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rappel MPSI

Intégrales généralisées (correction)

Corrigé de l’exercice 1. 1. La fonction f ∶ t z→ t + 1
t4 + 1

est cpm et positive sur [0,+∞[ et f(t) ∼
+∞

1
t3 . Comme ∫

+∞

1

1
t3 dt

converge (intégrale de Riemann α = 3 > 1) alors l’intégrale ∫
+∞

0
f(t)dt converge.

2. f ∶ tz→ arctan t

t
est cpm et positive sur ]0,+∞[ et f(t) ÐÐÐ→

t→0+
1 donc f est prolongeable par continuité en 0 et f(t) ∼

+∞

π

2t
.

Or ∫
+∞

1

π

2t
dt diverge (intégrale de Riemann α = 1) alors l’intégrale ∫

+∞

0
f(t)dt diverge.

3. f ∶ t z→ t

t2 + 1
est cpm et positive sur [0,+∞[ et f(t) ∼

+∞

1
t
. Comme ∫

+∞

1

1
t
dt diverge (intégrale de Riemann α = 1)

alors l’intégrale ∫
+∞

0
f(t)dt diverge.

4. f ∶ tz→ t sin(1
t
) est cpm sur [1,+∞[ et f(t) ∼

+∞

1. Comme ∫
+∞

1
1dt diverge alors l’intégrale ∫

+∞

0
f(t)dt diverge.

5. f ∶ t z→ t e−t2 est cpm et positive sur [0,+∞[ et t2f(t) ÐÐÐ→
t→+∞

0 donc f(t) =
+∞

o( 1
t2 ). Comme ∫

+∞

1

1
t2 dt converge

(intégrale de Riemann α = 2 > 1) alors l’intégrale ∫
+∞

0
f(t)dt converge.

6. f ∶ tz→ ln t

t(t + 1) est cpm et positive sur [1,+∞[ et t3/2f(t) ÐÐÐ→
t→+∞

0 donc f(t) =
+∞

o( 1
t3/2 ). Comme ∫

+∞

1

1
t3/2 dt converge

(intégrale de Riemann α = 3/2 > 1) alors l’intégrale ∫
+∞

1
f(t)dt converge.

7. f ∶ tz→ ln t

t + 1
est cpm et positive sur [1,+∞[ et tf(t) ÐÐÐ→

t→+∞
+∞ donc 1

t
=
+∞

o (f(t)). Comme ∫
+∞

1

1
t
dt diverge (intégrale

de Riemann α = 1) alors l’intégrale ∫
+∞

1
f(t)dt diverge.

8. f ∶ tz→ sin t

t3/2 est cpm sur ]0,+∞[ et

• au voisinage de 0+ : f(t) ∼
0+

1√
t

et ∫
1

0

1√
t
dt diverge (intégrale de Riemann α = 1).

• au voisinage de +∞ : f(t) =
+∞

O ( 1
t3/2 ) et ∫

+∞

1

1
t3/2 dt converge (intégrale de Riemann α = 3/2 > 1) donc l’intégrale

∫
+∞

1
f(t)dt converge absolument donc converge.

D’où l’intégrale ∫
+∞

0
f(t)dt diverge.

9. f ∶ tz→
√

1 + t − 1
t

est cpm sur ]0, 1] et f(t) =
t→0+

1 + t
2 + o(t) − 1

t
ÐÐÐ→
t→0+

1
2

. Donc f est prolongeable par continuité en 0+

et l’intégrale ∫
1

0
f(t)dt converge.

10. f ∶ tz→ 1√
1 − t2

est continue sur [0, 1[ et F (x) = ∫
x

0
f(t)dt = [arcsin t]

x

0
= arcsin xÐÐ→

x→1

π

2
. Donc l’intégrale ∫

1

0
f(t)dt

converge et ∫
1

0
f(t)dt = lim

x→1−
F (x) − F (0) = π

2
.

11. f ∶ t z→ 1
et −1

est cpm sur ]0, 1] et f(t) ∼
0+

1
t
. Comme ∫

1

0

1
t
dt diverge (intégrale de Riemann α = 1) alors l’intégrale

∫
1

0
f(t)dt diverge.

12. f ∶ tz→ ln(1 + t)
t3/2 est cpm sur ]0, 1] et f(t) ∼

0+
1√
t
. Comme ∫

1

0

1√
t
dt converge (intégrale de Riemann α = 1/2 < 1) alors

l’intégrale ∫
1

0
f(t)dt converge.

13. f ∶ tz→ t − 1
ln t

est cpm sur ]0, 1[ et

f(t) ÐÐÐ→
t→0+

0, f(t) =
t=1+h

h

ln(1 + h) ÐÐÐ→h→0−
1.

Donc f est prolongeable par continuité en 0 et 1 et l’intégrale ∫
1

0

t − 1
ln t

dt converge.
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14. f ∶ tz→ ln(1 + 1
t2 ) est cpm sur ]0,+∞[ et

• au voisinage de 0+ :
√

tf(t) =
√

t ln(1 + t2) − 2
√

t ln tÐÐÐ→
t→0+

0

donc f(t) =
0+

o( 1√
t
) et l’intégrale ∫

1

0

1√
t
dt converge (intégrale de Riemann α = 1/2 < 1).

• au voisinage de +∞ : f(t) ∼
+∞

1
t2 et l’intégrale ∫

+∞

1

1
t2 dt converge (intégrale de Riemann α = 2 > 1).

D’où l’intégrale ∫
+∞

0
f(t)dt converge.

15. f ∶ tz→ ln t est continue sur ]0, 1] et F (x) = ∫
1

x
f(t)dt = [t ln t − t]1x = x−1−x ln xÐÐÐ→

x→0+
−1. Donc l’intégrale ∫

1

0
f(t)dt

converge et ∫
1

0
f(t)dt = lim

x→0+
F (x) = −1.

16. f ∶ t z→ ln t

ln(t + 1) est cpm sur ]0, 1] et f(t) ∼
0+

ln t

t
donc tf(t) ÐÐÐ→

t→0+
−∞ i-e 1

t
=
0+

o (f(t)). Comme ∫
1

0

1
t
dt diverge

(intégrale de Riemann α = 1) alors l’intégrale ∫
1

0
f(t)dt diverge.

17. f ∶ tz→ exp(−(t2 + 1
t2 )) est cpm sur ]0,+∞[ et

• au voisinage de 0+ : f(t) ÐÐÐ→
t→0+

0 donc f est prolongeable par continuité en 0.

• au voisinage de +∞ :

t2f(t) = t2 e−t2

´¹¹¹¹¹¸¹¹¹¹¶Ð→0

e−1/t2 ÐÐÐ→
t→+∞

0.

donc f(t) =
+∞

o( 1
t2 ) et ∫

+∞

1

1
t2 dt converge (intégrale de Riemann α = 2 > 1).

D’où l’intégrale ∫
+∞

0
f(t)dt converge.

18. f ∶ tz→ ln t

t − 1
est cpm sur ]1, e] et f(t) =

t=1+h

ln(1 + h)
h

ÐÐÐ→
h→0+

1. Donc f est prolongeable par continuité en 0 et l’intégrale

∫
e

1
f(t)dt converge.

19. f ∶ tz→ 1
1 − t2 est cpm sur [0, 1[ et f(t) ∼

1−
1/2
1 − t

. Comme ∫
1

0

dt

1 − t
diverge alors l’intégrale ∫

1

0
f(t)dt diverge.

20. f ∶ tz→ ln t

t3 − 1
est cpm sur ]0, 1[ et ]1,+∞[.

• au voisinage de 0+ :
√

tf(t) ∼
0+
−
√

t ln t ÐÐÐ→
t→0+

0 donc f(t) =
0+

o( 1√
t
) et ∫

1

0

dt√
t

converge (intégrale de Riemann

α = 1/2 < 1).

• au voisinage de 1 : f(t) ∼
1

ln t

3(t − 1) ÐÐ→t→1

1
3

donc f est prolongeable par continuité en 1.

• au voisinage de +∞ :

t2f(t) ∼
+∞

ln t

t
ÐÐÐ→
t→+∞

0.

donc f(t) =
+∞

o( 1
t2 ) et ∫

+∞

1

dt

t2 converge (intégrale de Riemann α = 2 > 1).

D’où l’intégrale ∫
+∞

0
f(t)dt converge.

Corrigé de l’exercice 2. 1. f ∶ tz→ arctan t

tα
est cpm et positive sur ]0,+∞[ et

• au voisinage de 0 : f(t) ∼
0+

1
tα−1 et ∫

1

0

dt

tα−1 converge ssi α < 2.

• au voisinage de +∞ : f(t) ∼
+∞

π

2tα
et ∫

+∞

1

dt

tα
converge ssi α > 1.

D’où ∫
+∞

0
f(t)dt converge ssi 1 < α < 2.

2. f ∶ tz→ 1 − tanh t

tα
est cpm et positive sur ]0,+∞[ et
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• au voisinage de 0 : f(t) ∼
0+

1
tα

et ∫
1

0

dt

tα
converge ssi α < 1.

• au voisinage de +∞ : f(t) = 2 e−2t

(1 + e−2t)tα
∼
+∞

2 e−2t

tα
et et f(t) ÐÐÐ→

t→+∞
0 pour tout α ∈ R donc f(t) =

+∞

o(e−t). Comme

∫
+∞

1
e−t dt converge alors ∫

+∞

1
f(t)dt converge.

D’où ∫
+∞

0
f(t)dt converge ssi α < 1.

Corrigé de l’exercice 3. 1. ∫
+∞

1

dt

t(t + 1) = ∫
+∞

1
(1

t
− 1

t + 1
)dt = [ln( t

t + 1
)]
+∞

1
= ln 2.

2. Puisque tz→ tf(t) admet une limite finie en 0 et en +∞, alors par une intégration par parties on a

∫
+∞

0
ln(1 + 1

t2 )dt = [t ln(1 + 1
t2 ) ]

+∞

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+∫
+∞

0

2
1 + t2 dt = 2∫

+∞

0

1
1 + t2 dt = 2[arctan t]

+∞

0
= π.

3. ∫
+∞

0
e−
√

tdt =
√

t=s
2∫

+∞

0
se−sds = 2 [−se−s]+∞0 + 2∫

+∞

0
e−sds = 2 [−e−s]+∞0 = 2.

Corrigé de l’exercice 4. 1. fn ∶ tz→ tn e−t est continue et positive sur [0,+∞[ et t2fn(t) ÐÐÐ→
t→+∞

0. Donc fn est intégrable sur
[0,+∞[.
Pour n ≥ 1, la fonction tz→ − e−t tn admet une limite finie en +∞ donc

In = ∫
+∞

0
tn e−t dt = [ − tn e−t ]

+∞

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

−∫
+∞

0
ntn−1(− e−t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−nIn−1

= nIn−1.

D’où In = n!I0 = n![ − e−t ]+∞0 = n!.

2. fn ∶ tz→ ∣ln t∣n est continue et positive sur ]0, 1] et
√

tfn(t) ÐÐÐ→
t→0+

0. Donc fn est intégrable sur ]0, 1].
Pour n ≥ 1, la fonction tz→ t∣ln t∣n admet une limite finie en 0+ donc

In = ∫
1

0
∣ln t∣ndt = (−1)n ∫

1

0
lnn tdt = (−1)n [t lnn t]

1

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+n (−1)n−1 ∫
1

0
(ln t)n−1dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=In−1

.

Donc In = nIn−1. Soit In = n!I1 = n! car I1 = 1.

3. fp,q ∶ tz→ tp(ln t)q est continue sur ]0, 1].
• Si q = 0 alors fp,q est intégrable sur ]0, 1] car −p < 1.

• Si q ∈ N∗ alors pour α = 1 − p

2
∈ ]−p, 1[ on a fp,q(t) ÐÐÐ→

t→0+
0 donc fp,q est intégrable sur ]0, 1].

Par une intégration par parties successives on obtient

∫
1

0
fp,q(t)dt = ∫

1

0
tp(ln t)qdt = [ tp+1

p + 1
(ln t)q]

1

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

− q

p + 1 ∫
1

0
tp(ln t)q−1dt = (−1)2 q(q − 1)

(p + 1)2 ∫
1

0
tp(ln t)q−2dt.

En répétant les intégrations par parties jusqu’à disparition du facteur ln t, on obtient ∫
1

0
tp(ln t)qdt = (−1)q q!

(p + 1)q+1 .

Corrigé de l’exercice 5. 1. Soit n ∈ N∗0. fn ∶ tz→
1

(1 + t2)n est cpm sur [0,+∞[ et fn(t) ∼
+∞

1
t2n

. Comme ∫
+∞

1

dt

t2n
converge

(2n > 1) alors l’intégrale ∫
+∞

0
fn(t)dt converge.

2. Soit X > 0. On a

∫
X

0

dt

(1 + t2)n = [
t

(1 + t2)n ]
X

0
+ ∫

X

0

2nt2

(1 + t2)n+1 dt = X

(1 +X2)n + 2n(∫
X

0

dt

(1 + t2)n − ∫
X

0

dt

(1 + t2)n+1 ).

Lorsque X tend vers +∞, toutes les limites existent, et on obtient In = 2n(In − In+1) soit In+1 =
2n − 1

2n
In. Donc

In = I1
n−1
∏
k=1

2k − 1
2k

= (2n − 2)!
(2n−1(n − 1)!)2 I1.
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Or I1 = ∫
+∞

0

dt

1 + t2 = [arctan]+∞0 = π

2
. D’où ∀n ∈ N∗, In =

π

2
(2n − 2)!

(2n−1(n − 1)!)2 .

Corrigé de l’exercice 6. 1. Soit f ∶ [0,+∞[ z→ C définie par f(t) = eλt avec λ = −α + iω. On a

F (x) = ∫
x

0
f(t)dt = [ 1

λ
eλt]

x

0
= eλx −1

λ
.

Puisque eλx = eiωx

±
bornée

e−αx ÐÐÐ→
x→+∞

0, on en déduit que ∫
+∞

0
f(t)dt converge et vaut −1

λ
.

La partie réelle et la partie imaginaire de cette intégrale sont donc aussi convergentes ce qui assure l’existence des intégrales
définissant C(α, ω) et S(α, ω). D’où :

C(α, ω) = Re(−1
λ
) = Re( α + iω

α2 + ω2 ) =
α

α2 + ω2 et S(α, ω) = ω

α2 + ω2 .

2. f ∶ t z→ 1
t2 + 2αt + β

est définie et continue sur R car le discriminant ∆ = 4(α2 − β) < 0. On a : f(t) ∼
t→±∞

1
t2 donc f est

intégrable sur R. De plus

∫
+∞

−∞

1
t2 + 2αt + β

dt = ∫
+∞

−∞

1
(t + α)2 + β − α2 dt

=®
s=t+α

∫
+∞

−∞

1
s2 + β − α2 ds

= 1√
β − α2

⎡⎢⎢⎢⎢⎣
arctan

⎛
⎝

s√
β − α2

⎞
⎠

⎤⎥⎥⎥⎥⎦

+∞

−∞

= π√
β − α2

.

Corrigé de l’exercice 7. 1. On a 1
et −1

∼
0+

1
t

et ∫
1

0

1
t
dt diverge donc par intégration des relations de comparaison

∫
1

x

1
et −1

dt ∼
x→0+ ∫

1

x

1
t
dt = − ln x.

2. On a 1
t3 + 1

∼
+∞

1
t3 et ∫

+∞

1

1
t3 dt converge donc par intégration des relations de comparaison

∫
+∞

x

1
t4 + 1

dt ∼
x→+∞

∫
+∞

x

1
t3 dt = 1

2x2 .

3. On a arctan t

t
∼
+∞

π

2t
et ∫

+∞

1

1
t
dt diverge donc par intégration des relations de comparaison

∫
x

1

arctan t

t
dt ∼

x→+∞
∫

x

1

π

2t
dt = π

2
ln x.

4. tz→ e−t

t
est continue, positive sur [1,+∞[ et t2 e−t

t
ÐÐÐ→
t→+∞

0 donc tz→ e−t

t
est intégrable sur [1,+∞[. Par une intégration

par parties

∫
+∞

x

e−t

t
dt = e−x

x
− ∫

+∞

x

e−t

t2 dt.

Or e−t

t2 =
+∞

o(e−t

t
) et ∫

+∞

1

e−t

t
dt converge. Par intégration des relations de comparaison

∫
+∞

x

e−t

t2 dt =
x→+∞

o(∫
+∞

x

e−t

t
dt).

D’où ∫
+∞

x

e−t

t
dt ∼
+∞

e−x

x
.

Corrigé de l’exercice 8. 1. La fonction tz→ 1
t

répont à la question.

2. On considère la fonction f , définie, continue et affine par morceaux sur [1,+∞[ : ∀n ∈ N∗

f (n − 1
2n
) = f (n + 1

2n
) = 0, f(n) = n et nulle ailleur.
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On a ∫
k+1

k
f(t)dt = 1

2
( k

2k
+ k + 1

2k+1 ) =
3k + 1
2k+2 donc

∫
+∞

1
f(t)dt = lim

n→+∞

n

∑
k=1
∫

k+1

k
f(t)dt = lim

n→+∞

n

∑
k=1

3k + 1
2k+2 ∈ R.

Donc f intégrable sur [1,+∞[ mais f(n) ÐÐÐ→
n→+∞

+∞ et f n’a pas de limite nulle en +∞.

Corrigé de l’exercice 9. 1. f ∶ tz→ e−at − e−bt

t
est définie et cpm sur ]0,+∞[ et

• au voisinage de 0+ :

f(t) =
0

1 − at − 1 + bt + o(t)
t

ÐÐ→
t→0

b − a.

Donc f est prolongeable par continuité en 0.
• au voisinage de +∞ : t2f(t) ÐÐÐ→

t→+∞
0 donc f intégrable au voisinage de +∞.

D’où l’existence de l’intégrale I.

2. Soit ε > 0. Comme a > 0, la fonction tz→ e−at

t
est intégrable sur [ε,+∞[ donc on peut écrire :

I = ∫
+∞

ε

e−at

t
dt − ∫

+∞

ε

e−bt

t
dt =

at=s, bt=s
∫
+∞

aε

e−s

s
ds − ∫

+∞

bε

e−s

s
ds = ∫

bε

aε

e−s

s
ds.

3. On a e−t −1
t
=
0

−t + o(t)
t

ÐÐ→
t→0

−1 donc f est prolongeable par continuité en 0. Notons encore f le prolongement de f
obtenu en posant f(0) = −1, qui est donc continu sur R. Soit F la primitive de f qui s’annule en 0. On a

∫
bε

aε

e−t −1
t

dt = F (bε) − F (aε) ÐÐÐ→
ε→+∞

F (0) − F (0) = 0.

Car F est continue en 0. Donc

I = lim
ε→0∫

bε

aε

e−t

t
dt = lim

ε→0∫
bε

aε

e−t −1
t

dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ lim
ε→0∫

bε

aε

dt

t
.

D’où I = ln( b

a
).

4. ∫
1

0

t − 1
ln t

dt =
ln t=s

∫
+∞

0

e−t − e−2t

t
dt = ln 2.

Corrigé de l’exercice 10. 1. f ∶ tz→ 1
t(ln t)β est continue sur [2,+∞[ et

F (x) = ∫
x

2
f(t)dt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[ 1
1 − β

(ln t)1−β]
x

2
si β ≠ 1

[ ln(ln t)]
x

2
si β = 1

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
1 − β

((ln x)1−β − (ln 2)1−β) si β ≠ 1

ln(ln x) − ln(ln 2) si β = 1

donc F (x) admet une limite finie ssi β > 1.
D’où l’intégrale ∫

+∞

2

dt

t(ln t)β converge ssi β > 1.

On peut aussi utiliser le changement de variable x = ln t. Ainsi ∫
+∞

2

dt

t(ln t)β = ∫
+∞

ln 2

dx

xβ
converge ssi β > 1.

2. Supposons α < 1. On a tf(t) = t1−α

(ln t)β ÐÐÐ→t→+∞
+∞. Ainsi, pour t assez grand, f(t) ≥ 1

t
donc 1

t
=
+∞

O(f(t)).

Comme ∫
+∞

2

dt

t
diverge alors l’intégrale ∫

+∞

2
f(t)dt diverge.

3. Supposons α > 1. Soit α′ ∈ R tel que 1 < α′ < α. On a
1

tα(ln t)β =
1

tα′

1
tα−α′(ln t)β
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ÐÐÐ→

t→+∞
0

=
+∞

o( 1
tα′
).
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Donc il suffit de prendre γ = α′ = 1 + α

2
> 1. Ainsi f(t) =

+∞

o( 1
tγ
).

Comme ∫
+∞

2

dt

tγ
converge, l’intégrale ∫

+∞

2

dt

tα(ln t)β converge.

4. D’après ce qui précède

∫
+∞

2

dt

tα(ln t)β converge ⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α > 1
ou

α = 1 et β > 1
.

5. f ∶ tz→ 1
tα∣ln t∣β est cpm sur ]0, 1/2]. Par le changement de variable s = 1

t
, on a

∫
1/2

0

dt

tα∣ln t∣β = ∫
+∞

2

sα

∣ln(1/s)∣β
1
s2 ds = ∫

+∞

2

ds

s2−α∣ln s∣β = ∫
+∞

2

ds

s2−α(ln s)β .

donc ∫
1/2

0

dt

tα∣ln t∣β converge ssi ∫
+∞

2

ds

s2−α(ln s)β converge. D’où

∫
1/2

0

dt

tα∣ln t∣β converge ssi (α < 1) ou (α = 1 et β > 1).

Corrigé de l’exercice 11. 1. f ∶ tz→ ln (sin t) est cpm sur ]0,
π

2
] et

√
tf(t) =

√
t ln(t − t3

6
+ o(t3)) =

√
t(ln t + ln(1 − t2

6
+ o(t2))) =

√
t(ln t − t2

6
+ o(t2)) ÐÐÐ→

t→0+
0.

Donc l’intégrale ∫
π
2

0
ln (sin t)dt converge.

Par le changement de variable t = π

2
− x, on a I = J donc l’intégrale définissant J converge aussi.

2. On a

I + J = ∫
π
2

0
ln (sin t) + ln (cos t)dt = ∫

π
2

0
ln(1

2
sin(2t))dt = ∫

π
2

0
ln (sin(2t))dt − π ln 2

2
Or

∫
π
2

0
ln (sin(2t))dt =

s=2t

1
2 ∫

π

0
ln (sin s)ds

= 1
2 ∫

π
2

0
ln (sin s)ds + 1

2 ∫
π

π
2

ln (sin s)ds

=
s=t+π/2

1
2 ∫

π
2

0
ln (sin s)ds + 1

2 ∫
π
2

0
ln (cos t)dt

= 1
2
(I + J).

Donc I + J = 1
2
(I + J) − π ln 2

2
. D’où I = J = −π ln 2

2
.

3. On a

∫
π
2

0

t

tan t
dt =

u=π/2−t
∫

π
2

0
(π

2
− u) tan udu

= [−(π

2
− u) ln (cos u)]

π/2

0
− ∫

π
2

0
ln (cos u)du.

Or (π

2
− u) ln (cos u) =

h=π/2−u
h ln (sin h) ÐÐÐ→

h→0+
0. D’où ∫

π
2

0

t

tan t
dt = −J = π ln 2

2
.

Corrigé de l’exercice 12. 1. Soit a > 0.

I(a) = ∫
+∞

0

ln t

a2 + t2 dt

=
u=a/t

1
a
∫
+∞

0

ln a − ln u

1 + u2 du

= ln a

a
∫
+∞

0

du

1 + u2 −
1
a

I(1)

= π ln a

2a
− I(1)

a

Pour a = 1 on obtient I(1) = 0. D’où I(a) = π ln a

2a
.
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2. Soit a ∈ R.

I(a) = ∫
+∞

0

dt

(1 + t2)(1 + ta)

=
u=1/t

∫
+∞

0

ua

(1 + u2)(1 + ua)du.

Donc 2I(a) = ∫
+∞

0

1 + ta

(1 + t2)(1 + ta)dt = ∫
+∞

0

dt

1 + t2 =
π

2
. D’où I(a) = π

4
.

3. Soit a < b.

I(a, b) = ∫
b

a

dt√
(b − t)(t − a)

=
u=(a+b)/2−t

∫
(b−a)/2

−(b−a)/2

du√
((b − a)/2 − u) ((b − a)/2 + u)

=
s=2u/(b−a)

∫
1

−1

ds√
1 − s2

= [arcsin s]1
−1 = π.

Corrigé de l’exercice 13. 1. Par une intégration par parties on a :

∫
x

1
f(t)dt = [− cos t

t
]

x

1
− ∫

x

1

cos t

t2 dt = cos 1 − cos x

x
− ∫

x

1

cos t

t2 dt.

• La fonction f ∶ t z→ sin t

t
est continue par moreaux sur ]0,+∞[ et prolongeable par continuité en 0 car f(t) ÐÐÐ→

t→0+
1

donc l’intégrale ∫
1

0
f(t)dt converge.

• La fonction t z→ cos t

t2 est intégrable sur [1,+∞[ car ∣cos t

t2 ∣ =+∞ O ( 1
t2 ). De plus, cos x

x
ÐÐÐ→
x→+∞

0 donc l’intégrale

∫
+∞

1
f(t)dt converge.

D’où l’intégrale de Dirichlet ∫
+∞

0

sin t

t
dt converge.

2. Pour tout n ≥ 1

∫
nπ

0
∣ sin t

t
∣dt =

n

∑
k=1
(∫

kπ

(k−1)π

∣sin t∣
t

dt) relation de Chasles

=
n

∑
k=1
(∫

π

0

sin t

t + (k − 1)π dt) tz→ ∣sin t∣ est π − périodique

≥
n

∑
k=1
( 1

kπ
∫

π

0
sin tdt) t + (k − 1)π ≤ kπ pour t ∈ [0, π]

=
n

∑
k=1
( 1

kπ
[− cos t]π0)

= 2
π

n

∑
k=1

1
k
ÐÐÐ→
n→+∞

+∞ somme partielle de la série harmonique

D’où l’intégrale de Dirichlet ∫
+∞

0

sin t

t
dt ne converge pas absolument.

Corrigé de l’exercice 14. Par une intégration par parties on a

In+2 = ∫
+∞

0
tn+2 e−t2

dt

= −1
2
[tn+1 e−t2

]
+∞

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+n + 1
2 ∫

+∞

0
tn e−t2

dt

= n + 1
2

In.

Ainsi In+2 =
n + 1

2
In. Notons que I0 =

√
π

2
(intégrale de Gauss).

• Si n = 2p ∈ N∗ alors I2p =
2p − 1

2
I2p−2 donc
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I2p =
(2p − 1)(2p − 3) . . . × 1

2 × 2 × . . . × 2
I0 =

(2p)!
22p+1p!

√
π.

• Si n = 2p + 1 alors I2p+1 = pI2p−1 donc

I2p+1 = p × (p − 1) . . . × 1 × I1 =
p!
2

. (I1 =
1
2

)
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