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Exercice
Une question de dénombrement.

Soient k ∈ N∗ et n ∈ N. L’objectif est de démontrer la formule suivante :

Card
{

(n1, . . . , nk) ∈ Nk, n1 + . . . + nk = n
}

=
(

k + n − 1
n

)
.

Partie I : Un cas particulier.

Q1. Soit n ∈ N. On pose In =
{

(i, j) ∈ N2, i + j = n
}

.

1. Montrer que l’application

ϕ : [[0, n]] −→ In

i 7−→
(
i, n − i

)
est bijective.

2. En déduire Card In.

Q2. Application. Soit α ∈ C∗. On considère la famille
(
up,q

)
(p,q)∈N2 définie par :

∀(p, q) ∈ N2, up,q = αp+q

(p + q + 1)(p + q)! .

1. Justifier soigneusement que
(
In
)

n∈N forme une partition de N2.

2. À l’aide d’une sommation par paquets, montrer que la famille
(
up,q

)
(p,q)∈N2 est sommable puis calculer sa

somme.

Partie II : Cas général.

On admet le résultat suivant :

Soient (an)n∈N et (bn)n∈N deux suites réelles.

∃ε > 0, ∀x ∈ ]−ε, ε[ ,
+∞∑
n=0

anxn =
+∞∑
n=0

bnxn =⇒ ∀n ∈ N, an = bn.

Soit x ∈ ]−1, 1[. On considère la famille
(
un1,...,nk

)
(n1,...,nk)∈Nk définie par :

∀(n1, . . . , nk) ∈ Nk, un1,...,nk
= xn1+...+nk .

Q3. Démontrer que la famille
(
un1,...,nk

)
(n1,...,nk)∈Nk est sommable puis calculer sa somme.

Q4. Montrer par récurrence la formule suivante :

∀p ∈ N,
1

(1 − x)p+1 =
+∞∑
n=0

(
n + p

n

)
xn.

Q5. À l’aide d’une sommation par paquets, retrouver la somme de la famille
(
un1,...,nk

)
(n1,...,nk)∈Nk .

Q6. Conclure.
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Problème 1
L’objectif de ce problème est d’étudier la convergence de la série

∑
n≥1

einθ

nα
à partir d’une transformation d’Abel,

puis calculer la somme lorsque α = 1 et θ ∈ ]0, 2π[.

Partie I : Transformation d’Abel.

Soient α et θ deux réels. Pour tout N ≥ 1, on pose SN =
N∑

n=1
einθ.

Q1. Discuter la nature de la série
∑
n≥1

einθ

nα
dans les cas suivants :

1. α ≤ 0.
2. α > 1.
3. 0 < α ≤ 1 et θ ∈ 2πZ.

Dans la suite, on suppose 0 < α ≤ 1 et θ /∈ 2πZ.
Q2. Montrer que la suite

(
SN

)
N≥1 est bornée.

Q3. Montrer que pour tout N ≥ 1 :
N+1∑
n=1

einθ

nα
= SN+1

(N + 1)α
−

N∑
n=1

( 1
nα

− 1
(n + 1)α

)
Sn.

Q4. Justifier que la série
∑
n≥1

( 1
nα

− 1
(n + 1)α

)
Sn est convergente.

Q5. En déduire que

∑
n≥1

einθ

nα
converge ⇐⇒


α > 1

ou
0 < α ≤ 1 et θ /∈ 2πZ

.

Partie II : Calcul d’une somme.

Dans cette partie, on suppose que α = 1 et θ ∈ ]0, 2π[.

Q6. Démontrer que
n∑

k=1

eikθ

k
=
∫ 1

0

eiθ − ei(n+1)θ tn

1 − eiθ t
dt.

Indication : on pourra utiliser l’identité 1
k

=
∫ 1

0
tk−1dt pour tout k ≥ 1.

Q7. Montrer qu’il existe c > 0 tel que, pour tout t ∈ [0, 1] , |1 − eiθ t| ≥ c.

Q8. En déduire que la série
∑
n≥1

einθ

n
est convergente et donner sa somme sous forme d’une intégrale.

Q9. Démontrer que ∫ 1

0

eiθ

1 − eiθ t
dt = − ln

(
2 sin θ

2

)
+ i
∫ 1

0

sin θ

t2 − 2t cos θ + 1dt.

Q10. Soit θ ∈ ]0, 2π[ \
{
π
}
.

1. Vérifier que t 7−→ arctan
(

t − cos θ

sin θ

)
est une primitive de t 7−→ sin θ

t2 − 2t cos θ + 1 sur [0, 1].

2. Démontrer que ∫ 1

0

sin θ

t2 − 2t cos θ + 1dt = π

2 − θ

2.

Indication : on pourra distinguer les cas : θ ∈ ]0, π[ et θ ∈ ]π, 2π[.

Q11. En déduire la somme de la série
∑
n≥1

einθ

n
, puis celle de

∑
n≥1

cos(nθ)
n

et
∑
n≥1

sin(nθ)
n

.
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Problème 2
Étude des morphismes de la C-algèbre Mn(C).

On pose, pour n ∈ N∗, w = e2iπ/n et on considère dans Mn(C) les deux matrices, notées Cn et Dn, définies par :

Cn =


0 . . . 0 1

1 . . . . . . 0
. . . . . . ...

(0) 1 0

 et Dn =


1 0 . . . 0

0 w
. . . ...

... . . . . . . 0
0 . . . 0 wn−1

.

Partie I : Résultats préliminaires sur les matrices Cn et Dn.

Q1. Étude des matrices C3 et D3.
On pose j = e2iπ/3.

1. Écrire les matrices C3 et D3.

2. Vérifier que D3
3 = I3 = C3

3 et que D3C3 = jC3D3.

3. Montrer que la famille
(
I3, D3, D2

3
)

est libre et qu’elle engendre le sous-espace vectoriel des matrices diagonales
de M3(C).

4. Calculer le polynôme caractéristique de C3. La matrice C3 est-elle diagonalisable dans M3(C) ?

Q2. Étude préliminaire sur les matrices Cn et Dn dans le cas général.

1. Vérifier que Dn
n = In.

2. Montrer que DnCn = wCnDn.

3. Montrer que la famille
(
In, Dn, D2

n, . . . , Dn−1
n

)
est libre et qu’elle engendre le sous-espace vectoriel des matrices

diagonales de Mn(C).

4. Calculer le polynôme caractéristique de Cn. La matrice Cn est-elle diagonalisable dans Mn(C) ?

5. Justifier que Cn
n = In.

Q3. Une base de Mn(C) construite à partir des matrices Cn et Dn.
On note

(
e1, . . . , en

)
la base canonique de Mn,1(C) et u (resp. v) l’endomorphisme de Mn,1(C) canoniquement

associé à la matrice Cn (resp. Dn).

1. Vérifier que u(en) = e1 et que u(ek) = ek+1 pour tout k ∈
{
1, . . . , n − 1

}
.

2. Montrer que, pour tout k ∈
{
1, . . . , n − 1

}
, uk(e1) = ek+1 et que un(e1) = e1.

3. Calculer un et en déduire que Cn
n = In.

4. Montrer que la famille
(
IdE , u, . . . , un−1) est libre et en déduire le polynôme minimal de la matrice Cn.

5. Vérifier que vu = w.uv et que v(ek) = wk−1.ek pour tout k ∈
{
1, . . . , n

}
.

6. Montrer que la famille
(
Ck

nDℓ
n

)
0≤k,ℓ≤n−1 est une base de Mn(C).

Indication : on pourra raisonner enterme d’endomorphismes.

Partie II : Une question de réduction.

Dans cette partie, E désigne un C-espace vectoriel de dimension n, et f, g deux endomorphismes de E tels que :

fn = gn = IdE et fg = w.gf .

Q4. Justifier que les endomorphisme f et g sont inversibles.
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Q5. Montrer que les endomorphismes f et g sont diagonalisables et que leurs valeurs propres sont des racines
n-ièmes de l’unité.

Q6. Étude des valeurs propres et des sous-espace propres de l’endomorphisme f .
Soit λ une valeur propre de f et x0 ∈ E un vecteur propre associé.

1. Montrer que wλ est aussi une valeur propre de f . Indication : on pourra calculer f
(
g(x0)

)
.

2. En déduire que, pour tout k ∈
{
0, . . . , n − 1

}
, wkλ est une valeur propre de f .

3. Montrer que le spectre de f est l’ensemble de toutes les racines n-ièmes de l’unité.

4. Préciser la dimension de chaque sous-espace propre de f .

Q7. Une base de E, convenable pour les endomorphisme f et g.
On vient d’établir précédemment que le spectre de f , noté Sp (f), vérifie : Sp (f) =

{
1, w, . . . , wn−1}.

Soit e un vecteur propre de f associé à la valeur propre 1.

1. Montrer que, pour tout k ∈
{
0, . . . , n − 1

}
, f

(
gk(e)

)
= wk.gk(e).

2. En déduire que
(
e, g(e), . . . , gn−1(e)

)
est une base de E, formée de vecteurs propres de f .

3. On note B =
(
e, g(e), . . . , gn−1(e)

)
cette base de E. Vérifier que la matrice de f (resp. g) dans la base B est

Dn (resp. Cn).

Partie III : Application à la détermination des endomorphismes de l’algèbre Mn(C).

Soit Φ : Mn(C) −→ Mn(C) un morphisme d’algèbres, c’est-à-dire un endomorphisme du C-espace vectoriel
Mn(C) vérifiant Φ(In) = In et tel que :

∀
(
A, B

)
∈
(
Mn(C)

)2
, Φ(AB) = Φ(A)Φ(B).

Q8. Soit M une matrice de Mn(C). Montrer que pour entier naturel p, Φ(Mp) = Φ(M)p.

Q9. Vérifier que les matrices Φ(Dn) et Φ(Cn) vérifient les relations :

Φ(Dn)n = Φ(Cn)n = In et Φ(Dn)Φ(Cn) = w.Φ(Cn)Φ(Dn).

Q10. On note f1 et g1 les endomorphismes de Mn,1(C) canoniquement associés aux matrices Φ(Dn) et Φ(Cn)
respectivement.

1. Justifier que les endomorphismes f1 et g1 de Mn,1(C) vérifient les relations :

fn
1 = gn

1 = IdMn,1(C) et f1g1 = w.g1f1.

2. Montrer qu’il existe une base de Mn,1(C) dans laquelle la matrice de f1 est Dn et celle de g1 est Cn.

3. En déduire qu’il existe une matrice inversible P de Mn(C) telle que Φ(Dn) = PDnP −1 et Φ(Cn) = PCnP −1.

Q11. Montrer que, pour toute matrice M de Mn(C), Φ(M) = PMP −1.

Q12. Vérifier que les applications ainsi trouvées sont bien des morphismes de la C-algèbre Mn(C).
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