Endomorphismes d'un espace euclidien
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Dans ce chapitre et sauf mentionné, E désigne un R-espace vectoriel.

Rappels et compléments sur les espaces préhilbertiens réels

Le couple (E, (-] )) désigne un espace préhilbertien réel et F' un sous-espace vectoriel de E¥ de dimension finie.

{ Définition 1.1.

sur F' parallelement & ™.

.

[ Théoreme 1.1.

Soit (e1,...,ep) une b.o.n. de F.

[ Théoreme 1.2.

On appelle projection orthogonale sur F, la projection pp

projection orthogonale
t /

Op ‘APF(«T)

T

expression du projeté orthogonal dans une b.o.n

VeeE, pp(x)= i(ei | z)e; |

i=1

Soit z e E.|VyeF, |z—y|>|z-

pr(z)| | avec égalité si, et seulement si, y = pp(x).
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( Corollaire 1.1. la distance d’un vecteur a un sev est atteinte en son projeté orthogonal
45
Soit z € E. i T
1 l d(.’ﬂ, F)
d(z, F) = minfz - y| = |2 - pr(2)| = /]2 - [pr(2)[* | 0p A
yeF
pr(z)
F
( Théoreme 1.3. inégalité de Bessel
Soit (en)neny une suite orthonormale de vecteurs de E.
Pour tout z € E, la suite ((z | en))neN est de carré sommable et | > (x| e,)? < |z|? |
neN

Formes linéaires et adjoint

Le couple (E,(.|.)) désigne un espace euclidien de dimension n > 1.

Formes linéaires d’un espace euclidien

Soit a € E. L’application ¢, : F — R est une forme linéaire sur FE.
z — (afz)
( Théoréme 2.1. représentation des formes linéaires dans un espace euclidien

L’application ® : E — L(E,R) est un isomorphisme d’espaces vectoriels appelé l’isomorphisme

a > Qg

canonique de E vers L(E,R). En particulier, | Vo € L(E,R), lac E, Ve e E, ¢(z)=(a]|z) |

Adjoint d’un endomorphisme

Proposition 2.1. existence de I’adjoint dans un espace euclidien

Soit u € L(E). Il existe v € L(E) unique tel que | V(z,y) € E%, (u(z)|y)=(z|v(y)) | L'endomorphisme v

est appelé l’adjoint de u. On le note u”*.

Exemple 2.1. m L’espace M,,(R) est muni de son produit scalaire canonique. Soit A € M, (R) et uy ’endomor-
phisme de M,,(R) définie par us(X) = X A. Pour tout X,Y € M, (R), on a :

(ua(X)|Y)=Tr((XA)TY)=Tr(ATXTY)=Tr (XTYAT) = (X | YAT) = (X |uar (Y)).
D’ou u;‘ =UAT.

( Proposition 2.2. matrice de I'adjoint dans une b.o.n

Soit u € L(E) et B une b.o.n. de E. Si A = Mat g(u) alors | AT = Mat g(u*) |

( Proposition 2.3. propriétés
Soit u,v € L(E) et (A, p) € R2.

L (Au+ ;w)* = \u* + pv*. 3. (u)" =u. 5. ker(u*) = Im (u)*.
2. (uov)* =v*ou”. 4. rg(u*) =rg (u). 6. Im (u*) = ker(u)*.

.
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Théoreme 2.2. sous-espaces stables
Soit u € L(E). Si F est un sev de E stable par u alors F* est stable par u*.

Matrices orthogonales, isométries vectorielles

Le couple (E, (-] )) désigne un espace euclidien de dimension n > 1.

Matrices orthogonales

Définition 3.1. matrice orthogonale
On dit que A € M, (R) est orthogonale si ATA =1,,. On note O, (R) I'ensemble des matrices orthogonales

L{AeMu(R), ATA=1,} |

d’ordre n. | O, (R) =

Remarque 3.1. @ Ac O,(R) <— AecGL,(R) et A=A,
m Si AeO,(R) alors det(A) = +1.

[ Proposition 3.1. structure de O, (R)
L’ensemble O,,(R) est un sous-groupe de (gﬁn(R), ><) appelé groupe orthogonal d’ordre n.

L

( Théoreme 3.1. caractérisation par la famille des lignes, des colonnes
Soit A € My (R). On a équivalence entre :

() AeOu(R);
(ii) Les vecteurs colonnes de A forment une famille orthonormale! de M,, ;(R);

(iii) Les vecteurs lignes de A forment une famille orthonormale de M, ,,(R).

1. Pour le produit scalaire canonique de M, 1(R) : (X |Y)=X"Y.

1 2 2
1
Exemple 3.1. m M = 3 2 1 -2| est orthogonale : ses colonnes sont unitaires et deux a deux orthogonales.
-2 2 -1
( Théoreme 3.2. matrice de passage entre deux b.o.n
Soit B = (e1,...,e,) une b.o.n de E et B’ = (e],...,e],) une famille de vecteurs de E. On a équivalence entre :
(i) B’ est une b.o.n. de E; (i) P=Matg(B’)cO,(R).

De plus, si tel est le cas, | Mat z/(B) = PT |.

L

( Définition 3.2. matrices orthogonalement semblables
On dit que A et B de M,,(R) sont orthogonalement semblables s’il existe P € O, (R) telle que B = PTAP.

L

( Définition 3.3. matrice orthogonale positive, négative

1. On dit que A € M,,(R) est orthogonale positive ou directe si A € O,(R) et det(A) = 1. On note SO, (R)

ou O, (R) l'ensemble des matrices orthogonales positives. | SO, (R) def {A € On(R), det(A) = 1} :

2. On dit que A € M,,(R) est orthogonale négative ou indirecte si A € O,(R) et det(A) = —-1. On note

O, (R) I'ensemble des matrices orthogonales négatives. | O, (R) def {A € On(R), det(A) = —1} )
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f Proposition 3.2. structure de SO, (R)

L’ensemble SO,,(R) est un sous-groupe ! de (gﬁn(]R), ><) appelé groupe spécial orthogonal d’ordre n.

1. Attention, ’ensemble O,,(R) n’est pas un groupe : I, ¢ O, (R).
f Proposition 3.3.

Soit B et B’ deux b.o.n.d. (base orthonormale directe) de 'espace euclidien orienté E.

V(ug,...,uy) € E™, detg(ul,...,un) = detBr(ul,...,un) L

Isométries vectorielles

[ Définition 3.4. isométrie vectorielle
On dit que u € L(E) est une isométrie vectorielle ou automorphisme orthogonal de E si u conserve la

norme : | Ve e E, |u(z)| = |z| |

déf

On note O(FE) 'ensemble des isométries vectorielles de E. | O(FE) = {u eL(E), YreE, |u(x)|= ||ac\|} !

L

( Théoréme 3.3. caractérisation des isométries vectorielles
Soit u € L(E). On a équivalence entre :

(i) ue O(E);

(i) V(zy) € B, (u(@)|u(y))=(z|y);

(iii) w transforme une (toute) b.o.n. de E en une b.o.n de E;

(iv) Mat (u) dans une (toute) b.o.n. de E est une matrice orthogonale;

(v) uou=Idg.

.

Remarque 3.2. B Si u € O(FE) alors det(u) = +1.

-

Définition 3.5. isométrie vectorielle directe, indirecte

1. On dit que u € L(E) est une isométrie positive ou directe si u € O(F) et det(u) = 1. On note SO(E)

ou O*(E) I'ensemble des isométries positives!. | SO(F) def {u e O(F), det(u) = 1} .

2. On dit que u € L(F) est une isométrie négative ou indirecte si u € O(F) et det(u) = —1. On note O~ (F)
Pensemble des isométries négatives. | O™ (FE) det {u e O(FE), det(u) = —1} :

1. Les éléments de SO(F) sont appelés aussi des rotations de E.

L

[ Proposition 3.4. structure de SO(FE)
L’ensemble SO(E) est un sous-groupe ! de (gﬁ(E), 0) appelé groupe spécial orthogonal.

1. Attention, ensemble O~ (F) n’est pas un groupe : Idg ¢ O™ (E).

( Théoreme 3.4. caractérisation des isométries positives
Soit E un espace euclidien orienté et u € L(E).

u e SO(E) si, et seulement si, u transforme une (toute) b.o.n.d. de E en une b.o.n.d. de E.

Remarque 3.3. B Soit F un espace euclidien orienté et u € L(E).
e ueSO(E) si, et seulement si, u transforme une (toute) b.o.n. de E en une b.o.n. de E de méme orientation.

e ueO (FE) si, et seulement si, u transforme une (toute) b.o.n. de E en une b.o.n. de E d’orientation opposé.
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Isométries vectorielles en dimension 2
Le couple (E, (. |.)) désigne un espace euclidien orienté de dimension 2.

( Proposition 3.5. description de O2(R), SO3(R), O3 (R)

-b b
1. 02(R):{(Z a)’ (Z —a)’ (a,b)eR2 tel que a2+b2:1}.

6 -sind 6 sind
2. | SO4(R) = {R(Q) = (COS S ) avec HER} et |O5(R)= {(COS S ) avec OGR} .

sinf  cos sinf - cos

.

Remarque 3.4. m L’application R : (R, +) — (S(’)g (R), ><) est un morphisme de groupes surjectif appelé
0 —  R(0)
le morphisme canonique de R sur SO2(R) de noyau 27Z. Ainsi SO2(R) est un groupe commutatif.

( Théoreme 3.5. nature des isométries positives
Soit u € SO(FE).

1. 1l existe un unique 6 € |-m, 7] tel que pour toute b.o.n.d. B

de E :| Mat g(u) = R(#) | On dit que u est la rotation vectorielle

d’angle 6 et on note u = Roty. &
S o ~
2. Soit (i, j ) une b.o.n.d. de E.
OE X

- - o, - L -
Rotg( i) =cosf. i +sinf. 5 et Roty(j)=—sinb. i +cosf.j | E

Rotg(x)

L

Remarque 3.5. @ SO(F) est un groupe commutatif (ici £ est un plan euclidien).

( Corollaire 3.1. classification des isométries d’un plan euclidien
Dans un plan euclidien F, toute isométrie est soit une réflexion, soit une rotation.

.

[ Théoreme 3.6. les réflexions engendrent SO(FE)

1. Toute rotation est la composée de deux réflexions.

2. Plus précisément, si 7 € SO(E) et s € O (F), alors il existe s; € O~ (E) unique tel que! [r=510s|.

1. De méme, il existe s2 € O™ (F) unique tel que r = s 0 ss.

.

n Réduction des isométries vectorielles

Réduction des isométries vectorielles

Le couple (E, (. |.)) désigne un espace euclidien de dimension n > 1.

( Théoreme 4.1. sous-espaces stables par une isométrie, spectre
1. Siue O(F) et F un sev de E stable par u alors F* est stable par u.

2. SiueO(F) alors Sp (u) c { -1, 1} et les sous-espaces ker(u —Idg) et ker(u + Idg) sont orthogonaux.

.

{ Théoreme 4.2. réduction d’une isométrie dans une b.o.n

Soit u € O(E). 1l existe une b.o.n. B de E telle que : | Mat g(u) = diag (L,, I, R(61),..., R(6;))

avec 01,...,0, €R et p,q,r €N tels que p:dim(ker(u—IdE)), q:dim(ker(u+IdE)) et p+q+2r=n.

N
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Remarque 4.1. ® Le groupe SO(E) n’est pas commutatif pour dim(F) > 3.

Théoreme 4.3. réduction d’'une matrice orthogonale

Soit A € On(R). 11 existe P € O, (R) telle que : | A= PRPT ou R =diag(L,,~1s, R(61),...,R(6,))
avec 01,...,0,€R et p,q,7eN tels que p+q+2r=n.

Isométries vectorielles en dimension 3
Soit F un espace euclidien orienté de dimension 3.

[ Proposition 4.1. rotation de I'’espace

Soit f e SO(E) \ {IdE} (rotation autre que 'identité). e

1 1eSp(/). ot (@)
0
A

2. f peut étre représentée dans une b.o.n. par la matrice

— //
x ‘\_>
1 0 0 Y4

0 cosf -sinf|, 0ecR\27Z.

0 sinf cos6

~

Roto(b)

!

On dit que f est la rotation d’axe dirigée et orienté par

U et d’angle 6. On la note Rot 4.
P=D*

.

Remarque 4.2 (Propriétés de Rot ).

m Pour tout 6,0 € R, | Roty 4 = Roty; o <= 0 =0"[27] | et | Roty 4 o Rotg 5 = Rot 4 0 Rot5 g = Rotg g, |

m Pour tout 6 € R, Rot%}ﬁ = Rotﬂ»,_@ et Rotﬁﬁ = Rot_ﬂ:_e .

B Endomorphismes autoadjoints d'un espace euclidien

Le couple (E, (. |.)) désigne un espace euclidien de dimension n > 1.

Endomorphismes autoadjoints

( Définition 5.1. endomorphisme autoadjoint

On dit que u € L(F) est autoadjoint ou symétrique si | u* =u |

On note .(E) 'ensemble des endomorphismes autoadjoints de E. | . (FE) o {u eL(E), u"= u} .

.

( Théoréme 5.1. caractérisation des endomorphismes autoadjoints

Soit u € L(E). On a équivalence entre :
(i) we S (E);
(i) Vo,ye B, (u(@)]y)=(z|u());

(iii) Mat (u) dans une (toute) b.o.n. de E est une matrice symétrique.

L

1
Exemple 5.1. ®m Soit F = R, [X] muni du produit scalaire (P | Q) = f P(t)Q(t)dt et ¢ 'endomorphisme de FE
-1
définie, pour tout P € E, par ¢(P) = ((X* - l)P’),.
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e Pour tout P,Q € F, on a :

(e(P)1@)= [ (- DP@)ema=[w-nPmwen] - [ ¢ -nPoe
=0
1 !/
--[@-DQWP®] + [ (F-DQ®) Pt = (P|#(Q)
=0

Dot ¢ € 7 (E).

Corollaire 5.1. structure de . (E)
) . - ) n(n+1)
S (F) est un sev de L(F) isomorphe a S,,(R). En particulier | dim . (F) = — |
Réduction des endomorphismes autoadjoints
( Théoréme 5.2. stabilité de I'orthogonal d’un sev stable

Siue S(F) et F un sev de F stable par u alors F* est stable par u et on a : up € S(F), up. € S (F*1).

[ Proposition 5.1. propriétés
Siu e ./(F) alors le polynome caractéristique x,, est scindé sur R et les sous-espaces propres Ej(u) et E,(u)

sont orthogonaux pour A # pu.

.

( Théoreme 5.3. théoréme spectral (version vectorielle)

Soit u € L(E). On a équivalence entre :

(i) ue S(E);
(i) E= & E(u).
AeSp (u)

(iii) u est diagonalisable dans une b.o.n. de F;

.

( Théoreme 5.4. théoréme spectral (version matricielle)

A e S, (R) si, et seulement si, il existe P € O, (R) et D € M, (R) diagonale telles que | A= PDPT |.

.

-1 1 1
Exemple 5.2. m Soit A=| 1 -1 1 |. Déterminer P € O,(R) et D € M, (R) diagonale telle que A= PDPT.
1 1 -1
0
e xa(X)=(X-1)(X+2)2 Ona E_3(A)=Vect|| 0 |,] 1
-1 -1
1
e Sans calcul, on peut affirmer que E1(A) est une droite normale ! au plan E_5(A): E1(A) = Vect| 1 |.
1
1 ) -1
e On obtient une b.o.n. du plan F_3(A) en considérant les vecteurs e; = —| 0 | et ea = —| 2
P 2(A) 1= 5 1 2= % 1

1. un vecteur normal au plan est le produit vectoriel de deux vecteurs qui engendrent ce plan.
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1
¢ On obtient une b.o.n. de la droite F1(A) avec le vecteur e3 = — | 1|.
V3 1
e Les vecteurs eq, eg, e3 déterminent alors les colonnes d’une matrice de passage orthogonale P convenable
) V3 -1 V2 -2 0 0
A=PDP" avec P=—| 0 2 V2| e D=0 -2 0ol
Ve -3 -1 V2 0 0 1

7

1
Remarque 5.1. B La matrice A = ( ] 1) € M3(C) est symétrique non diagonalisable car nilpotente (A% = Os).
i

Endomorphismes autoadjoints positifs, définis positifs

( Définition 5.2. endomorphisme autoadjoint positif, défini positif

Soit u € ./ (F).

1. On dit que u est positif si |Vxe E, (u(x) | x) >0 On note ."(FE) l'ensemble des endomorphismes

autoadjoints positifs de FE.

2. On dit que u est défini positif si| Vx e E {OE}, (u(z) |z) >0 On note .#**(E) I'ensemble des endo-

morphismes autoadjoints définis positifs de F.

.

( Théoréeme 5.5. caractérisation spectrale

Soit ue S(FE). Ona|ue S (F) < Sp(u)cR"| et |ue S (F) < Sp(u)cR"™|

Exemple 5.3. m L’endomorphisme ¢ (exemple ci-dessus) de E = R, [X] définie par ¢(P) = ((X? - l)P'), vérifie :
o pe.7(E). Deplus, 9(1) =0, p(X)=2X et o(X*)=k(k+1)X*-Ek(k-1)X*2 pour 2<k <n.
e La matrice de ¢ dans la base canonique de FE est triangulaire supérieure et Sp (¢) = {k(k +1), ke][0, n]]}
Ainsi p € S(F).
[ Définition 5.3. matrice symétrique positive, définie positive
Soit A € S,(R).
1. On dit que A est positive si| VX e M, 1(R), XTAX >0 [ On note .7, (R) I'ensemble des matrices symé-

triques positives d’ordre n.

2. On dit que A est définie positive si| VX € My, 1(R)\{O,1}, XTAX >0| On note .#;*(R) I'ensemble

des matrices symétriques définies positives d’ordre n.

L

( Théoréeme 5.6. caractérisation spectrale

Soit AeS,(R).OnalAe S (R) — Sp(A)cR*| et |Ae S (R) — Sp(A)cR*™|

Remarque 5.2. m *"(E) = S*(E)nGL(E) et Y (R)=7(R)nGL,(R).
m Soit B une b.o.n. de E. ue S*(E) <= Matp(u) € ZF(R) et ue S (F) < Matg(u) € 7" (R).
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