ ∈ K. On a χA = (X − λ)n. D’après le théorème de Cayley-Hamilton,

χA(A) = (A − λIn)n = On.

La matrice A − λIn est donc nilpotente. Ainsi,

exp(A) = exp(A − λIn + λIn)

= exp(λIn) exp(A − λIn) car A − λIn et A commutent

= eλ
n−1
∑
k=0

1
k!
(A − λIn)

k
.

13. Soit A ∈ Mn(C). La matrice A est trigonalisable, il existe P ∈ GLn(C) et T ∈ Mn(C) triangulaire supérieure telles que

A = PTP −1. On a exp(A) = exp(T ). Si T =
⎛
⎜⎜
⎝

λ1 ⋆ ⋆
⋱ ⋆

0 λn

⎞
⎟⎟
⎠

, avec Sp (A) = {λ1, . . . , λn}, alors exp(T ) =
⎛
⎜⎜
⎝

eλ1 ⋆ ⋆
⋱ ⋆

0 eλn

⎞
⎟⎟
⎠

. Par

suite,

Sp (exp(A)) = Sp (exp(T )) = { eλ1 , . . . , eλn } = { eλ, λ ∈ Sp (A)}.

14. Soit A ∈ Mn(C). La matrice A est trigonalisable, il existe P ∈ GLn(C) et T ∈ Mn(C) triangulaire supérieure telles que
A = PTP −1. On a

det(exp(A)) = det(exp(T )) = ∏
λ∈Sp (A)

eλ = exp
⎛
⎝ ∑

λ∈Sp (A)
λ
⎞
⎠
= eTr (A).

Corrigé de l’exercice 3. 1. On a A2 = O2 donc exp(A) =
+∞
∑
n=0

1
n!

An = I2 +A =
⎛
⎝

2 1
−1 0

⎞
⎠

.

2. ∀n ∈ N, An =
⎛
⎝

cos nθ − sin nθ

sin nθ cos nθ

⎞
⎠

donc exp A =
+∞
∑
n=0

1
n!

An =

⎛
⎜⎜⎜⎜
⎝

+∞
∑
n=0

cos nθ

n!
−
+∞
∑
n=0

sin nθ

n!
+∞
∑
n=0

sin nθ

n!
+∞
∑
n=0

cos nθ

n!

⎞
⎟⎟⎟⎟
⎠

.

Or
+∞
∑
n=0

cos nθ

n!
+ i
+∞
∑
n=0

sin nθ

n!
=
+∞
∑
n=0

einθ

n!
= eeiθ

= ecos θ (cos(sin θ) + i sin(sin θ)). D’où :

exp A = ecos θ
⎛
⎝

cos(sin θ) − sin(sin θ)
sin(sin θ) cos(sin θ)

⎞
⎠

.
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3. χA = (X − 1)(X + 1)(X − 2) est scindé à racines simples donc A est diagonalisable et A = PDP −1 avec

D =
⎛
⎜⎜
⎝

1 0 0
0 −1 0
0 0 2

⎞
⎟⎟
⎠

, P =
⎛
⎜⎜
⎝

1 1 −1
0 2 1
0 0 3

⎞
⎟⎟
⎠

.

Donc

exp(A) = P (
+∞
∑
k=0

1
k!

Dk)P −1

=
⎛
⎜⎜
⎝

1 1 −1
0 2 1
0 0 3

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

e 0 0
0 e−1 0
0 0 e2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 1 −1
0 2 1
0 0 3

⎞
⎟⎟
⎠

−1

=
⎛
⎜⎜
⎝

1 1 −1
0 2 1
0 0 3

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

e 0 0
0 e−1 0
0 0 e2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 −1/2 1/2
0 1/2 −1/6
0 0 1/3

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

e (e−1 − e)/2 (3 e− e−1 −2 e2)/6
0 e−1 (e2 − e−1)/3
0 0 e2

⎞
⎟⎟
⎠

.

4. On commence par calculer χA. On a

χA =

RRRRRRRRRRRRRRRR

X + 2 −2 1
1 X − 1 1
1 −2 X + 2

RRRRRRRRRRRRRRRR

C1←ÐC1+C2+C3=

RRRRRRRRRRRRRRRR

X + 1 −2 1
X + 1 X − 1 1
X + 1 −2 X + 2

RRRRRRRRRRRRRRRR

= (X + 1)

RRRRRRRRRRRRRRRR

1 −3 −3
1 X − 1 1
1 1 1

RRRRRRRRRRRRRRRR
L2←ÐL2−L1
L3←ÐL3−L1= (X + 1)

RRRRRRRRRRRRRRRR

1 −3 −3
0 X + 1 0
0 0 X + 1

RRRRRRRRRRRRRRRR

= (X + 1)3

et Sp (A) = { − 1}. Ainsi, exp(A) = e−1
3−1
∑
k=0

1
k!
(A + I3)

k = e−1
⎛
⎜⎜⎜
⎝

I3 + (A + I3) + (A + I3)
2/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O3

⎞
⎟⎟⎟
⎠
= e−1 (A + 2I3) = e−1

⎛
⎜⎜
⎝

0 2 −1
−1 3 −1
−1 2 0

⎞
⎟⎟
⎠

.

5. Première méthode : On écrit A = I3 +N avec N =
⎛
⎜⎜
⎝

0 1 2
0 0 −1
0 0 0

⎞
⎟⎟
⎠

. On a N2 =
⎛
⎜⎜
⎝

0 0 −1
0 0 0
0 0 0

⎞
⎟⎟
⎠

et N3 = O3. Les matrice I3 et N

commutent, par la formule de binôme de Newton,

Ak = (I3 +N)k =
k

∑
j=0
(k

j
)N j =

2
∑
j=0
(k

j
)N j = I3 + (

k

1
)N + (k

2
)N2 = I3 + kN + k(k − 1)

2
N2 =

⎛
⎜⎜
⎝

1 k 2k − k(k − 1)/2
0 1 −k

0 0 1

⎞
⎟⎟
⎠

.

Ainsi, exp(A) =
+∞
∑
k=0

1
k!

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

+∞
∑
k=0

1
k!

+∞
∑
k=0

k

k!
+∞
∑
k=0

2k − k(k − 1)/2
k!

0
+∞
∑
k=0

1
k!

−
+∞
∑
k=0

k

k!

0 0
+∞
∑
k=0

1
k!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. Or

•
+∞
∑
k=0

1
k!
= e.

•
+∞
∑
k=0

k

k!
=
+∞
∑
k=1

k

k!
=
+∞
∑
k=1

1
(k − 1)!

=
+∞
∑
k=0

1
k!
= e.
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•
+∞
∑
k=0

2k − k(k − 1)/2
k!

= 2
+∞
∑
k=0

k

k!
− 1

2
+∞
∑
k=0

k(k − 1)
k!

= 2 e−1
2
+∞
∑
k=2

k(k − 1)
k!

= 2 e−1
2
+∞
∑
k=2

1
(k − 2)!

= 2 e−1
2
+∞
∑
k=0

1
k!
= 2 e− e

2
= 3 e

2
.

D’où : exp(A) =
⎛
⎜⎜⎜
⎝

e e 3 e
2

0 e − e
0 0 e

⎞
⎟⎟⎟
⎠

.

Deuxième méthode : On a Sp (A) = {1} donc

exp(A) = e1
3−1
∑
k=0

1
k!
(A − I3)

k = e (I3 + (A − I3) + (A − I3)
2) = e (A + (A − I3)

2/2) = e
⎛
⎜⎜⎜
⎝

1 1 3
2

0 1 −1
0 0 1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

e e 3 e
2

0 e − e
0 0 e

⎞
⎟⎟⎟
⎠

.

6. La matrice A est diagonale par blocs : A =
⎛
⎜⎜⎜
⎝

−1 0 0
0
0 Q

⎞
⎟⎟⎟
⎠

avec Q =
⎛
⎝

0 −1
1 2

⎞
⎠

donc

exp(A) =
⎛
⎜⎜⎜
⎝

e−1 0 0
0
0 exp(Q)

⎞
⎟⎟⎟
⎠

.

Il reste à calculer exp(Q). Pour cela, on a χQ = (X − 2)2 donc Sp (Q) = {2}. Par suite,

exp(Q) =
+∞
∑
k=0

1
k!

Qk = e2
2−1
∑
k=0

1
k!
(Q − 2I2)

k = e2(Q − I2) =
⎛
⎝
− e2 − e2

e2 e2
⎞
⎠

.

D’où exp(A) =
⎛
⎜⎜
⎝

e−1 0 0
0 − e2 − e2

0 e2 e2

⎞
⎟⎟
⎠

.

Corrigé de l’exercice 4. On écrit A = PDP −1 avec D = diag (λ1, . . . , λp) ∈Mp(K) et P ∈ GLp(K).

On considère la norme d’algèbre ∥.∥1 définie sur Mp(K) par ∥A∥1 déf= sup
1≤j≤p

p

∑
i=1
∣ai,j ∣. Soit n ∈ N on a :

∥An∥1 = ∥PDnP −1∥1 ≤ ∥P ∥1∥Dn∥1∥P −1∥1.

Mais ∥Dn∥1 = max
1≤j≤p

∣λj ∣n = ∣λj0 ∣n pour un j0 ∈ [[1, p]]. Donc

∥An∥1 ≤ ∥P ∥1∥P −1∥1∣λj0 ∣n.

Comme la série ∑
n≥0
∣λj0 ∣n converge (série géométrique) alors, par comparaison, la série ∑

n≥0
∥An∥1 converge c-à-d la série

∑
n≥0

An converge absolument.

Par ailleurs, pour tout N ∈ N, on a :
N

∑
n=0

An =
N

∑
n=0

PDnP −1 = P (
N

∑
n=0

Dn)P −1 = Pdiag (
N

∑
n=0

λn
1 , . . . ,

N

∑
n=0

λn
p)P −1.

Or la série ∑
n≥0

λn
i converge pour tout 1 ≤ i ≤ p (série géométrique) donc la série ∑

n≥0
Dn converge et on a :

+∞
∑
n=0

Dn = diag (
+∞
∑
n=0

λn
1 , . . . ,

+∞
∑
n=0

λn
p) = diag ( 1

1 − λ1
, . . . ,

1
1 − λp

) = (Ip −D)−1.

Par suite,
+∞
∑
n=0

An = lim
N→+∞

N

∑
n=0

An = lim
N→+∞

N

∑
n=0

PDnP −1

= lim
N→+∞

P (
N

∑
n=0

Dn)P −1

= P ( lim
N→+∞

N

∑
n=0

Dn)P −1 car l’application Mz→P MP−1 est continue
puisque elle est linéaire en dimension finie

= P (
+∞
∑
n=0

Dn)P −1

= P (Ip −D)−1
P −1 = (P IpP −1 − PDP −1)−1 = (Ip −A)−1

.

Binyze Mohamed 5 / 14

https://supsp%C3%A9.com


https://supspé.com TD No4 (correction) MP Laâyoune

2 Familles sommables

Corrigé de l’exercice 5. 1. La fonction tz→ 1
t

est décroissante sur [1,+∞[ et on a :

1
n + 1

≤ ∫
n+1

n

dt

t
≤ 1

n

donc 1
n
∼+∞ ∫

n+1

n

dt

t
. La série ∑

n≥1

1
n

diverge, donc par sommation des relations de comparaison,

n

∑
k=1

1
k
∼

n→+∞

n

∑
k=1
∫

k+1

k

dt

t
= ∫

n+1

1

dt

t
= ln(n + 1).

Ainsi, Hn ∼
n→+∞ ln n.

2. La suite (In)n≥2 est une partition de N∗2. En effet :

• Si (i, j) ∈ Im⋂ In pour m ≠ n alors i + j =m = n ce qui est absurde donc Im⋂ In = ∅ pour tout m ≠ n.

• Si (i, j) ∈ N2 alors (i, j) ∈ Ii+j donc N2 ⊂ ⋃
n≥2

In et la deuxième inclusion ⋃
n≥2

In ⊂ N2 est triviale. Ainsi, N2 = ⋃
n≥2

In.

D’où, la suite (In)n≥2 est une partition de N∗2.

3. Soit n ≥ 2. On a :

∑
(p,q)∈In

up,q = ∑
(p,q)∈In

1
pq(p + q)

= 1
n

n−1
∑
p=1

1
p(n − p)

= 1
n2

n−1
∑
p=1
(1

p
+ 1

n − p
)

= 1
n2
⎛
⎝

n−1
∑
p=1

1
p
+

n−1
∑
p=1

1
n − p

⎞
⎠

= 1
n2
⎛
⎝

n−1
∑
p=1

1
p
+

n−1
∑
p=1

1
p

⎞
⎠
= 2Hn−1

n2 .

4. Chaque sous-famille (up,q)(p,q)∈In
est sommable car chaque In est fini et on a ∑

(p,q)∈In

up,q ∼
n→+∞

2 ln(n − 1)
n2 . De plus,

2 ln(n − 1)
n2 =

n→+∞ (
1

n3/2 ), donc la série ∑
n≥2

2 ln(n − 1)
n2 converge et la famille

⎛
⎝ ∑
(p,q)∈In

up,q

⎞
⎠

n≥2

est sommable. D’où par le

théorème de sommation par paquets positif, la famille (up,q)p,q≥1 est sommable et

∑
(p,q)∈N∗2

up,q =
+∞
∑
n=2

⎛
⎝ ∑
(p,q)∈In

up,q

⎞
⎠
=
+∞
∑
n=2

2 ln(n − 1)
n2 .

Corrigé de l’exercice 6. 1. On a Z∗− et N forment une partition de Z. Par le théorème de sommation par paquets positif, la
famille (un)n∈Z est sommable si, et seulement si, les familles (un)n∈Z∗− et (un)n∈N sont sommables si, et seulement si, les
familles (u−n)n∈N∗ et (un)n∈N sont sommables si, et seulement si, les séries ∑

n≥1
u−n et ∑

n≥0
un sont convergentes. De plus :

∑
n∈Z

un = ∑
n∈N∗

u−n + ∑
n∈N

un =
+∞
∑
n=1

u−n +
+∞
∑
n=0

un.

2. On a Z∗− et N forment une partition de Z. La famille (un)n∈Z est sommable si, et seulement si, la famille (∣un∣)n∈Z est
sommable si, et seulement si, les familles (∣un∣)n∈Z∗− et (∣un∣)n∈N sont sommables si, et seulement si, les familles (∣u−n∣)n∈N∗
et (∣un∣)n∈N sont sommables si, et seulement si, les séries ∑

n≥1
∣u−n∣ et ∑

n≥0
∣un∣ sont convergentes si, et seulement si, les séries

∑
n≥1

u−n et ∑
n≥0

un sont absolument convergentes. De plus :

∑
n∈Z

un = ∑
n∈N∗

u−n + ∑
n∈N

un =
+∞
∑
n=1

u−n +
+∞
∑
n=0

un.
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3. soit r ∈ [0, 1[ et θ ∈ R. On a (∣r∣n∣ einθ ∣)
n∈Z = (r

∣n∣)
n∈Z. La famille (r∣n∣ einθ)

n∈Z est donc sommable si, et seulement si, les
séries ∑

n≥1
r∣−n∣ et ∑

n≥0
r∣n∣ sont convergentes si, et seulement si, les séries ∑

n≥1
rn et ∑

n≥0
rn sont convergentes. Or ces dernières

séries étant convergentes puisque r ∈ [0, 1[ (séries géométriques). De plus :

∑
n∈Z

r∣n∣ einθ =
+∞
∑
n=1

rn e−inθ +
+∞
∑
n=0

rn einθ

= 1 +
+∞
∑
n=1

rn(einθ + e−inθ)

= 1 + 2
+∞
∑
n=1

rn cos(nθ)

= 1 + 2Re(
+∞
∑
n=1

rn einθ)

= 1 + 2Re( r eiθ

1 − r eiθ
)

= 1 + 2Re
⎛
⎝

r eiθ(1 − r e−iθ)
(1 − r eiθ)(1 − r e−iθ)

⎞
⎠

= 1 − r2

r2 − 2r cos(θ) + 1
.

Corrigé de l’exercice 7. La série à termes positifs ∑
n≥1

1
n2 converge, donc la famille ( 1

n2 )
n∈N∗

est sommable et par le théorème

de sommation par paquets positif, on a :

∑
n∈N∗

1
n2 =

+∞
∑
n=1

1
n2 =

+∞
∑
p=1

1
(2p)2

+
+∞
∑
p=0

1
(2p + 1)2

= 1
4
+∞
∑
n=1

1
n2 +

π2

8
.

Par suite,
+∞
∑
n=1

1
n2 =

π2

6
.

Corrigé de l’exercice 8. On a (an,p)(n,p)∈I = (
1

(n + 1)2 − n2 )
n∈N
= ( 1

2n + 1
)

n∈N
. La série ∑

n≥0

1
2n + 1

diverge donc la famille

( 1
2n + 1

)
n∈N

n’est pas sommable et par suite, la famille (an,p)(n,p)∈I n’est pas sommable.

Corrigé de l’exercice 9. 1. La suite (Ik)k≥2 définie par Ik = {(m, n) ∈ N∗2, m + n = k} est une partition de N∗2. De plus,

Card Ik = Card {(m, k −m), 1 ≤m ≤ k − 1} = k − 1.

• Pour tout k ≥ 2, la famille (um,n)(m,n)∈Ik
est sommable car chaque Ik est fini et

∑
(m,n)∈Ik

1
(m + n)α

= ∑
(m,n)∈Ik

1
kα
= 1

kα ∑
(m,n)∈Ik

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Card Ik

= Card Ik

kα
= k − 1

kα
.

• On a k − 1
kα

∼
k→+∞

k

kα
= 1

kα−1 , donc la série ∑
k≥2

k − 1
kα

converge si, et seulement si, α > 2 (série de Riemann). Par suite,

la famille
⎛
⎝ ∑
(m,n)∈Ik

1
(m + n)α

⎞
⎠

k≥2

est sommable si, et seulement si, α > 2.

Par le théorème de sommation par paquets positif, la famille (um,n)(m,n)∈N∗2 est sommable si, et seulement si, α > 2.
2. Soit α > 0. Pour tout (m, n) ∈ N∗ ×N∗, on a

1
(m + n)2

≤ 1
m2 + n2 ≤

2
(m + n)2

,

donc la famille ( 1
(m2 + n2)α

)
(m,n)∈N∗2

est sommable si, et seulement si, la famille ( 1
(m + n)2α

)
(m,n)∈N∗2

est sommable si,

et seulement si, 2α > 2 si, et seulement si, α > 1.

Corrigé de l’exercice 10. 1. La série ∑
p≥1

1
p2 converge (série de Riemann) donc la famille ( 1

p2
1
q2 )

p,q≥1
est sommable et on a :
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∑
(p,q)∈I

1
p2q2 =

⎛
⎝ ∑p∈N∗

1
p2
⎞
⎠
⎛
⎝ ∑q∈N∗

1
q2
⎞
⎠
=
⎛
⎝

+∞
∑
p=1

1
p2
⎞
⎠

2

= π4

36
.

2. Pour tout (p, q) ∈ N∗ × N∗, on a 1
p2 + q2 ≥

1
(p + q)2

. Or la famille ( 1
(p + q)2

)
(p,q)∈I

n’est pas sommable. Par suite, la

famille ( 1
p2 + q2 )(p,q)∈I

n’est pas sommable.

Corrigé de l’exercice 11. Soit x ∈ ]−1, 1[. Pour tout n ∈ N∗, xn

1 − xn
=
+∞
∑

m=1
(xn)m =

+∞
∑

m=1
xmn (série géométrique). Considérons

alors la suite double (xmn)(m,n)∈N∗2 .

• ∀n ∈ N∗, la série ∑
m≥1
∣xmn∣ converge (série géométrique) et on a

+∞
∑

m=1
∣xmn∣ = ∣xn∣

1 − ∣xn∣
.

• ∣xn∣
1 − ∣xn∣

∼
n→+∞ ∣x

n∣ et la série ∑
n≥1
∣xn∣ converge (série géométrique) donc la série ∑

n≥1
(
+∞
∑

m=1
∣xmn∣) converge.

Par le théorème de Fubini, la famille (xmn)(m,n)∈N∗2 est sommable et on a

∑
(m,n)∈N∗2

xmn =
+∞
∑
n=1
(
+∞
∑

m=1
xmn) =

+∞
∑
n=1

xn

1 − xn
.

La suite (In)n∈N∗ de N∗2 définie par In = {(k, ℓ) ∈ N∗2, kℓ = n} est une partition de N∗2. En effet :

• Si (k, ℓ) ∈ In⋂ Im avec m ≠ n alors kℓ = n =m ce qui est absurde donc In⋂ Im = ∅ pour tout m ≠ n.

• Si (k, ℓ) ∈ N∗2 alors (k, ℓ) ∈ Ikℓ donc N∗2 ⊂ ⋃
n≥1

In et la deuxième inclusion ⋃
n≥1

In ⊂ N∗2 est triviale. Ainsi, N∗2 = ⋃
n≥1

In.

De plus, Card In = Card {(k, n/k), k diviseur positif de n} = d(n). Par le théorème de sommation par paquets,

∑
(m,n)∈N∗2

xmn =
+∞
∑
n=1

⎛
⎝ ∑
(k,ℓ)∈In

xkℓ⎞
⎠
=
+∞
∑
n=1

⎛
⎝ ∑
(k,ℓ)∈In

xn⎞
⎠
=
+∞
∑
n=1

xn ∑
(k,ℓ)∈In

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Card In

=
+∞
∑
n=1

d(n)xn.

Finalement,
+∞
∑
n=1

xn

1 − xn
=
+∞
∑
n=1

d(n)xn où d(n) est le nombre de diviseurs positifs de n.

Corrigé de l’exercice 12. 1. Soit F une partie finie de Z. Il existe N ∈ N tel que F ⊂ [[−N, N]]. On a :

∑
n∈F

n2∣an∣ = ∑
n∈F
n≠0

n2∣an∣

= ∑
n∈F
n≠0

n3∣an∣
1
n

≤
⎛
⎜
⎝
∑
n∈F
n≠0

n6a2
n

⎞
⎟
⎠

1/2
⎛
⎜
⎝
∑
n∈F
n≠0

1
n2

⎞
⎟
⎠

1/2

Inégalité de Cauchy-Schwarz

≤ (∑
n∈F

n6a2
n)

1/2 ⎛
⎜⎜
⎝
∑

n∈[[−N,N]]
n≠0

1
n2

⎞
⎟⎟
⎠

1/2

≤ (∑
n∈Z

n6a2
n)

1/2
(
−1
∑

n=−N

1
n2 +

N

∑
n=1

1
n2 )

1/2

≤
√

2(∑
n∈Z

n6a2
n)

1/2
(

N

∑
n=1

1
n2 )

1/2

≤
√

2(∑
n∈Z

n6a2
n)

1/2
(
+∞
∑
n=1

1
n2 )

1/2
.

Donc l’ensemble
⎧⎪⎪⎨⎪⎪⎩
∑
n∈F

n2∣an∣ tel que F finie ⊂ Z
⎫⎪⎪⎬⎪⎪⎭

est majoré et par suite, la famille (n2an)n∈Z est sommable et on a :
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∑
n∈Z

n2∣an∣ ≤
√

2(∑
n∈Z

n6a2
n)

1/2
(
+∞
∑
n=1

1
n2 )

1/2
.

2. La famille (n2an)n∈Z est sommable donc les séries ∑
n≥1

n2∣an∣ et ∑
n≥1

n2∣a−n∣ convergent. Nécessairement, n2∣an∣ ÐÐÐ→
n→+∞ 0

et n2∣a−n∣ ÐÐÐ→
n→+∞ 0 c-à-d ∣an∣ =

n→+∞ o( 1
n2 ) et ∣a−n∣ =

n→+∞ o( 1
n2 ). Par comparaison, les séries ∑

n≥1
∣an∣ et ∑

n≥1
∣a−n∣ convergent.

Ainsi, la famille (an)n∈Z est sommable.
Par ailleurs, on a pour tout n ∈ Z, ∣nan∣ ≤ n2∣an∣ donc par comparaison, la famille (nan)n∈Z est sommable.

Corrigé de l’exercice 13. Soit z ∈ C tel que ∣z∣ < 1. On a :

z2n

1 − z2n+1 = z2n
+∞
∑

m=0
(z2n+1

)
m
= z2n

+∞
∑

m=0
z2n+1m =

+∞
∑

m=0
z2n(2m+1).

Considérons la famille (am,n)(m,n)∈N2 définie par am,n = z2n(2m+1).

• ∀n ∈ N, la série ∑
m≥0
∣am,n∣ converge d’après le critère de d’Alembert :

∣
am+1,n

am,n
∣ = ∣z∣

2n(2m+3)

∣z∣2n(2m+1) = ∣z∣
2n+1
ÐÐÐÐ→
m→+∞ ∣z∣

2n+1
< 1.

De plus,
+∞
∑

m=0
∣am,n∣ =

∣z∣2
n

1 − ∣z∣2n+1 .

• La série ∑
n≥0
(
+∞
∑

m=0
∣am,n∣) converge. En effet : ∣z∣2

n

1 − ∣z∣2n+1 ∼
n→+∞ ∣z∣

2n et la série ∑
n≥0
∣z∣2

n

puisque ∣z∣
2n+1

∣z∣2n = ∣z∣2
n

ÐÐÐ→
n→+∞ 0 < 1.

Par le théorème de Fubini, la famille (am,n)(m,n)∈N2 est sommable et on a :

∑
(m,n)∈N2

am,n =
+∞
∑
n=0
(
+∞
∑

m=0
am,n) =

+∞
∑
n=0

z2n

1 − z2n+1 .

Par ailleurs, puisque l’application φ ∶ N2 Ð→ N∗ définie par φ(n, m) = 2n(2m + 1) est bijective, la suite (Ik)k∈N∗ définie par
Ik = {(m, n) ∈ N2, 2n(2m + 1) = k} forme une partition de N2 et on a Card Ik = 1 pour tout k ∈ N∗. Ainsi, par le théorème
de sommation par paquets,

∑
(m,n)∈N2

am,n =
+∞
∑
k=1

⎛
⎝ ∑
(m,n)∈Ik

am,n

⎞
⎠
=
+∞
∑
k=1

⎛
⎝ ∑
(m,n)∈Ik

z2n(2m+1)⎞
⎠
=
+∞
∑
k=1

⎛
⎝ ∑
(m,n)∈Ik

zk⎞
⎠
=
+∞
∑
k=1

zk ⎛
⎝ ∑
(m,n)∈Ik

1
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Card Ik

=
+∞
∑
k=1

zk = z

1 − z
.

Finalement,
+∞
∑
n=0

z2n

1 − z2n+1 =
z

1 − z
.

Corrigé de l’exercice 14. 1. La famille (un,p)(n,p)∈I est sommable donc par le théorème de Fubini,

∑
(n,p)∈I

un,p =
+∞
∑
n=1

⎛
⎝

+∞
∑
p=1

un,p

⎞
⎠

.

Par ailleurs, la suite (In)n∈N∗ définie par In = {(k, p) ∈ I, kp = n} forme une partition de I et puisque la famille (un,p)(n,p)∈I
est sommable alors par le théorème de sommation par paquets,

∑
(n,p)∈I

un,p =
+∞
∑
n=1

⎛
⎝

+∞
∑

(k,p)∈In

uk,p

⎞
⎠

.

Ainsi,
+∞
∑
n=1

⎛
⎝

+∞
∑
p=1

un,p

⎞
⎠
=
+∞
∑
n=1

⎛
⎝

+∞
∑

(k,p)∈In

uk,p

⎞
⎠

.

2. Soit x ∈ ]−1, 1[.

• ∀n ∈ N∗, la série ∑
p≥1
∣anxnp∣ converge (série géométrique) et on a :

+∞
∑
p=1
∣anxnp∣ = ∣an∣

+∞
∑
p=1
(∣xn∣)p = ∣an∣ ∣xn∣

1 − ∣xn∣
.

Binyze Mohamed 9 / 14

https://supsp%C3%A9.com


https://supspé.com TD No4 (correction) MP Laâyoune

• La série ∑
n≥1

⎛
⎝

+∞
∑
p=1
∣anxnp∣

⎞
⎠

converge. En effet : ∣an∣ ∣xn∣
1 − ∣xn∣

∼
n→+∞ ∣an∣ ∣xn∣ et ∣an∣ ∣xn∣ ≤ ∣an∣. Puisque la série ∑

n≥1
an converge

absolument, par comparaison, la série ∑
n≥1
∣an∣ ∣xn∣ converge et par suite, la série ∑

n≥1

∣an∣ ∣xn∣
1 − ∣xn∣

converge.

Par le théorème de Fubini, la famille (anxnp)(n,p)∈I est sommable.

3. Soit x ∈ ]−1, 1[. D’après ce qui précède, on a :

+∞
∑
n=1

an
xn

1 − xn
=
+∞
∑
n=1

⎛
⎝

+∞
∑
p=1

anxnp⎞
⎠

=
+∞
∑
n=1

⎛
⎝

+∞
∑

(k,p)∈In

akxkp⎞
⎠

=
+∞
∑
n=1

⎛
⎝

+∞
∑
d∣n

adxn⎞
⎠

=
+∞
∑
n=1

xn ⎛
⎝

+∞
∑
d∣n

ad

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=bn

=
+∞
∑
n=1

bnxn.

Corrigé de l’exercice 15. La suite (In)n∈N définie par In = {(p, q) ∈ N2, p + q = n} forme une partition de N2.

• Pour tout n ∈ N, la famille (up,q)(p,q)∈In
est sommable car chaque In est fini et

∑
(p,q)∈In

1
p!q!(p + q + 1)

=
n

∑
p=0

1
p!(n − p)!(n + 1)

= 1
n!(n + 1)

n

∑
p=0
(n

p
) = 2n

(n + 1)!
.

• La série ∑
n≥0

⎛
⎝ ∑
(p,q)∈In

up,q

⎞
⎠

converge (série exponentielle).

Par le théorème de sommation par paquets positif, la famille (up,q)(p,q)∈N2 est sommable et on a

∑
(p,q)∈N2

up,q =
+∞
∑
n=0

⎛
⎝ ∑
(p,q)∈In

up,q

⎞
⎠
=
+∞
∑
n=0

2n

(n + 1)!
= 1

2
+∞
∑
n=0

2n+1

(n + 1)!
= 1

2
(e2 −1).

Corrigé de l’exercice 16. Pour tout n ∈ N, on a wn =
1
2n

n

∑
k=0

4k

k!
≤ 1

2n
e4 donc wn = O ( 1

2n
) et, par comparaison à une série

géométrique, la série ∑
n≥0

wn converge. De plus,

+∞
∑
n=0

wn =
+∞
∑
n=0

n

∑
k=0

2k

k!
(1

2
)

n−k

donc la série ∑
n≥0

wn est produit de Cauchy des séries absolument convergentes ∑
n≥0

2n

n!
et ∑

n≥0
(1

2
)

n

. Ainsi,

+∞
∑
n=0

wn == (
+∞
∑
n=0

2n

n!
)(
+∞
∑
n=0
(1

2
)

n

) = e2 1
1 − 1/2

= 2 e2.

Corrigé de l’exercice 17. 1. Premirère méthode : soit x ∈ ]−1, 1[. La série ∑
n≥0

xn converge absolument donc par produit de

Cauchy,

1
(1 − x)2

= (
+∞
∑
n=0

xn)(
+∞
∑
n=0

xn) =
+∞
∑
n=0
(

n

∑
k=0

xkxn−k) =
+∞
∑
n=0

xn (
n

∑
k=0

1) =
+∞
∑
n=0
(n + 1)xn.

Deuxième méthode : soit x ∈ ]−1, 1[. Considérons la famille d’indices séparés (ui,j)(i,j)∈N2 définie par ui,j = xixj = xi+j . La
série ∑

i≥0
xi converge absolument donc la famille (xi)i∈N est sommable et par suite, la famille (ui,j)(i,j)∈N2 . Par le théorème

de Fubini :
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∑
(i,j)∈N2

ui,j =
+∞
∑
i=0

⎛
⎝

+∞
∑
j=0

xi+j⎞
⎠
=
+∞
∑
i=0

xj ⎛
⎝

+∞
∑
j=0

xj⎞
⎠
= 1

1 − x

+∞
∑
i=0

xi = 1
(1 − x)2

.

Par ailleurs, la suite (Ik)k∈N définie par Ik = {(i, j) ∈ N2, i+ j = k} forme une partition de N2. De plus, Card Ik = k + 1. Par
le théorème de sommation par paquets,

∑
(i,j)∈N2

ui,j =
+∞
∑
k=0

⎛
⎝ ∑(i,j)∈Ik

xi+j⎞
⎠
=
+∞
∑
k=0

⎛
⎝ ∑(i,j)∈Ik

xk⎞
⎠
=
+∞
∑
k=0

xk ⎛
⎝ ∑(i,j)∈Ik

1
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Card Ik

=
+∞
∑
k=0
(k + 1)xk.

Ainsi, 1
(1 − x)2

=
+∞
∑
n=0
(n + 1)xn.

2. Récurrence sur k ∈ N.
Initialisation : Pour k = 0 l’identité est vérifiée (somme d’une série géométrique).
Hérédité : Soit k ∈ N. Supposons la propriété est vraie au rang k et montrons qu’elle est vraie au rang k + 1. La série
géométrique ∑

n≥0
xn converge absolument donc par produit de Cauchy,

1
(1 − x)k+2 =

1
(1 − x)k+1

1
(1 − x)

= (
+∞
∑
n=0
(n + k

n
)xn)(

+∞
∑
n=0

xn)

=
+∞
∑
n=0

n

∑
p=0
(p + k

p
)xpxn−p

=
+∞
∑
n=0

xn
n

∑
p=0
(p + k

p
)

=
+∞
∑
n=0

xn
n

∑
p=0
(p + k

k
) symétrie des coefficients binomiaux

=
+∞
∑
n=0

xn
n

∑
p=0
((p + k + 1

k + 1
) − (p + k

k + 1
)) formule du triangle de Pascal

=
+∞
∑
n=0

xn

⎛
⎜⎜⎜⎜
⎝

(n + k + 1
k + 1

) − ( k

k + 1
)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=0

⎞
⎟⎟⎟⎟
⎠

=
+∞
∑
n=0
(n + k + 1

n
)xn.

Donc l’identité est vraie au rang k + 1.

Conclusion : Par le principe de récurrence, pour tout k ∈ N,
1

(1 − x)k+1 =
+∞
∑
n=0
(n + k

n
)xn.

Corrigé de l’exercice 18. Soit a ∈ C tel que ∣a∣ < 1. On a :

∀p ≥ 1,
ap

1 − a2p
= ap

+∞
∑
q=0

a2pq = ap
+∞
∑
q=1

a2p(q−1) =
+∞
∑
q=1

ap(2q−1).

Considérons la famille (up,q)p,q≥1 définie par up,q = ap(2q−1).

• ∀p ≥ 1, la série ∑
q≥1
∣up,q ∣ converge (série géométrique) et

+∞
∑
q=1
∣up,q ∣ =

+∞
∑
q=1
∣a∣p(2q−1) = ∣a∣p

1 − ∣a∣2p
.

• La série ∑
p≥1

⎛
⎝

+∞
∑
q=1
∣up,q ∣

⎞
⎠

converge. En effet : ∣a∣p

1 − ∣a∣2p
∼

p→+∞ ∣a∣
p et la série ∑

p≥1
∣a∣p converge (série géométrique), donc par

comparaison, la série ∑
p≥1

⎛
⎝

+∞
∑
q=1
∣up,q ∣

⎞
⎠

converge.

Par le théorème de Fubini, la famille (up,q)p,q≥1 est sommable et on a :
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∑
(p,q)∈N∗×N∗

up,q =
+∞
∑
p=1

⎛
⎝

+∞
∑
q=1

up,q

⎞
⎠
=
+∞
∑
q=1

⎛
⎝

+∞
∑
p=1

up,q

⎞
⎠

.

Or
+∞
∑
p=1

⎛
⎝

+∞
∑
q=1

up,q

⎞
⎠
=
+∞
∑
p=1

ap

1 − a2p
et

+∞
∑
q=1

⎛
⎝

+∞
∑
p=1

up,q

⎞
⎠
=
+∞
∑
q=1

⎛
⎝

+∞
∑
p=1

ap(2q−1)⎞
⎠
=
+∞
∑
q=1

a2q−1

1 − a2q−1 . Ainsi,

+∞
∑
p=1

ap

1 − a2p
=
+∞
∑
p=1

a2p−1

1 − a2p−1 .

Corrigé de l’exercice 19. 1. Soit x > 1. La famille ( 1
(ab)x

)
(a,b)∈I

est une famille de réels positifs d’indices séparés. Comme la

série ∑
a≥1

1
ax

converge (série de Riemann), alors la famille ( 1
(ab)x

)
(a,b)∈I

est sommable et on a

∑
(a,b)∈I

1
(ab)x

= ∑
(a,b)∈I

1
ax

1
bx
= (
+∞
∑
a=1

1
ax
)

2

= (ζ(x))2.

2. La suite (In)n∈N∗ définie par In = {(a, b) ∈ I, ab = n} forme une partition de I. Aussi, la famille ( 1
(ab)x

)
(a,b)∈I

est

sommable donc par le théorème de sommation par paquets positif,

∑
(a,b)∈I

1
(ab)x

=
+∞
∑
n=1

⎛
⎝ ∑
(a,b)∈In

1
(ab)x

⎞
⎠
=
+∞
∑
n=1

⎛
⎝ ∑
(a,b)∈In

1
nx

⎞
⎠
=
+∞
∑
n=1

1
nx

⎛
⎝ ∑
(a,b)∈In

1
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Card In

=
+∞
∑
n=1

dn

nx
.

Finalement, ζ(x)2 =
+∞
∑
n=1

dn

nx
.

Corrigé de l’exercice 20. 1. Soit x ∈ ]−1, 1[.

a. On a n2 nxn

1 − xn
∼

n→+∞ n3xn ÐÐÐ→
n→+∞ 0 c-à-d nxn

1 − xn
=

n→+∞ o( 1
n2 ). Comme la série ∑

n≥1

1
n2 converge, la série ∑

n≥1

nxn

1 − xn

converge absolument donc converge. De plus,
+∞
∑
n=1

nxn

1 − xn
=
+∞
∑
n=1

nxn
+∞
∑
k=0

xnk =
+∞
∑
n=1

+∞
∑
k=0

nxn(k+1).

b. On a ∣
xp

(1 − xp)2 ∣ ∼p→+∞ ∣x∣
p et la série ∑

p≥1
∣x∣p converge (série géométrique) donc, par comparaison, la série ∑

p≥1

xp

(1 − xp)2
converge absolument donc converge.
Posons, pour tout (n, k) ∈ N∗ ×N, an,k = nxn(k+1).

• ∀n ∈ N∗, la série ∑
k≥0
∣an,k ∣ converge (série géométrique) et

+∞
∑
k=0
∣an,k ∣ = n∣x∣n

+∞
∑
k=0
(∣xn∣)k = n∣x∣n

1 − ∣x∣n
.

• La série ∑
n≥1
(
+∞
∑
k=0
∣an,k ∣) converge.

Par le théorème de Fubini, la famille (an,k)(n,k)∈N∗×N est sommable et on a :
+∞
∑
n=1

+∞
∑
k=0

an,k =
+∞
∑
k=0

+∞
∑
n=1

an,k.
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Or
+∞
∑
n=1

+∞
∑
k=0

an,k =
+∞
∑
n=1

nxn

1 − xn
et

+∞
∑
k=0

+∞
∑
n=1

an,k =
+∞
∑
k=0

+∞
∑
n=1

nxn(k+1)

=
+∞
∑
k=0

+∞
∑
n=0
(n + 1)x(n+1)(k+1)

=
+∞
∑
k=0

xk+1
+∞
∑
n=0
(n + 1)(xk+1)n

=
+∞
∑
k=0

xk+1

(1 − xk+1)2
produit de Cauchy de la série ∑

n≥1
(xk+1)n avec elle même.

=
+∞
∑
k=1

xk

(1 − xk)2

D’où :
+∞
∑
p=1

xp

(1 − xp)2
=
+∞
∑
n=1

nxn

1 − xn
.

2. On admet que
+∞
∑
k=1

1
k2 =

π2

6
.

a. On a 1
k3(k + 1)

∼
k→+∞

1
k4 et la série ∑

k≥1

1
k4 converge (série de Riemann) donc, par comparaison, la série ∑

k≥1

1
k3(k + 1)

et

par suite, le nombre un = n
+∞
∑
k=n

1
k3(k + 1)

est bien défini, pour tout n ∈ N∗.

b. Posons, pour tout (n, k) ∈ N∗ ×N∗, un,k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n

k3(k + 1)
si k ≥ n

0 si k < n
. La famille (un,k)(n,k)∈N∗2 est une famille de réels

positifs.
• ∀k ∈ N∗, la série ∑

n≥1
un,k converge car pour tout k ∈ N∗ fixé, la suite (un,k)n∈N∗ est nulle à partir d’un certain rang.

De plus,
+∞
∑
n=1

un,k =
k

∑
n=1

n

k3(k + 1)
= 1

k3(k + 1)
k

∑
n=1

n

±
=k(k+1)/2

= 1
2k2 .

• La série ∑
k≥1
(
+∞
∑
n=1

un,k) converge (série de Riemann).

Par le théorème de Fubini, la famille (un,k)(n,k)∈N∗2 est sommable et on a :
+∞
∑
k=1

+∞
∑
n=1

un,k =
+∞
∑
n=1

+∞
∑
k=1

un,k.

Or
+∞
∑
k=1

+∞
∑
n=1

un,k =
+∞
∑
k=1

1
2k2 =

π2

12
et

+∞
∑
n=1

+∞
∑
k=1

un,k =
+∞
∑
n=1

+∞
∑
k=n

n

k3(k + 1)
=
+∞
∑
n=1

un. Finalement,
+∞
∑
n=1

un =
π2

12
.

3. Un premier contre-exemple.

a. Soit i ∈ N fixé. La série ∑
j≥0

bi,j converge car la suite (bi,j)j≥i+1 est géométrique de raison 1
2

et on a :

+∞
∑
j=0

bi,j =
i−1
∑
j=0

bi,j + bi,i +
+∞
∑

j=i+1
bi,j = 0 + (−1) +

+∞
∑

j=i+1

1
2j−i

= −1 +
+∞
∑
k=1

1
2k
= −1 + 1 = 0.

La série ∑
i≥0

+∞
∑
j=0

bi,j converge car c’est la série nulle. D’où le nombre
+∞
∑
i=0

+∞
∑
j=0

bi,j existe et est nul.

b. Soit j ∈ N fixé. La série ∑
i≥0

bi,j converge car la suite (bi,j)i≥0 est nulle à partitr d’un certain rang et on a :

+∞
∑
i=0

bi,j =
j−1
∑
i=0

bi,j + bj,j +
+∞
∑

i=j+1
bi,j =

j−1
∑
i=0

1
2j−i
+ (−1) + 0 = 1

2j

1 − 2j

1 − 2
− 1 = − 1

2j
.

La série ∑
j≥0

+∞
∑
i=0

bi,j converge (série géométrique) et on a :
+∞
∑
j=0

+∞
∑
i=0

bi,j =
+∞
∑
j=0
− 1

2j
= −2.

D’où le nombre
+∞
∑
j=0

+∞
∑
i=0

bi,j existe et vaut −2.
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c. D’après ce qui précède, les nombres
+∞
∑
i=0

+∞
∑
j=0

bi,j et
+∞
∑
j=0

+∞
∑
i=0

bi,j existent mais ne sont pas égaux.

4. Un second contre-exemple.

a. Soit i ∈ N fixé. La série ∑
j≥0

ci,j converge car géométrique de raison 1
3

et on a :

+∞
∑
j=0

ci,j =
i−1
∑
j=0

ci,j + ci,i +
+∞
∑

j=i+1
ci,j = 0 + i − 2i

+∞
∑

j=i+1
3i−j = i − 2i

+∞
∑
k=1

1
3k
= i − 2i

1
3

1
1 − 1/3

= 0.

La série ∑
i≥0

+∞
∑
j=0

bi,j converge car c’est la série nulle. D’où le nombre
+∞
∑
i=0

+∞
∑
j=0

bi,j existe et est nul.

b. Soit j ∈ N. La série ∑
i≥0

ci,j converge car pour tout j ∈ N fixé, la suite (ci,j)i≥0 est nulle à partir d’un certain rang. De

plus,
+∞
∑
i=0

ci,j =
j−1
∑
i=0

ci,j + cj,j +
+∞
∑

i=j+1
ci,j =

j−1
∑
i=0
−2i3i−j + j + 0 = j − 2

3j

j−1
∑
i=0

i3i.

Or

2
3j

j−1
∑
i=0

i3i = 2
3j−1

j−1
∑
i=0

i3i−1 = 2
3j−1 (

j−1
∑
i=0

xi)
′RRRRRRRRRRRRx=3

= 2
3j−1 (

jxj−1(x − 1) − (xj − 1)
(x − 1)2

)∣
x=3

= 2
3j−1

2j3j−1 − (3j − 1)
4

= j − 1
2

3j − 1
3j−1 .

Ainsi,
+∞
∑
i=0

ci,j = j − j + 1
2

3j − 1
3j−1 =

1
2

3j − 1
3j−1 .

c. La série ∑
j≥0

+∞
∑
i=0

ci,j diverge grossièrement puisque le terme général
+∞
∑
i=0

ci,j =
1
2

3j − 1
3j−1 ÐÐÐ→j→+∞

3
2

.
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