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Dans ce chapitre et sauf mentionné, E désigne un R-espace vectoriel.

1 Rappels et compléments sur les espaces préhilbertiens réels

Le couple (E, (. ∣ .)) désigne un espace préhilbertien réel et F un sous-espace vectoriel de E de dimension finie.

Définition 1.1. projection orthogonale

On appelle projection orthogonale sur F , la projection pF

sur F parallèlement à F ⊥. ●

x

F

0E pF (x)

F ⊥

Théorème 1.1. expression du projeté orthogonal dans une b.o.n

Soit (e1, . . . , ep) une b.o.n. de F . ∀x ∈ E, pF (x) =
p

∑
i=1
(ei ∣ x)ei .

Théorème 1.2.

Soit x ∈ E. ∀y ∈ F, ∥x − y∥ ≥ ∥x − pF (x)∥ avec égalité si, et seulement si, y = pF (x).
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https://supspé.com 2 FORMES LINÉAIRES ET ADJOINT

Corollaire 1.1. la distance d’un vecteur à un sev est atteinte en son projeté orthogonal

Soit x ∈ E.

d(x, F ) =min
y∈F
∥x − y∥ = ∥x − pF (x)∥ =

√
∥x∥2 − ∥pF (x)∥2 . ●

d(x, F )

x

F

0E
pF (x)

Théorème 1.3. inégalité de Bessel
Soit (en)n∈N une suite orthonormale de vecteurs de E.
Pour tout x ∈ E, la suite ((x ∣ en))n∈N est de carré sommable et ∑

n∈N
(x ∣ en)2 ≤ ∥x∥2 .

2 Formes linéaires et adjoint

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Formes linéaires d’un espace euclidien

Soit a ∈ E. L’application φa ∶ E Ð→ R
x z→ (a ∣ x)

est une forme linéaire sur E.

Théorème 2.1. représentation des formes linéaires dans un espace euclidien

L’application Φ ∶ E Ð→ L(E,R)
a z→ φa

est un isomorphisme d’espaces vectoriels appelé l’isomorphisme

canonique de E vers L(E,R). En particulier, ∀φ ∈ L(E,R), ∃! a ∈ E, ∀x ∈ E, φ(x) = (a ∣ x) .

Adjoint d’un endomorphisme

Proposition 2.1. existence de l’adjoint dans un espace euclidien

Soit u ∈ L(E). Il existe v ∈ L(E) unique tel que ∀(x, y) ∈ E2, (u(x) ∣ y) = (x ∣ v(y)) . L’endomorphisme v

est appelé l’adjoint de u. On le note u⋆.

Exemple 2.1. ∎ L’espace Mn(R) est muni de son produit scalaire canonique. Soit A ∈ Mn(R) et uA l’endomor-
phisme de Mn(R) définie par uA(X) =XA. Pour tout X, Y ∈ Mn(R), on a :

(uA(X) ∣ Y ) = Tr ((XA)⊺Y ) = Tr (A⊺X⊺Y ) = Tr (X⊺Y A⊺) = (X ∣ Y A⊺) = (X ∣ uA⊺(Y )).

D’où u⋆A = uA⊺ .

Proposition 2.2. matrice de l’adjoint dans une b.o.n

Soit u ∈ L(E) et B une b.o.n. de E. Si A =Mat B(u) alors A⊺ =Mat B(u⋆) .

Proposition 2.3. propriétés
Soit u, v ∈ L(E) et (λ, µ) ∈ R2.

1. (λu + µv)⋆ = λu⋆ + µv⋆.

2. (u ○ v)⋆ = v⋆ ○ u⋆.

3. (u⋆)⋆ = u.

4. rg (u⋆) = rg (u).

5. ker(u⋆) = Im (u)⊥.

6. Im (u⋆) = ker(u)⊥.
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Théorème 2.2. sous-espaces stables
Soit u ∈ L(E). Si F est un sev de E stable par u alors F ⊥ est stable par u⋆.

3 Matrices orthogonales, isométries vectorielles

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Matrices orthogonales

Définition 3.1. matrice orthogonale
On dit que A ∈ Mn(R) est orthogonale si A⊺A = In. On note On(R) l’ensemble des matrices orthogonales

d’ordre n. On(R)
déf= {A ∈ Mn(R), A⊺A = In} .

Remarque 3.1. ∎ A ∈ On(R) ⇐⇒ A ∈ GLn(R) et A−1 = A⊺.

∎ Si A ∈ On(R) alors det(A) = ±1.

Proposition 3.1. structure de On(R)

L’ensemble On(R) est un sous-groupe de (GLn(R),×) appelé groupe orthogonal d’ordre n.

Théorème 3.1. caractérisation par la famille des lignes, des colonnes
Soit A ∈ Mn(R). On a équivalence entre :

(i) A ∈ On(R) ;

(ii) Les vecteurs colonnes de A forment une famille orthonormale 1 de Mn,1(R) ;

(iii) Les vecteurs lignes de A forment une famille orthonormale de M1,n(R).

1. Pour le produit scalaire canonique de Mn,1(R) : (X ∣ Y ) =X⊺Y .

Exemple 3.1. ∎ M = 1
3

⎛
⎜⎜
⎝

1 2 2
2 1 −2
−2 2 −1

⎞
⎟⎟
⎠

est orthogonale : ses colonnes sont unitaires et deux à deux orthogonales.

Théorème 3.2. matrice de passage entre deux b.o.n
Soit B = (e1, . . . , en) une b.o.n de E et B′ = (e′1, . . . , e′n) une famille de vecteurs de E. On a équivalence entre :

(i) B′ est une b.o.n. de E ; (ii) P =Mat B(B′) ∈ On(R).

De plus, si tel est le cas, Mat B′(B) = P ⊺ .

Définition 3.2. matrices orthogonalement semblables
On dit que A et B deMn(R) sont orthogonalement semblables s’il existe P ∈ On(R) telle que B = P ⊺AP .

Définition 3.3. matrice orthogonale positive, négative

1. On dit que A ∈ Mn(R) est orthogonale positive ou directe si A ∈ On(R) et det(A) = 1. On note SOn(R)

ou O+n(R) l’ensemble des matrices orthogonales positives. SOn(R)
déf= {A ∈ On(R), det(A) = 1} .

2. On dit que A ∈ Mn(R) est orthogonale négative ou indirecte si A ∈ On(R) et det(A) = −1. On note

O−n(R) l’ensemble des matrices orthogonales négatives. O−n(R)
déf= {A ∈ On(R), det(A) = −1} .
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Proposition 3.2. structure de SOn(R)

L’ensemble SOn(R) est un sous-groupe 1 de (GLn(R),×) appelé groupe spécial orthogonal d’ordre n.

1. Attention, l’ensemble O−n(R) n’est pas un groupe : In ∉ O
−
n(R).

Proposition 3.3.
Soit B et B′ deux b.o.n.d. (base orthonormale directe) de l’espace euclidien orienté E.

∀(u1, . . . , un) ∈ En, detB(u1, . . . , un) = detB′(u1, . . . , un) .

Isométries vectorielles

Définition 3.4. isométrie vectorielle
On dit que u ∈ L(E) est une isométrie vectorielle ou automorphisme orthogonal de E si u conserve la
norme : ∀x ∈ E, ∥u(x)∥ = ∥x∥ .

On note O(E) l’ensemble des isométries vectorielles de E. O(E) déf= {u ∈ L(E), ∀x ∈ E, ∥u(x)∥ = ∥x∥} .

Théorème 3.3. caractérisation des isométries vectorielles
Soit u ∈ L(E). On a équivalence entre :

(i) u ∈ O(E) ;

(ii) ∀(x, y) ∈ E2, (u(x) ∣ u(y)) = (x ∣ y) ;

(iii) u transforme une (toute) b.o.n. de E en une b.o.n de E ;

(iv) Mat (u) dans une (toute) b.o.n. de E est une matrice orthogonale ;

(v) u⋆ ○ u = IdE .

Remarque 3.2. ∎ Si u ∈ O(E) alors det(u) = ±1.

Définition 3.5. isométrie vectorielle directe, indirecte
1. On dit que u ∈ L(E) est une isométrie positive ou directe si u ∈ O(E) et det(u) = 1. On note SO(E)

ou O+(E) l’ensemble des isométries positives 1. SO(E) déf= {u ∈ O(E), det(u) = 1} .

2. On dit que u ∈ L(E) est une isométrie négative ou indirecte si u ∈ O(E) et det(u) = −1. On note O−(E)

l’ensemble des isométries négatives. O−(E) déf= {u ∈ O(E), det(u) = −1} .

1. Les éléments de SO(E) sont appelés aussi des rotations de E.

Proposition 3.4. structure de SO(E)

L’ensemble SO(E) est un sous-groupe 1 de (GL(E), ○) appelé groupe spécial orthogonal.

1. Attention, l’ensemble O−(E) n’est pas un groupe : IdE ∉ O
−
(E).

Théorème 3.4. caractérisation des isométries positives
Soit E un espace euclidien orienté et u ∈ L(E).
u ∈ SO(E) si, et seulement si, u transforme une (toute) b.o.n.d. de E en une b.o.n.d. de E.

Remarque 3.3. ∎ Soit E un espace euclidien orienté et u ∈ L(E).

• u ∈ SO(E) si, et seulement si, u transforme une (toute) b.o.n. de E en une b.o.n. de E de même orientation.

• u ∈ O−(E) si, et seulement si, u transforme une (toute) b.o.n. de E en une b.o.n. de E d’orientation opposé.
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Isométries vectorielles en dimension 2

Le couple (E, (. ∣ .)) désigne un espace euclidien orienté de dimension 2.

Proposition 3.5. description de O2(R), SO2(R), O−2 (R)

1. O2(R) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

a −b

b a

⎞
⎠

,
⎛
⎝

a b

b −a

⎞
⎠

, (a, b) ∈ R2 tel que a2 + b2 = 1
⎫⎪⎪⎬⎪⎪⎭

.

2. SO2(R) =
⎧⎪⎪⎨⎪⎪⎩

R(θ) =
⎛
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎠

avec θ ∈ R
⎫⎪⎪⎬⎪⎪⎭

et O−2 (R) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

cos θ sin θ

sin θ − cos θ

⎞
⎠

avec θ ∈ R
⎫⎪⎪⎬⎪⎪⎭

.

Remarque 3.4. ∎ L’application R ∶ (R,+) Ð→ (SO2(R),×)
θ z→ R(θ)

est un morphisme de groupes surjectif appelé

le morphisme canonique de R sur SO2(R) de noyau 2πZ. Ainsi SO2(R) est un groupe commutatif .

Théorème 3.5. nature des isométries positives

Soit u ∈ SO(E).

1. Il existe un unique θ ∈ ]−π, π] tel que pour toute b.o.n.d. B
de E : Mat B(u) = R(θ) . On dit que u est la rotation vectorielle

d’angle θ et on note u = Rotθ.

2. Soit (Ð→i ,
Ð→
j ) une b.o.n.d. de E.

Rotθ(
Ð→
i ) = cos θ.

Ð→
i + sin θ.

Ð→
j et Rotθ(

Ð→
j ) = − sin θ.

Ð→
i + cos θ.

Ð→
j .

●0E x

Rotθ(x)

θ

E

+

Remarque 3.5. ∎ SO(E) est un groupe commutatif (ici E est un plan euclidien).

Corollaire 3.1. classification des isométries d’un plan euclidien
Dans un plan euclidien E, toute isométrie est soit une réflexion, soit une rotation.

Théorème 3.6. les réflexions engendrent SO(E)

1. Toute rotation est la composée de deux réflexions.

2. Plus précisément, si r ∈ SO(E) et s ∈ O−(E), alors il existe s1 ∈ O−(E) unique tel que 1 r = s1 ○ s .

1. De même, il existe s2 ∈ O
−
(E) unique tel que r = s ○ s2.

4 Réduction des isométries vectorielles

Réduction des isométries vectorielles

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Théorème 4.1. sous-espaces stables par une isométrie, spectre

1. Si u ∈ O(E) et F un sev de E stable par u alors F ⊥ est stable par u.

2. Si u ∈ O(E) alors Sp (u) ⊂ { − 1, 1} et les sous-espaces ker(u − IdE) et ker(u + IdE) sont orthogonaux.

Théorème 4.2. réduction d’une isométrie dans une b.o.n

Soit u ∈ O(E). Il existe une b.o.n. B de E telle que : Mat B(u) = diag (Ip,−Iq, R(θ1), . . . , R(θr))

avec θ1, . . . , θr ∈ R et p, q, r ∈ N tels que p = dim(ker(u − IdE)), q = dim(ker(u + IdE)) et p + q + 2r = n.
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Remarque 4.1. ∎ Le groupe SO(E) n’est pas commutatif pour dim(E) ≥ 3.

Théorème 4.3. réduction d’une matrice orthogonale

Soit A ∈ On(R). Il existe P ∈ On(R) telle que : A = PRP ⊺ où R = diag (Ip,−Iq, R(θ1), . . . , R(θr))
avec θ1, . . . , θr ∈ R et p, q, r ∈ N tels que p + q + 2r = n.

Isométries vectorielles en dimension 3

Soit E un espace euclidien orienté de dimension 3.

Proposition 4.1. rotation de l’espace

Soit f ∈ SO(E) ∖ {IdE} (rotation autre que l’identité).

1. 1 ∈ Sp (f).

2. f peut être représentée dans une b.o.n. par la matrice

⎛
⎜⎜
⎝

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞
⎟⎟
⎠

, θ ∈ R ∖ 2πZ.

On dit que f est la rotation d’axe dirigée et orienté par
Ð→u et d’angle θ. On la note RotÐ→u ,θ.

●

Ð→
b

Rotθ(
Ð→
b )

D

Ð→u

Ð→a

Ð→x

RotÐ→u ,θ(
Ð→x )

θ

θ

P =D⊥

Ð→0

+

Remarque 4.2 (Propriétés de RotÐ→u ,θ).

∎ Pour tout θ, θ′ ∈ R, RotÐ→u ,θ = RotÐ→u ,θ′ ⇐⇒ θ ≡ θ′ [2π] et RotÐ→u ,θ ○RotÐ→u ,θ′ = RotÐ→u ,θ′ ○RotÐ→u ,θ = RotÐ→u ,θ+θ′ .

∎ Pour tout θ ∈ R, Rot−1Ð→u ,θ
= RotÐ→u ,−θ et RotÐ→u ,θ = Rot−Ð→u ,−θ .

5 Endomorphismes autoadjoints d’un espace euclidien

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Endomorphismes autoadjoints

Définition 5.1. endomorphisme autoadjoint

On dit que u ∈ L(E) est autoadjoint ou symétrique si u⋆ = u .

On note S (E) l’ensemble des endomorphismes autoadjoints de E. S (E) déf= {u ∈ L(E), u⋆ = u} .

Théorème 5.1. caractérisation des endomorphismes autoadjoints
Soit u ∈ L(E). On a équivalence entre :

(i) u ∈S (E) ;

(ii) ∀x, y ∈ E, (u(x) ∣ y) = (x ∣ u(y)) ;

(iii) Mat (u) dans une (toute) b.o.n. de E est une matrice symétrique.

Exemple 5.1. ∎ Soit E = Rn [X] muni du produit scalaire (P ∣ Q) = ∫
1

−1
P (t)Q(t)dt et φ l’endomorphisme de E

définie, pour tout P ∈ E, par φ(P ) = ((X2 − 1)P ′)′.
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• Pour tout P, Q ∈ E, on a :

(φ(P ) ∣ Q) = ∫
1

−1
((t2 − 1)P ′(t))′Q(t)dt = [(t2 − 1)P ′(t)Q(t)]

1

−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

−∫
1

−1
(t2 − 1)P ′(t)Q′(t)dt

= −[(t2 − 1)Q′(t)P (t)]
1

−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+∫
1

−1
((t2 − 1)Q′(t))′P (t)dt = (P ∣ φ(Q))

D’où φ ∈S (E).

Corollaire 5.1. structure de S (E)

S (E) est un sev de L(E) isomorphe à Sn(R). En particulier dim S (E) = n(n + 1)
2

.

Réduction des endomorphismes autoadjoints

Théorème 5.2. stabilité de l’orthogonal d’un sev stable
Si u ∈S (E) et F un sev de E stable par u alors F ⊥ est stable par u et on a : uF ∈S (F ), uF ⊥ ∈S (F ⊥).

Proposition 5.1. propriétés
Si u ∈S (E) alors le polynôme caractéristique χu est scindé sur R et les sous-espaces propres Eλ(u) et Eµ(u)
sont orthogonaux pour λ ≠ µ.

Théorème 5.3. théorème spectral (version vectorielle)
Soit u ∈ L(E). On a équivalence entre :

(i) u ∈S (E) ;

(ii) E =
⊥
⊕

λ∈Sp (u)
Eλ(u).

(iii) u est diagonalisable dans une b.o.n. de E ;

Théorème 5.4. théorème spectral (version matricielle)

A ∈ Sn(R) si, et seulement si, il existe P ∈ On(R) et D ∈ Mn(R) diagonale telles que A = PDP ⊺ .

Exemple 5.2. ∎ Soit A =
⎛
⎜⎜
⎝

−1 1 1
1 −1 1
1 1 −1

⎞
⎟⎟
⎠

. Déterminer P ∈ On(R) et D ∈ Mn(R) diagonale telle que A = PDP ⊺.

• χA(X) = (X − 1)(X + 2)2. On a E−2(A) = Vect
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1
0
−1

⎞
⎟⎟
⎠

,

⎛
⎜⎜
⎝

0
1
−1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

.

• Sans calcul, on peut affirmer que E1(A) est une droite normale 1 au plan E−2(A) ∶ E1(A) = Vect
⎛
⎜⎜
⎝

1
1
1

⎞
⎟⎟
⎠

.

• On obtient une b.o.n. du plan E−2(A) en considérant les vecteurs e1 =
1√
2

⎛
⎜⎜
⎝

1
0
−1

⎞
⎟⎟
⎠

et e2 =
1√
6

⎛
⎜⎜
⎝

−1
2
−1

⎞
⎟⎟
⎠

.

1. un vecteur normal au plan est le produit vectoriel de deux vecteurs qui engendrent ce plan.
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• On obtient une b.o.n. de la droite E1(A) avec le vecteur e3 =
1√
3

⎛
⎜⎜
⎝

1
1
1

⎞
⎟⎟
⎠

.

• Les vecteurs e1, e2, e3 déterminent alors les colonnes d’une matrice de passage orthogonale P convenable

A = PDP ⊺ avec P = 1√
6

⎛
⎜⎜
⎝

√
3 −1

√
2

0 2
√

2
−
√

3 −1
√

2

⎞
⎟⎟
⎠

et D =
⎛
⎜⎜
⎝

−2 0 0
0 −2 0
0 0 1

⎞
⎟⎟
⎠

.

Remarque 5.1. ∎ La matrice A =
⎛
⎝

1 i

i −1
⎞
⎠
∈M2(C) est symétrique non diagonalisable car nilpotente (A2 = O2).

Endomorphismes autoadjoints positifs, définis positifs

Définition 5.2. endomorphisme autoadjoint positif, défini positif
Soit u ∈S (E).

1. On dit que u est positif si ∀x ∈ E, (u(x) ∣ x) ≥ 0 . On note S +(E) l’ensemble des endomorphismes
autoadjoints positifs de E.

2. On dit que u est défini positif si ∀x ∈ E ∖ {0E}, (u(x) ∣ x) > 0 . On note S ++(E) l’ensemble des endo-
morphismes autoadjoints définis positifs de E.

Théorème 5.5. caractérisation spectrale

Soit u ∈S (E). On a u ∈S +(E) ⇐⇒ Sp (u) ⊂ R+ et u ∈S ++(E) ⇐⇒ Sp (u) ⊂ R+∗ .

Exemple 5.3. ∎ L’endomorphisme φ (exemple ci-dessus) de E = Rn [X] définie par φ(P ) = ((X2 − 1)P ′)′ vérifie :

• φ ∈S (E). De plus, φ(1) = 0, φ(X) = 2X et φ(Xk) = k(k + 1)Xk − k(k − 1)Xk−2 pour 2 ≤ k ≤ n.

• La matrice de φ dans la base canonique de E est triangulaire supérieure et Sp (φ) = {k(k + 1), k ∈ [[0, n]]}.

Ainsi φ ∈S +(E).

Définition 5.3. matrice symétrique positive, définie positive
Soit A ∈ Sn(R).

1. On dit que A est positive si ∀X ∈ Mn,1(R), X⊺AX ≥ 0 . On note S +
n (R) l’ensemble des matrices symé-

triques positives d’ordre n.

2. On dit que A est définie positive si ∀X ∈ Mn,1(R) ∖ {On,1}, X⊺AX > 0 . On note S ++
n (R) l’ensemble

des matrices symétriques définies positives d’ordre n.

Théorème 5.6. caractérisation spectrale

Soit A ∈ Sn(R). On a A ∈S +
n (R) ⇐⇒ Sp (A) ⊂ R+ et A ∈S ++

n (R) ⇐⇒ Sp (A) ⊂ R+∗ .

Remarque 5.2. ∎ S ++(E) =S +(E) ∩ GL(E) et S ++
n (R) =S +

n (R) ∩ GLn(R).

∎ Soit B une b.o.n. de E. u ∈S +(E) ⇐⇒ Mat B(u) ∈S +
n (R) et u ∈S ++(E) ⇐⇒ Mat B(u) ∈S ++

n (R).
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