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Devoir surveillé N°2 MP Laayoune

Exercice

Une question de dénombrement.

Soient k£ € N* et n € N. L’objectif est de démontrer la formule suivante :
k -1
Card{(nl""7nk)eNk, n1+—|—nk:n}:< +n >
n

Partie | : Un cas particulier.

Q1. Soit n € N. On pose I,, = {(i,j) eEN? i4j= n}
1. Montrer que I'application
¢ : [0,n] — I,
i — (i,n —1)
est bijective.

2. En déduire Card I,,.

Q2. Application. Soit o € C*. On considére la famille (up’q)( )

g N2 définie par :

aPta
(p+q+1)(p+qt

1. Justifier soigneusement que (In)n cy forme une partition de N2,

V(p, Q) € N27 Up,q =

2. A Tl'aide d’une sommation par paquets, montrer que la famille (up,q)(p g)eN? est sommable puis calculer sa

somine.

Partie Il : Cas général.

On admet le résultat suivant :

Soient (an)nen €t (bp)nen deux suites réelles.

+o0o +o0o
Je > 0, Va € |—¢,¢], Zanxn = an;p” — VneN, a,=by,.
n=0 n=0

Soit x € |—1,1[. On considére la famille (up, ., ) définie par :

(n1,...,n)ENF

Y(ni,...,ng) € NF, Uny,...my, = @1

Q3. Démontrer que la famille (unlnk) . est sommable puis calculer sa somme.

(n1,e--,nE)EN
Q4. Montrer par récurrence la formule suivante :

1 =X (n+p\ ,

Q5. A Paide d’une sommation par paquets, retrouver la somme de la famille (uny i)

Q6. Conclure.

(n1,...,ng)ENE"
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Probleme 1

ind

L’objectif de ce probléme est d’étudier la convergence de la série Z a partir d’une transformation d’Abel,

n>1

(e}

puis calculer la somme lorsque a =1 et 6 € |0, 27].

Partie | : Transformation d’Abel.

N
Soient « et # deux réels. Pour tout NV > 1, on pose Sy = Z e
n=1

- ein@ )
Q1. Discuter la nature de la série Z - dans les cas suivants :
n>1
1. a <0.
2. o> 1.

3. 0<a<]let e 2nZ.

Dans la suite, on suppose 0 < o < 1 et 0 ¢ 27Z.
Q2. Montrer que la suite (Sy) est bornée.

N>1
Q3. Montrer que pour tout N > 1 :
NEJr:l eint B SNJrl i\f: ( 1 1 )S
—_— Taxr . N~ I n-.
‘= n~ (N + 1)« = \n* (n+1)
Q4. Justifier que la série Z (1 — 1) S,, est convergente
. q = no (’I’l + 1)a n g .
Q5. En déduire que
ind a>1
e
converge <— ou
n2l O<a<letb¢2rZ
Partie Il : Calcul d’une somme.

Dans cette partie, on suppose que o = 1 et 6 € ]0, 27].

Q6. Démontrer que

oiko 1 gif _ gi(n+1)8 g0
Z ko /0 1—eift .
k=1

1 1
Indication : on pourra utiliser I'identité = / t*=1d¢ pour tout k > 1.
0

Q7. Montrer qu'il existe ¢ > 0 tel que, pour tout ¢ € [0,1], |1 —e?¢ > c.

inf
Q8. En déduire que la série Z C est convergente et donner sa somme sous forme d’une intégrale.
n>1
Q9. Démontrer que
1 elf 0 1 sin 6
————dt = —1In( 2sin = / dt.
/0 1—elt n(8m2>+10 12— 2tcosf + 1
Q10. Soit 0 € ]0,27[\ {n}.
t —cosf in 6
1. Vérifier que t — arctan < ,COS ) est une primitive de t — > sur [0, 1].
sin t2 — 2tcosf + 1
2. Démontrer que
1 in 6 0
/ sin dt = T v
o t2—2tcosf+1 2 2
Indication : on pourra distinguer les cas : 6 € |0, 7[ et 6 € |7, 27].
inf 0 : 0
Q11. En déduire la somme de la série Z e—, puis celle de Z M et Z M
n n n
n>1 n>1 n>1
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Probleme 2
Etude des morphismes de la C-algébre M,,(C).

On pose, pour n € N*, w = e™/™ et on considére dans M,,(C) les deux matrices, notées C), et D,,, définies par :

0 0 1 1 0 0
1
C, = . et D, = v
: 0
(0) 1 0 0 0 w't

Partie | : Résultats préliminaires sur les matrices C, et D,,.

Q1. Etude des matrices C5 et Ds.
On pose j = /3,
1. Ecrire les matrices C5 et Ds.
2. Vérifier que D3 =13 = C’g’ et que D3Cs3 = jC3Ds.
3. Montrer que la famille (I3, D3, D%) est libre et qu’elle engendre le sous-espace vectoriel des matrices diagonales
de M3(C).
4. Calculer le polynome caractéristique de Cs. La matrice C3 est-elle diagonalisable dans M3(C)?
Q2. Etude préliminaire sur les matrices C,, et D,, dans le cas général.
1. Vérifier que D} =1,,.
2. Montrer que D,,C,, = wCy,D,,.
3. Montrer que la famille (I,,, Dy, D2 ... Dﬁ_l) est libre et qu’elle engendre le sous-espace vectoriel des matrices
diagonales de M, (C).
4. Calculer le polynome caractéristique de C,. La matrice C), est-elle diagonalisable dans M,,(C)?
5. Justifier que C] = L,,.
Q3. Une base de M,,(C) construite a partir des matrices C,, et D,,.
On note (eq,...,ey) la base canonique de M,, 1(C) et u (resp. v) 'endomorphisme de M,, ;(C) canoniquement

associé a la matrice C,, (resp. D,,).

1.

2.

3.

. Montrer que la famille (C¥DY)

Vérifier que u(e,) = €1 et que u(e) = ex41 pour tout k € {1,...,n—1}.
Montrer que, pour tout k € {1,...,n — 1}, u¥(e1) = exy1 et que u"(e1) = e1.

Calculer u™ et en déduire que C}} = I,,.

Montrer que la famille (Idg,u,...,u""!) est libre et en déduire le polyndéme minimal de la matrice C,,.

F=1 ek, pour tout k € {1,...,n}.

0<ki<n_1 €St une base de M, (C).

Indication : on pourra raisonner enterme d’endomorphismes.

Vérifier que vu = w.uv et que v(eg) = w

Partie Il : Une question de réduction.

Dans cette partie, EF désigne un C-espace vectoriel de dimension n, et f, g deux endomorphismes de F tels que :

ff=g"=1dg et fg=w.gf.

Q4. Justifier que les endomorphisme f et g sont inversibles.
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Q5. Montrer que les endomorphismes f et g sont diagonalisables et que leurs valeurs propres sont des racines
n-iemes de 'unité.
Q6. Etude des valeurs propres et des sous-espace propres de I’endomorphisme f.
Soit A une valeur propre de f et zg € E un vecteur propre associé.
1. Montrer que w est aussi une valeur propre de f. Indication : on pourra calculer f(g(z)).
2. En déduire que, pour tout k € {0,...,n — 1}, wF est une valeur propre de f.
3. Montrer que le spectre de f est ’ensemble de toutes les racines n-iemes de I'unité.
4. Préciser la dimension de chaque sous-espace propre de f.

Q7. Une base de F, convenable pour les endomorphisme f et g.
On vient d’établir précédemment que le spectre de f, noté Sp (f), vérifie : Sp (f) = {1, w,...,w" 1}

Soit e un vecteur propre de f associé a la valeur propre 1.

1. Montrer que, pour tout k € {0,...,n— 1}, f(g*(e)) = wk.g%(e).

2. En déduire que (e, g(e),...,g" '(e)) est une base de E, formée de vecteurs propres de f.

3. On note B = (e,g(e),...,9" 1(e)) cette base de E. Vérifier que la matrice de f (resp. g) dans la base B est
D,, (resp. Cp).

Partie 111 : Application a la détermination des endomorphismes de I'algébre M, (C).

Soit ® : M, (C) — M,,(C) un morphisme d’algebres, c’est-a-dire un endomorphisme du C-espace vectoriel
M, (C) vérifiant ®(1,,) = I,, et tel que :

V(A, B) € (M,(C))?, ®(AB) = ®(A)®(B).

Q8. Soit M une matrice de M,,(C). Montrer que pour entier naturel p, ®(MP) = &(M)P.
Q9. Vérifier que les matrices ®(D,,) et ®(C,,) vérifient les relations :

O(D,)" =P(Cp)" =1, et ®(D,)P(Cy) = w.®(C)P(Dy,).

Q10. On note f; et g1 les endomorphismes de M,, 1(C) canoniquement associés aux matrices ®(D,,) et ®(Cy,)

respectivement.

1. Justifier que les endomorphismes f; et g1 de M,, 1(C) vérifient les relations :

=91 =ldm, ) et fig1 =w.g1f1.

2. Montrer qu’il existe une base de M,, 1(C) dans laquelle la matrice de f; est D), et celle de g; est Cp,.

3. En déduire qu’il existe une matrice inversible P de M,,(C) telle que ®(D,,) = PD,P~! et ®(C,) = PC,P~L.
Q11. Montrer que, pour toute matrice M de M, (C), ®(M)= PMP~1.

Q12. Vérifier que les applications ainsi trouvées sont bien des morphismes de la C-algebre M,,(C).
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