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Dans ce chapitre et sauf mentionné, E désigne un R-espace vectoriel.

Produit scalaire, norme euclidienne

( Définition 1.1. produit scalaire, espace préhilbertien réel

On appelle produit scalaire sur E toute application ¢ : E x E — R vérifiant ! :

1. ¢ bilinéaire : V(z,y,2) € B3, VA e R, 2. ¢ symétrique : V(z,y) € 2, o(z,y) = o(y,x).
a. p(x+ Ay, 2) =¢(x,2) + Ap(y, 2). 3. ¢ positive : Ve e E, o(z,z) > 0.
b. o(z,y+A2) = p(x,y) + Ap(z, 2). 4. ¢ définie : Ve e B, p(z,2)=0 = z=0.

On dit alors que le couple (E (- )) est appelé un espace préhilbertien réel.

1. On dit qu’un produit scalaire est une forme bilinéaire symétrique définie positive.

L

( Définition 1.2. norme euclidienne, distance euclidienne

1. On appelle norme euclidienne sur E V'application ||.| : E — R* définie par | Vz € E, |z| =+/(z|z) |

2. On appelle distance séparant deux vecteurs z et y de F le réel | d(x,y) = |z —y| |

( Proposition 1.1. régles de calcul
Soit (x,y) € E2.

L e +yl? = le|® +2(2 | y) + [yl | 2. Je-yl® = lel® -2(2 | y) + [yl* |3 (@-y|o+y) =]l -yl

.



https://supspé.com 2 ORTHOGONALITE

( Proposition 1.2. identités remarquables
L V(z,y) € B2, |lz+y|*+ |z -yl|*=2(|=|*+ |y[|?)- (identité du parallélogramme)

1
2. ¥(2,y) € B, (2]y) = 5 (o +yl - ]2 - [yl?). (identité du polarisation)

L

( Théoreme 1.1. inégalité de Cauchy-Schwartz

V(z,y) € B2, |(z|y)|< |z||y] | avec égalité si, et seulement si, 2 et y sont liés.

L

( Théoreme 1.2. inégalité triangulaire

V(z,y) € E%, |z +y|< |z| + |y| | avec égalité si, et seulement si, = et y sont liés et de produit scalaire positif.

Orthogonalité

Le couple (E, (. |.)) désigne un espace préhilbertien réel.

Vecteurs orthogonaux

[ Définition 2.1. vecteurs orthogonaux, famille orthogonale, famille orthonormale

1. Deux vecteurs x et y de E sont dits orthogonauz si (z|y) = 0.

2. On dit qu’une famille (e;);e; de vecteurs de E est orthogonale si|Vi,jel, i+j = (ej|e;)=0]

3. On dit qu'une famille (e;);e; de vecteurs de E est orthonormale si'|Vi,jel, (e;| ej)=10ij |

1. &;,; est le symbol de Kronecker : §; ; =1 sii=j et O sinon.

.

[ Théoreme 2.1. théoréme de Pythagore

1. Si z et y sont deux vecteurs de E, alors | x et y sont orthogonaux <= |z +y|? = |z|?+|y|? |

2. Si (€;)1<i<n est une famille orthogonale de vecteurs de E alors !

2 n
= ZH%‘HZ -
=1

n
e
i=1

1. La réciproque est fausse pour n > 3 : considérons dans R? les vecteurs e; = (1,0), ez = (0,1) et ez = (1,-1).

( Corollaire 2.1. liberté d’une famille orthonormale
Toute famille orthogonale ne comportant pas le vecteur nul est libre. En particulier, toute famille orthonormale

est libre.

.

{ Théoreme 2.2. orthonormalisation de Gram-Schmidt
Soit (uq,...,uy) une famille libre de vecteurs de E. Il existe une unique famille orthonormale (eq,...,e;,)

vérifiant : Vect(ul, e ,uk) = Vect(el, e ,ek) et (ex|ur)>0 pourtout kel[[l,n]]|

On dit que la famille (eq,...,e,) est la famille orthonormalisée de (uy,...,u,) par le procédé de Schmidt.

.

Remarque 2.1 (Algorithme d’orthonormalisation de Gram-Schmidt).

k-1
U — Z(uk | ei)e;
i=1

k-1

up = Y (ug | €)e;

i=1

m La famille (eq,...,e,) est donnée par | e; = Hu—ln et ep=
Uy

pour ke [[2,n]] |
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Orthogonal d’une partie

( Définition 2.2. orthogonal d’une partie

On appelle orthogonal d’une partie A de E, 'ensemble noté A* défini par | A* = {x €eE, VacA, (a|x)-= 0} !

L

( Proposition 2.1. propriétés de I'orthogonal d’une partie
Soit A et B deux parties de E.

1. A* est un sev de E. 2. AcB = B*c A, [3. At =Vect(A)". | 4. Ac (AL)l.

L

[ Définition 2.3. sous-espaces vectoriels orthogonaux

Deux sous-espaces vectoriels F' et G de E sont dits orthogonaux si | V(z,y) e FxG, (z|y)=0|

L

Remarque 2.2. B Si F' et GG sont orthogonaux, alors FnG = {OE}

( Théoreme 2.3. deux a deux orthogonaux vs somme directe
Si Fi,..., Fj sont des sev de E deux a deux orthogonaux alors ceux-ci sont en somme directe.

( Définition 2.4. somme directe orthogonale
Lorsque les sev F1, ..., F} sont deux a deux orthogonaux, on dit qu’ils sont en somme directe orthogonale

1
et leur somme est notée @ Fj.
1<i<k

Espaces vectoriels euclidiens

Le couple (E, (. |.)) désigne un espace préhilbertien réel.

( Définition 3.1. espace euclidien
On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

( Définition 3.2. base orthonormale (b.o.n)
Une base orthonormale d’un espace euclidien est une famille de vecteurs qui est a la fois une base et une

famille orthonormale.

L

( Théoreme 3.1. existance d’une b.o.n dans un espace euclidien
Tout espace euclidien possede une base orthonormale.

( Théoreme 3.2. théoreme de la b.o.n incompléte
Toute famille orthonormale d’un espace euclidien peut étre complétée en une base orthonormale.

.

[ Théoreme 3.3. coordonnées d’un vecteur dans une b.o.n

n
Soit B = (e1,...,ep,) une bomnde E. |z € E, =) (& |z)e |
i=1

L

[ Théoreme 3.4. expression du produit scalaire et de la norme dans une b.o.n

n n n n
1. SiB=(e1,...,en) unebonde Eet x=Y xe;€ B, y=> yie; e E alors | (z|y) = Y iy et |z]? = > aF |
i=1 i=1 i=1 i=1

2. Si B=(eq,...,e,) une b.o.n de E et X = Matg(z), Y = Matg(y), alors | (z|y) = (XY et |z|?= ‘XX|
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n Projection orthogonale sur un sev de dimension finie

Le couple (E, (. |.)) désigne un espace préhilbertien réel.

( Théoreme 4.1. supplémentaire orthogonal
Soit F' un sous-espace vectoriel de £ de dimension finie.

1. |FeF'=E| et |F'Y=F/| Lespace F* est appelé le! supplémentaire orthogonal de F.

2. Si de plus FE est de dimension finie, alors | dim F* = dim £ — dim F |

1. Le supplémentaire orthogonal lorsqu’il existe, il est unique.

Projection orthogonale et symétrie orthogonale
Soit F' un sous-espace vectoriel de £ de dimension finie.

Définition 4.1. projection orthogonale

On appelle projection orthogonale sur F, la projection pp sur F parallelement a F*.

Remarque 4.1.

m pr est caractérisé (@) yek P v
est caractérisé par : |y = T) = ) :
pr p Y=PF r-yeF! /:
m Soit (v1,...,vp) une base de F. Alors { :
n Op ¢ pr(z)
o VzeE, pp(z)=> N avec (A1,...,\p) € RP. F i
i=1
e On calcule les \;, 1 <14 < p grace aux relations

(2 —pr(z)[vi) =0, ie[[1,p]]

( Théoreme 4.2. expression du projeté orthogonal dans une b.o.n

P
Soit (e1,...,ep) une bonde F.|Vz e E, pp(z)=> (| z)e; |

i=1
( Proposition 4.1. expression du projeté orthogonal, cas d’une droite et d’un hyperplan
. ~ _(a]x)
1. Soit a e Ex{0g} et D = Vect(a). | Vz e E, pp(z) = a2 al
a

(a|z)

o]

2. Soit H un hyperplan de vecteur normal a € E \ {OE} VeeFE, pg(x)=x-

.

[ Définition 4.2. symétrie orthogonale

On appelle symétrie orthogonale par rapport a F, la symétrie sp par rapport a F et parallelement a F*.

L

FJ_
Ty k- _ @
Remarque 4.2. B Si F' est un hyperplan H, on parle de réflexion /1:
d’hyperplan H. :
Op ¢ :
z+yeklF ‘
B sp(z) est caractérisé par : |y = sp(z) <= Y . ‘ e
r-yeF* F ‘ :
= sp(x)
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Théoreme 4.3. expression de symétrie orthogonale dans une b.o.n

2
Soit (e1,...,€p) une boomde F. | Vo e E, sp(z)=2) (e |z)e;—x |
i=1

Distance a un sous-espace vectoriel de dimension finie
Soit F' un sous-espace vectoriel de £ de dimension finie.

( Définition 4.3. distance d’un vecteur a un sev de dimension finie

Soit = € E. On appelle distance de x a F' le réel positif | d(z, F) et in£||x -y |
IS

L

[ Théoreme 4.4.

Soit e E.|VyeF, |x-y|>|z-pr(x)| |avec égalité si, et seulement si, y = pp(z).

L

( Corollaire 4.1. la distance d’un vecteur a un sev est atteinte en son projeté orthogonal

x

Soit x € E. /i T

d(z, F) =minfz - y| = |z - pr()] = V2 = pr()[? | 0z

pr(z)

.

[ Corollaire 4.2. inégalité de Bessel

Ve e B, |pr(x)| <z |

B Une sélection d’exercices

n
Exercice 5.1 : Soit F = R™ muni de son produit scalaire canonique : (x| y) = Z TiY;.
i=1
1. Montrer que la base canonique de E est orthonormale pour ce produit scalaire.

n 2 n
2. Montrer 'inégalité ci-contre en déterminant le cas d’égalité : Vo = (z1,...,z,) € E, (Z mk) <n Z xi
k=1 k=1

1 rm ; ;
Exercice 5.2 : On pose, pour P,Q e R[X], ¢(P,Q) = Py / P(eZG)Q(e’Za)dO.
™ J-7
1. Montrer que o définit un produit scalaire sur R[X].

2. Montrer que (X”)n est une b.o.n. pour ce produit scalaire.

eN

1 2
Exercice 5.3 : Soit C°([0,27]) muni de produit scalaire (f | g) = — f f(t)g(t)dt. Montrer que la famille (s,) y de
e 0 ne
C°([0,27]) définie par s, (t) =sin(nt) est orthonormale.

Exercice 5.4 : Pour A et B dans € M,, ,(R), on pose (4| B) =Tr (A™B).
1. Montrer que (.|.) définit un produit scalaire sur M, ,(R).

2. Montrer que la base canonique de M,, ,(R) est une b.o.n. pour le produit scalaire précédent.

Exercice 5.5 : On munit R? de son produit scalaire canonique. Orthonormaliser par le procédé de Schmidt la famille de

vecteurs (up,ug, us) avec uy = (1,1,0), ug = (1,0,1) et ug = (1,1,1).

Exercice 5.6 : On munit R? de son produit scalaire canonique. Déterminer une base orthonormale de R? dont les deux

premiers vecteurs appartiennent au plan P = {(m, y,2) eR3, x-2= O}.
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Exercice 5.7 : Soient E un espace euclidien, f e L(E) et A = (ai»j)1<i i<n la matrice de f dans une b.on. B = (ey,...,e,).
Justifier que a; ; = (e; | f(e;)) pour tous i et j dans [[1,n]].
n
Exercice 5.8 : Soit (e1,...,e,) une famille de vecteurs unitaires d'un espace euclidien E vérifiant : Y. (ej, | z)* = || pour
k=1

tout x € E. Montrer que (eq,...,e,) est une b.o.n. de E.

1
Exercice 5.9 : Dans ’espace CO([—I, 1] ,]R) muni de produit scalaire (f | g) = f f(#)g(t)dt, montrer que le sev des fonctions
-1

paires et le sev des fonctions impaires sont orthogonaux.

Exercice 5.10 : Soit E un espace préhilbertien réel et I',G deux sev de E. Montrer que F' et G sont orthogonaux si, et

seulement si, F' ¢ G*.

Exercice 5.11 : 1. Soit A et B deux parties d'un espace préhilbertien réel E. Montrer
a. A' est un sev de E. b. AcB = B*c A*. c. At =Vect(A)*. d. Ac (Al)l.

2. Soit F' et G deux sev de E. Montrer (F + G)* = F*NG* et (FNG)* o> F* + G*. Que devient cette inclusion si 'on

suppose que 'espace E est euclidien 7

Exercice 5.12 : Soit F' et G deux sev supplémentaires et orthogonaux d’un espace préhilbertien E. Montrer G = F'*.

Exercice 5.13 : Soit F un espace euclidien et f € L(E) telle que, pour tout (z,y) € E?, (f(x), f(y)) =(z,y).
1. Montrer que f est un automorphisme de FE.

2. Soit F' un sev de E. Montrer que f(Fl) = (f(F))l

Exercice 5.14 : 1. On muni R* de son produit scalaire canonique. Former la matrice dans la base canonique de la projection
orthogonale p sur 'espace F = {(x, y,2,t)eRY x—y-—z-t=x-2-2t= O}.
2. Calculer la distance & F' du vecteur v = (1,2,3,4).

Exercice 5.15 : On considére un espace euclidien F muni d’une b.o.n. B = (i, 4, k). Former la matrice dans B de la projection

orthogonale sur le plan P d’équation = -2y + z = 0.

Exercice 5.16 : On munit M,,(R) de son produit scalaire canonique donné par (4| B) = Tr (A"B).
1. Montrer que S,,(R)* = A, (R) et A,(R)* =S, (R).
2. Exprimer le projeté orthogonal sur S, (R) d’une matrice M de M, (R).
3. Soit H = {M e M,,(R), Tr(M)-= 0}.
a. Justifier que H est un hyperplan et déterminer un vecteur normal de H.
b. Exprimer simplement la distance & H d’une matrice M de M,,(R).

c. Soit J la matrice de M,,(R) dont tous les coefficients sont égaux & 1. Calculer ZIVIIH%HM = J|.
le

1
Exercice 5.17 : Calculer m = inf (t2 —(at + b))2dt.
(a,b)er? Jo

1
Exercice 5.18 : Soient R3[X] muni du produit scalaire (P | Q) = f P(t)Q(t)dt et F =Ry [X]. Donner 'expression du
) 0
projeté orthogonal de Q =1+ X + X2 + X2 sur F par deux méthodes différentes :
a. En utilisant I’expression du projeté orthogonal dans une b.o.n. de F'.

b. En utilisant la caractérisation du projeté orthogonal.

Exercice 5.19 : Soient (E, (.|.)) un espace euclidien de dimension n > 1, |.| la norme euclidienne associée et p un projecteur

de E. Montrer que p est un projecteur orthogonal si, et seulement si, |p(z)| < |«| pour tout = € E.

Exercice 5.20 : Soient (E, (.|.)) un espace euclidien de dimension n > 1, |.| la norme euclidienne associée et f une fonction
de E vers E vérifiant : f(0g) =0g et V (z,y) e B2, |f(2)-f(w)|=z-vy]|.

1. Montrer que | f(x)| = |z| pour tout x de E.

2. Etablir (f(2) | f(y)) = (x| y) pour tous z et y de E.

3. En introduisant une b.o.n. de E, établir que I’application f est linéaire.

6 /6 Binyze Mohamed


https://supsp%C3%A9.com

	Produit scalaire, norme euclidienne
	Orthogonalité
	Espaces vectoriels euclidiens
	Projection orthogonale sur un sev de dimension finie
	Une sélection d'exercices

