
Espaces préhilbertiens réels (rappel MPSI)

Binyze Mohamed

MP 2025-2026

Sommaire

1 Produit scalaire, norme euclidienne 1

2 Orthogonalité 2

3 Espaces vectoriels euclidiens 3

4 Projection orthogonale sur un sev de dimension finie 4

5 Une sélection d’exercices 5

Dans ce chapitre et sauf mentionné, E désigne un R-espace vectoriel.

1 Produit scalaire, norme euclidienne

Définition 1.1. produit scalaire, espace préhilbertien réel
On appelle produit scalaire sur E toute application φ ∶ E ×E Ð→ R vérifiant 1 :

1. φ bilinéaire : ∀(x, y, z) ∈ E3, ∀λ ∈ R,

a. φ(x + λy, z) = φ(x, z) + λφ(y, z).

b. φ(x, y + λz) = φ(x, y) + λφ(x, z).

2. φ symétrique : ∀(x, y) ∈ E2, φ(x, y) = φ(y, x).

3. φ positive : ∀x ∈ E, φ(x, x) ≥ 0.

4. φ définie : ∀x ∈ E, φ(x, x) = 0 Ô⇒ x = 0.

On dit alors que le couple (E, (. ∣ .)) est appelé un espace préhilbertien réel.

1. On dit qu’un produit scalaire est une forme bilinéaire symétrique définie positive.

Définition 1.2. norme euclidienne, distance euclidienne

1. On appelle norme euclidienne sur E l’application ∥.∥ ∶ E Ð→ R+ définie par ∀x ∈ E, ∥x∥ =
√
(x ∣ x) .

2. On appelle distance séparant deux vecteurs x et y de E le réel d(x, y) = ∥x − y∥ .

Proposition 1.1. règles de calcul
Soit (x, y) ∈ E2.

1. ∥x + y∥2 = ∥x∥2 + 2(x ∣ y) + ∥y∥2. 2. ∥x − y∥2 = ∥x∥2 − 2(x ∣ y) + ∥y∥2. 3. (x − y ∣ x + y) = ∥x∥2 − ∥y∥2.
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Proposition 1.2. identités remarquables

1. ∀(x, y) ∈ E2, ∥x + y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2). (identité du parallélogramme)

2. ∀(x, y) ∈ E2, (x ∣ y) = 1
2
(∥x + y∥2 − ∥x∥2 − ∥y∥2). (identité du polarisation)

Théorème 1.1. inégalité de Cauchy-Schwartz

∀(x, y) ∈ E2, ∣(x ∣ y)∣≤ ∥x∥∥y∥ avec égalité si, et seulement si, x et y sont liés.

Théorème 1.2. inégalité triangulaire

∀(x, y) ∈ E2, ∥x + y∥≤ ∥x∥ + ∥y∥ avec égalité si, et seulement si, x et y sont liés et de produit scalaire positif.

2 Orthogonalité

Le couple (E, (. ∣ .)) désigne un espace préhilbertien réel.

Vecteurs orthogonaux

Définition 2.1. vecteurs orthogonaux, famille orthogonale, famille orthonormale

1. Deux vecteurs x et y de E sont dits orthogonaux si (x ∣ y) = 0.

2. On dit qu’une famille (ei)i∈I de vecteurs de E est orthogonale si ∀i, j ∈ I, i ≠ j Ô⇒ (ei ∣ ej) = 0 .

3. On dit qu’une famille (ei)i∈I de vecteurs de E est orthonormale si 1 ∀i, j ∈ I, (ei ∣ ej) = δi,j .

1. δi,j est le symbol de Kronecker : δi,j = 1 si i = j et 0 sinon.

Théorème 2.1. théorème de Pythagore

1. Si x et y sont deux vecteurs de E, alors x et y sont orthogonaux ⇐⇒ ∥x + y∥2 = ∥x∥2 + ∥y∥2 .

2. Si (ei)1≤i≤n est une famille orthogonale de vecteurs de E alors 1 ∥
n

∑
i=1

ei∥
2
=

n

∑
i=1
∥ei∥2 .

1. La réciproque est fausse pour n ≥ 3 : considérons dans R2 les vecteurs e1 = (1, 0), e2 = (0, 1) et e3 = (1,−1).

Corollaire 2.1. liberté d’une famille orthonormale
Toute famille orthogonale ne comportant pas le vecteur nul est libre. En particulier, toute famille orthonormale
est libre.

Théorème 2.2. orthonormalisation de Gram-Schmidt
Soit (u1, . . . , un) une famille libre de vecteurs de E. Il existe une unique famille orthonormale (e1, . . . , en)
vérifiant : Vect(u1, . . . , uk) = Vect(e1, . . . , ek) et (ek ∣ uk) > 0 pour tout k ∈ [[1, n]] .
On dit que la famille (e1, . . . , en) est la famille orthonormalisée de (u1, . . . , un) par le procédé de Schmidt.

Remarque 2.1 (Algorithme d’orthonormalisation de Gram-Schmidt).

∎ La famille (e1, . . . , en) est donnée par e1 =
u1
∥u1∥

et ek =
uk −

k−1
∑
i=1
(uk ∣ ei)ei

∥uk −
k−1
∑
i=1
(uk ∣ ei)ei∥

pour k ∈ [[2, n]] .
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Orthogonal d’une partie

Définition 2.2. orthogonal d’une partie

On appelle orthogonal d’une partie A de E, l’ensemble noté A⊥ défini par A⊥ = {x ∈ E, ∀a ∈ A, (a ∣ x) = 0} .

Proposition 2.1. propriétés de l’orthogonal d’une partie
Soit A et B deux parties de E.

1. A⊥ est un sev de E. 2. A ⊂ B Ô⇒ B⊥ ⊂ A⊥. 3. A⊥ = Vect(A)⊥. 4. A ⊂ (A⊥)⊥.

Définition 2.3. sous-espaces vectoriels orthogonaux

Deux sous-espaces vectoriels F et G de E sont dits orthogonaux si ∀(x, y) ∈ F ×G, (x ∣ y) = 0 .

Remarque 2.2. ∎ Si F et G sont orthogonaux, alors F ∩G = {0E}.

Théorème 2.3. deux à deux orthogonaux vs somme directe
Si F1, . . . , Fk sont des sev de E deux à deux orthogonaux alors ceux-ci sont en somme directe.

Définition 2.4. somme directe orthogonale
Lorsque les sev F1, . . . , Fk sont deux à deux orthogonaux, on dit qu’ils sont en somme directe orthogonale
et leur somme est notée

⊥
⊕

1≤i≤k
Fi.

3 Espaces vectoriels euclidiens

Le couple (E, (. ∣ .)) désigne un espace préhilbertien réel.

Définition 3.1. espace euclidien
On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

Définition 3.2. base orthonormale (b.o.n)
Une base orthonormale d’un espace euclidien est une famille de vecteurs qui est à la fois une base et une
famille orthonormale.

Théorème 3.1. existance d’une b.o.n dans un espace euclidien
Tout espace euclidien possède une base orthonormale.

Théorème 3.2. théorème de la b.o.n incomplète
Toute famille orthonormale d’un espace euclidien peut être complétée en une base orthonormale.

Théorème 3.3. coordonnées d’un vecteur dans une b.o.n

Soit B = (e1, . . . , en) une b.o.n de E. x ∈ E, x =
n

∑
i=1
(ei ∣ x)ei .

Théorème 3.4. expression du produit scalaire et de la norme dans une b.o.n

1. Si B = (e1, . . . , en) une b.o.n de E et x =
n

∑
i=1

xiei ∈ E, y =
n

∑
i=1

yiei ∈ E alors (x ∣ y) =
n

∑
i=1

xiyi et ∥x∥2 =
n

∑
i=1

x2
i .

2. Si B = (e1, . . . , en) une b.o.n de E et X =MatB(x), Y =MatB(y), alors (x ∣ y) = tXY et ∥x∥2 = tXX .
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4 Projection orthogonale sur un sev de dimension finie

Le couple (E, (. ∣ .)) désigne un espace préhilbertien réel.

Théorème 4.1. supplémentaire orthogonal
Soit F un sous-espace vectoriel de E de dimension finie.

1. F ⊕ F ⊥ = E et F ⊥⊥ = F . L’espace F ⊥ est appelé le 1 supplémentaire orthogonal de F .

2. Si de plus E est de dimension finie, alors dim F ⊥ = dim E − dim F .

1. Le supplémentaire orthogonal lorsqu’il existe, il est unique.

Projection orthogonale et symétrie orthogonale

Soit F un sous-espace vectoriel de E de dimension finie.

Définition 4.1. projection orthogonale
On appelle projection orthogonale sur F , la projection pF sur F parallèlement à F ⊥.

Remarque 4.1.

∎ pF est caractérisé par : y = pF (x) ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

y ∈ F

x − y ∈ F ⊥
.

∎ Soit (v1, . . . , vp) une base de F . Alors

• ∀x ∈ E, pF (x) =
n

∑
i=1

λivi avec (λ1, . . . , λp) ∈ Rp.

• On calcule les λi, 1 ≤ i ≤ p grâce aux relations

(x − pF (x) ∣ vi) = 0, i ∈ [[1, p]].

●

x

F

0E pF (x)

F ⊥

Théorème 4.2. expression du projeté orthogonal dans une b.o.n

Soit (e1, . . . , ep) une b.o.n de F . ∀x ∈ E, pF (x) =
p

∑
i=1
(ei ∣ x)ei .

Proposition 4.1. expression du projeté orthogonal, cas d’une droite et d’un hyperplan

1. Soit a ∈ E ∖ {0E} et D = Vect(a). ∀x ∈ E, pD(x) =
(a ∣ x)
∥a∥2

a .

2. Soit H un hyperplan de vecteur normal a ∈ E ∖ {0E}. ∀x ∈ E, pH(x) = x − (a ∣ x)
∥a∥2

a .

Définition 4.2. symétrie orthogonale
On appelle symétrie orthogonale par rapport à F , la symétrie sF par rapport à F et parallèlement à F ⊥.

Remarque 4.2. ∎ Si F est un hyperplan H, on parle de réflexion
d’hyperplan H.

∎ sF (x) est caractérisé par : y = sF (x) ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

x + y ∈ F

x − y ∈ F ⊥
.

●

x

F

0E x1

F ⊥
x2

−x2
sF (x)
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Théorème 4.3. expression de symétrie orthogonale dans une b.o.n

Soit (e1, . . . , ep) une b.o.n de F . ∀x ∈ E, sF (x) = 2
p

∑
i=1
(ei ∣ x)ei − x .

Distance à un sous-espace vectoriel de dimension finie

Soit F un sous-espace vectoriel de E de dimension finie.

Définition 4.3. distance d’un vecteur à un sev de dimension finie

Soit x ∈ E. On appelle distance de x à F le réel positif d(x, F ) déf= inf
y∈F
∥x − y∥ .

Théorème 4.4.

Soit x ∈ E. ∀y ∈ F, ∥x − y∥ ≥ ∥x − pF (x)∥ avec égalité si, et seulement si, y = pF (x).

Corollaire 4.1. la distance d’un vecteur à un sev est atteinte en son projeté orthogonal

Soit x ∈ E.

d(x, F ) =min
y∈F
∥x − y∥ = ∥x − pF (x)∥ =

√
∥x∥2 − ∥pF (x)∥2 . ●

d(x, F )

x

F

0E
pF (x)

Corollaire 4.2. inégalité de Bessel

∀x ∈ E, ∥pF (x)∥ ≤ ∥x∥ .

5 Une sélection d’exercices

Exercice 5.1 : Soit E = Rn muni de son produit scalaire canonique : (x ∣ y) =
n

∑
i=1

xiyi.

1. Montrer que la base canonique de E est orthonormale pour ce produit scalaire.

2. Montrer l’inégalité ci-contre en déterminant le cas d’égalité : ∀x = (x1, . . . , xn) ∈ E, (
n

∑
k=1

xk)
2

≤ n
n

∑
k=1

x2
k.

Exercice 5.2 : On pose, pour P, Q ∈ R [X] , φ(P, Q) = 1
2π
∫

π

−π
P (eiθ)Q(e−iθ)dθ.

1. Montrer que φ définit un produit scalaire sur R [X].

2. Montrer que (Xn)
n∈N est une b.o.n. pour ce produit scalaire.

Exercice 5.3 : Soit C0([0, 2π]) muni de produit scalaire (f ∣ g) = 1
π
∫

2π

0
f(t)g(t)dt. Montrer que la famille (sn)n∈N de

C0([0, 2π]) définie par sn(t) = sin(nt) est orthonormale.

Exercice 5.4 : Pour A et B dans ∈ Mn,p(R), on pose (A ∣ B) = Tr (A⊺B).

1. Montrer que (. ∣ .) définit un produit scalaire sur Mn,p(R).

2. Montrer que la base canonique de Mn,p(R) est une b.o.n. pour le produit scalaire précédent.

Exercice 5.5 : On munit R3 de son produit scalaire canonique. Orthonormaliser par le procédé de Schmidt la famille de
vecteurs (u1, u2, u3) avec u1 = (1, 1, 0), u2 = (1, 0, 1) et u3 = (1, 1, 1).

Exercice 5.6 : On munit R3 de son produit scalaire canonique. Déterminer une base orthonormale de R3 dont les deux
premiers vecteurs appartiennent au plan P = {(x, y, z) ∈ R3, x − z = 0}.
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Exercice 5.7 : Soient E un espace euclidien, f ∈ L(E) et A = (ai,j)1≤i,j≤n
la matrice de f dans une b.o.n. B = (e1, . . . , en).

Justifier que ai,j = (ei ∣ f(ej)) pour tous i et j dans [[1, n]].

Exercice 5.8 : Soit (e1, . . . , en) une famille de vecteurs unitaires d’un espace euclidien E vérifiant :
n

∑
k=1
(ek ∣ x)2 = ∥x∥2 pour

tout x ∈ E. Montrer que (e1, . . . , en) est une b.o.n. de E.

Exercice 5.9 : Dans l’espace C0([−1, 1] ,R) muni de produit scalaire (f ∣ g) = ∫
1

−1
f(t)g(t)dt, montrer que le sev des fonctions

paires et le sev des fonctions impaires sont orthogonaux.

Exercice 5.10 : Soit E un espace préhilbertien réel et F, G deux sev de E. Montrer que F et G sont orthogonaux si, et
seulement si, F ⊂ G⊥.

Exercice 5.11 : 1. Soit A et B deux parties d’un espace préhilbertien réel E. Montrer

a. A⊥ est un sev de E. b. A ⊂ B Ô⇒ B⊥ ⊂ A⊥. c. A⊥ = Vect(A)⊥. d. A ⊂ (A⊥)⊥.

2. Soit F et G deux sev de E. Montrer (F +G)⊥ = F ⊥⋂G⊥ et (F ⋂G)⊥ ⊃ F ⊥ +G⊥. Que devient cette inclusion si l’on
suppose que l’espace E est euclidien ?

Exercice 5.12 : Soit F et G deux sev supplémentaires et orthogonaux d’un espace préhilbertien E. Montrer G = F ⊥.

Exercice 5.13 : Soit E un espace euclidien et f ∈ L(E) telle que, pour tout (x, y) ∈ E2, (f(x), f(y)) = (x, y).

1. Montrer que f est un automorphisme de E.

2. Soit F un sev de E. Montrer que f(F ⊥) = (f(F ))⊥.

Exercice 5.14 : 1. On muni R4 de son produit scalaire canonique. Former la matrice dans la base canonique de la projection
orthogonale p sur l’espace F = {(x, y, z, t) ∈ R4, x − y − z − t = x − z − 2t = 0}.

2. Calculer la distance à F du vecteur v = (1, 2, 3, 4).

Exercice 5.15 : On considère un espace euclidien E muni d’une b.o.n. B = (i, j, k). Former la matrice dans B de la projection
orthogonale sur le plan P d’équation x − 2y + z = 0.

Exercice 5.16 : On munit Mn(R) de son produit scalaire canonique donné par (A ∣ B) = Tr (A⊺B).

1. Montrer que Sn(R)⊥ = An(R) et An(R)⊥ = Sn(R).

2. Exprimer le projeté orthogonal sur Sn(R) d’une matrice M de Mn(R).

3. Soit H = {M ∈ Mn(R), Tr (M) = 0}.
a. Justifier que H est un hyperplan et déterminer un vecteur normal de H.

b. Exprimer simplement la distance à H d’une matrice M de Mn(R).

c. Soit J la matrice de Mn(R) dont tous les coefficients sont égaux à 1. Calculer min
M∈H
∥M − J∥.

Exercice 5.17 : Calculer m = inf
(a,b)∈R2 ∫

1

0
(t2 − (at + b))2dt.

Exercice 5.18 : Soient R3 [X] muni du produit scalaire (P ∣ Q) = ∫
1

0
P (t)Q(t)dt et F = R1 [X]. Donner l’expression du

projeté orthogonal de Q = 1 +X +X2 +X3 sur F par deux méthodes différentes :

a. En utilisant l’expression du projeté orthogonal dans une b.o.n. de F .

b. En utilisant la caractérisation du projeté orthogonal.

Exercice 5.19 : Soient (E, (. ∣ .)) un espace euclidien de dimension n ≥ 1, ∥.∥ la norme euclidienne associée et p un projecteur
de E. Montrer que p est un projecteur orthogonal si, et seulement si, ∥p(x)∥ ≤ ∥x∥ pour tout x ∈ E.

Exercice 5.20 : Soient (E, (. ∣ .)) un espace euclidien de dimension n ≥ 1, ∥.∥ la norme euclidienne associée et f une fonction
de E vers E vérifiant : f(0E) = 0E et ∀ (x, y) ∈ E2, ∥f(x) − f(y)∥ = ∥x − y∥.

1. Montrer que ∥f(x)∥ = ∥x∥ pour tout x de E.

2. Établir (f(x) ∣ f(y)) = (x ∣ y) pour tous x et y de E.

3. En introduisant une b.o.n. de E, établir que l’application f est linéaire.
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