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Dans ce chapitre et sauf mentionné, la notation K désigne R ou C et I, J des intervalles non vides de R.

1 Intégrales généralisées

Intégration sur [a, b[
Soit a un réel et b ∈ R ∪ {+∞} tel que a < b.

Définition 1.1. intégration sur [a, b[

On dit que l’intégrale d’une fonction f ∶ [a, b[ Ð→ K cpm converge si l’intégrale partielle I(x) = ∫
x

a
f(t)dt

définie pour x ∈ [a, b[ admet une limite finie quand x→ b−. Dans ce cas, ∫
[a,b[

f(t)dt
déf= lim

x→b−
∫

x

a
f(t)dt .

Sinon, on dit que l’intégrale ∫
[a,b[

f(t)dt diverge.

Théorème 1.1. cas des fonctions continues

Soit f ∶ [a, b[ Ð→ K une fonction continue de primitive F . L’intégrale ∫
[a,b[

f(t)dt converge si, et seulement si,

F (x) admet une limite finie quand x→ b−. Dans ce cas, ∫
[a,b[

f(t)dt = lim
x→b−

F (x) − F (a) = [F (x)]
b

a
.

Théorème 1.2. linéarité

Soient f, g ∶ [a, b[ Ð→ K cpm et λ ∈ K. Si ∫
[a,b[

f(t)dt et ∫
[a,b[

g(t)dt convergent, alors ∫
[a,b[
(f(t) + λ.g(t))dt

converge aussi. De plus ∫
[a,b[
(f(t) + λ.g(t))dt = ∫

[a,b[
f(t)dt + λ∫

[a,b[
g(t)dt .
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Théorème 1.3. cas complexe

Soit f ∶ [a, b[ Ð→ C cpm.

1. Si ∫
[a,b[

f(t)dt converge, alors ∫
[a,b[

f(t)dt converge aussi et ∫
[a,b[

f(t)dt = ∫
[a,b[

f(t)dt .

2. ∫
[a,b[

f(t)dt converge si, et seulement si, ∫
[a,b[

Ref(t)dt et ∫
[a,b[

Imf(t)dt convergent. Dans ce cas,

∫
[a,b[

f(t)dt = ∫
[a,b[

Re (f(t))dt + i∫
[a,b[

Im (f(t))dt .

Proposition 1.1. croissance

Soient f et g ∶ [a, b[ Ð→ R cpm telles que ∫
[a,b[

f(t)dt et ∫
[a,b[

g(t)dt convergent.

1. f ≤ gÔ⇒ ∫
[a,b[

f(t)dt ≤ ∫
[a,b[

g(t)dt. 2. f ≥ 0Ô⇒ ∫
[a,b[

f(t)dt ≥ 0.

Proposition 1.2. stricte positivité

Soit f ∶ [a, b[ Ð→ R continue positive telle que ∫
[a,b[

f(t)dt converge. ∫
[a,b[

f(t)dt = 0 Ô⇒ f nulle sur [a, b[ .

Intégration sur ]a, b] ou sur ]a, b[
Soit a ∈ R ∪ {−∞} et b ∈ R tels que a < b.

Définition 1.2. intégration sur ]a, b]

On dit que l’intégrale d’une fonction f ∶ ]a, b] Ð→ K cpm converge si l’intégrale partielle I(x) = ∫
b

x
f(t)dt

définie pour x ∈ ]a, b] admet une limite finie quand x→ a+. Dans ce cas, ∫
]a,b]

f(t)dt
déf= lim

x→a+
∫

b

x
f(t)dt .

Soit a ∈ R ∪ {−∞} et b ∈ R ∪ {+∞} tels que a < b.

Définition 1.3. intégration sur ]a, b[
On dit que l’intégrale d’une fonction f ∶ ]a, b[ Ð→ K cpm converge si, pour tout réel c dans ]a, b[, les intégrales

∫
]a,c]

f(t)dt et ∫
[c,b[

f(t)dt convergent. Dans ce cas, ∫
]a,b[

f(t)dt
déf= ∫

]a,c]
f(t)dt + ∫

[c,b[
f(t)dt .

Remarque 1.1. ∎ Les résultats précédemments énoncés pour les intégrales sur [a, b[ se transposent aux intégrales
sur ]a, b] et sur ]a, b[.

Proposition 1.3. intégration entre deux bornes finies

Soit f ∶ [a, b] Ð→ K cpm. Les intégrales ∫
]a,b]

f(t)dt, ∫
[a,b[

f(t)dt et ∫
]a,b[

f(t)dt convergent. De plus

∫
[a,b]

f(t)dt = ∫
]a,b]

f(t)dt = ∫
[a,b[

f(t)dt = ∫
]a,b[

f(t)dt .

Remarque 1.2 (Erreur fréquente).

∎ Si f ∶ [a,+∞[ Ð→ R est cpm telle que f(t) ÐÐÐ→
t→+∞

ℓ ∈ R, alors ∫
+∞

a
f(t)dt n’est pas forcément convergente.
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Définition 1.4.

Soit f ∶ I Ð→ K cpm telle que ∫
I

f(t)dt converge.

Si a ≤ b désignent les extrémités de I dans R, on pose ∫
b

a
f(t)dt = ∫

I
f(t)dt et ∫

a

b
f(t)dt = −∫

I
f(t)dt .

Théorème 1.4. relation de Chasles

Soit f ∶ I z→ K cpm. Si ∫
I

f(t)dt converge alors, pour tous a, b, c points de I ou extrémités éventuelement

infinies de I, les intégrales ∫
c

a
f(t)dt et ∫

b

c
f(t)dt convergent et ∫

b

a
f(t)dt = ∫

c

a
f(t)dt + ∫

b

c
f(t)dt .

Intégrales de référence

Proposition 1.4. fonction exponentielle

1. Soit λ ∈ R. ∫
+∞

0
e−λt dt converge ⇐⇒ λ > 0. 2. Soit λ ∈ C. ∫

+∞

0
e−λt dt converge ⇐⇒ Re(λ) > 0.

Théorème 1.5. intégrales de Riemann

1. Soit α ∈ R. ∫
1

0

dt

tα
converge ⇐⇒ α < 1. 2. Soit α ∈ R. ∫

+∞

1

dt

tα
converge ⇐⇒ α > 1.

Remarque 1.3. ∎ ∫
b

a

dt

(t − a)α
et ∫

b

a

dt

(b − t)α
convergent si, et seulement si, α < 1.

2 Intégrabilité

Les résultats qui suivent sont présentés pour l’étude de la convergence de l’intégrale d’une fonction sur un inter-
valle [a, b[. Il peuvent aisément se transposer aux intégrales sur ]a, b] ou sur ]a, b[.

Soit a ∈ R et b ∈ R ∪ {+∞} tels que a < b.

Théorème 2.1. intégrale d’une fonction positive

Soit f ∶ [a, b[ Ð→ R cpm et positive. ∫
b

a
f(t)dt converge ⇐⇒ ∃M ∈ R+, ∀x ∈ [a, b[ , ∫

x

a
f(t)dt ≤M .

En revanche, si ∫
b

a
f(t)dt diverge, alors ∫

b

a
f(t)dt = lim

x→b−
∫

x

a
f(t)dt = +∞.

Théorème 2.2. comparaison

Soit f, g ∶ [a, b[ Ð→ R cpm et positives.

1.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f ≤ g

∫
b

a
g(t)dt converge

Ô⇒ ∫
b

a
f(t)dt converge

2.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f =
b−

O(g)

∫
b

a
g(t)dt converge

Ô⇒ ∫
b

a
f(t)dt converge

3.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f =
b−

o(g)

∫
b

a
g(t)dt converge

Ô⇒ ∫
b

a
f(t)dt converge

4. f ∼
b−

g Ô⇒ ∫
b

a
f(t)dt et ∫

b

a
g(t)dt

sont de même nature.

Remarque 2.1. ∎ Si f ∶ [a,+∞[ Ð→ R est cpm et f(t) ÐÐÐ→
t→+∞

ℓ ∈ R∗ ∪ {+∞}, alors ∫
+∞

a
f(t)dt diverge.
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Proposition 2.1. comparaison aux intégrales de Riemann

1. Soit a ∈ R et f ∶ [a,+∞[ Ð→ R cpm et positive.

a. S’il existe α > 1 tel que tαf(t) ÐÐÐ→
t→+∞

0, alors ∫
+∞

a
f(t)dt converge.

b. S’il existe α ≤ 1 et ℓ ∈ R∗
+
∪ { +∞} tel que tαf(t) ÐÐÐ→

t→+∞
ℓ, alors ∫

+∞

a
f(t)dt diverge.

2. Soit a ∈ R et f ∶ ]0, a] Ð→ R cpm et positive.

a. S’il existe α < 1 tel que tαf(t) ÐÐÐ→
t→0+

0, alors ∫
a

0
f(t)dt converge.

b. S’il existe α ≥ 1 et ℓ ∈ R∗
+
∪ { +∞} tel que tαf(t) ÐÐÐ→

t→0+
ℓ, alors ∫

a

0
f(t)dt diverge.

Théorème 2.3. comparaison série-intégrale

Soit f une fonction cpm, positive et décroissante sur [n0,+∞[ avec n0 ∈ N.

∫
+∞

n0
f(t)dt converge ⇐⇒ ∑

n≥n0

f(n) converge.

Définition 2.1. fonction intégrable

On dit qu’une fonction f ∶ I Ð→ K cpm est intégrable ou l’intégrale ∫
I

f(t)dt converge absolument lorsque

l’intégrale ∫
I
∣f(t)∣dt converge.

Théorème 2.4. fonction intégrable vs convergence de son intégrale

Si f ∶ I Ð→ K est cpm et intégrable sur I alors 1 l’intégrale ∫
I

f(t)dt converge et ∣∫
I

f(t)dt∣ ≤ ∫
I
∣f(t)∣dt .

1. La réciproque est fausse.

Théorème 2.5. domination

Soit f ∶ I Ð→ K, φ ∶ I Ð→ R+ cpm. ∀t ∈ I, ∣f(t)∣ ≤ φ(t) et φ intégrable sur I Ô⇒ f intégrable sur I .

Théorème 2.6. inégalité de Cauchy-Schwarz

Soit f, g ∶ I Ð→ C cpm de carrés intégrables i.e. f2 et g2 sont intégrables.

∣∫
I
∣f(t)g(t)∣dt∣ ≤

√
∫

I
∣f(t)∣2dt

√
∫

I
∣g(t)∣2dt.

Théorème 2.7. intégration des relations de comparaison

Soient a ∈ R, b ∈ R ∪ {+∞} tels que a < b et f ∶ [a, b[ Ð→ K, g ∶ [a, b[ Ð→ R deux fonctions cpm.

1. On suppose g positive et intégrable sur [a, b[.

a. f =
b−

O(g) Ô⇒ f intégrable sur [a, b[ et ∫
b

x
f =

x→b−
O (∫

b

x
g).

b. f =
b−

o(g) Ô⇒ f intégrable sur [a, b[ et ∫
b

x
f =

x→b−
o(∫

b

x
g).

c. f ∼
b−

gÔ⇒ f intégrable sur [a, b[ et ∫
b

x
f ∼

x→b−
∫

b

x
g.

2. On suppose g positive et non intégrable sur [a, b[.

a. f =
b−

O(g) Ô⇒ ∫
x

a
f =

x→b−
O (∫

x

a
g).

b. f =
b−

o(g) Ô⇒ ∫
x

a
f =

x→b−
o(∫

x

a
g).

c. f ∼
b−

gÔ⇒ ∫
x

a
f ∼

x→b−
∫

x

a
g.
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3 Calcul d’intégrales généralisées

Théorème 3.1. changement de variable généralisé

Soit f ∶ I Ð→ K continue et φ ∶ J Ð→ I une bijection de classe C1.

∫
I

f(t)dt converge si, et seulement si, ∫
J

f(φ(t))∣φ′(t)∣dt converge.

Dans ce cas, ∫
I

f(t)dt = ∫
J

f(φ(t))∣φ′(t)∣dt .

Remarque 3.1. ∎ f intégrable sur I si, et seulement si, f ○ φ × ∣φ′∣ intégrable sur J .

Théorème 3.2. intégration par parties généralisée

Soit u, v ∶ I Ð→ K de classe C1 telles que le produit uv admet admet une limite finie en les extrémités ouvertes
a et b de I, avec a < b et (a, b) ∈ R2.

∫
I

u′(t)v(t)dt converge si, et seulement si, ∫
I

u(t)v′(t)dt converge.

Dans ce cas, ∫
I

u′(t)v(t)dt = [u(t)v(t)]
b

a
− ∫

I
u(t)v′(t)dt .

4 Une sélection d’exercices

Exercice 4.1 : Déterminer la nature des intégrales suivantes :

1. ∫
+∞

0

t + 1
t4 + 1

dt.

2. ∫
+∞

0

arctan t

t
dt.

3. ∫
+∞

0

t

t2 + 1
dt.

4. ∫
+∞

1
t sin(1

t
)dt.

5. ∫
+∞

0
e−t2

dt.

6. ∫
+∞

1

ln t

t(t + 1)
dt.

7. ∫
+∞

1

ln t

t + 1
dt.

8. ∫
+∞

0

sin t

t3/2 dt.

9. ∫
1

0

√
1 + t − 1

t
dt.

10. ∫
1

0

1√
1 − t2

dt.

11. ∫
1

0

1
et − 1

dt.

12. ∫
1

0

ln(1 + t)
t3/2 dt.

13. ∫
1

0

t − 1
ln t

dt.

14. ∫
+∞

0
ln(1 + 1

t2 )dt.

15. ∫
1

0
ln tdt.

16. ∫
1

0

ln t

ln(t + 1)
dt.

17. ∫
+∞

0
exp(−(t2 + 1

t2 ))dt.

18. ∫
e

1

ln t

t − 1
dt.

19. ∫
1

0

1
1 − t2 dt.

20. ∫
+∞

0

ln t

t3 − 1
dt.

Exercice 4.2 : Déterminer la nature des intégrales suivantes :

1. ∫
+∞

0

arctan t

tα
dt, α ∈ R. 2. ∫

+∞

0

1 − tanh t

tα
dt, α ∈ R.

Exercice 4.3 : Calculer les intégrales suivantes :

1. ∫
+∞

1

dt

t(t + 1)
. 2. ∫

+∞

0
ln(1 + 1

t2 )dt. 3. ∫
+∞

0
e−
√

tdt.

Exercice 4.4 : Calcul à l’aide d’une récurrence.

1. Montrer que, pour tout n ∈ N, la fonction tz→ tne−t est intégrable sur [0,+∞[ et calculer ∫
+∞

0
tne−tdt.

2. Montrer que, pour tout n ≥ 1, la fonction tz→ ∣ln t∣n est intégrable sur ]0, 1] et calculer ∫
1

0
∣ln t∣ndt.

3. Montrer que, pour tout p > −1 et q ∈ N, la fonction tz→ tp(ln t)q est intégrable sur ]0, 1] et calculer ∫
1

0
tp(ln t)qdt.

Exercice 4.5 : D’après centrale PC. On pose pour n ∈ N∗, In = ∫
+∞

0

dt

(1 + t2)n
.

1. Justifier l’existence de In.

2. Déterminer une relation de récurrence entre In et In+1 et en déduire la valeur de In à l’aide de factorielles.
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Exercice 4.6 : 1. Soit α > 0 et ω ∈ R. Calculer après avoir vérifié leur convergence : C(α, ω) = ∫
+∞

0
cos(ωt)e−αtdt et

S(α, ω) = ∫
+∞

0
sin(ωt)e−αtdt.

2. Soit p et q deux réels tels que p2 < q. Calculer après avoir vérifié la convergence : I(p, q) = ∫
+∞

−∞

1
t2 + 2pt + q

dt.

Exercice 4.7 : Donner un équivalent simple de

1. ∫
1

x

dt

et −1
, x→ 0+. 2. ∫

+∞

x

dt

t3 + 1
, x→ +∞. 3. ∫

x

1

arctan t

t
dt, x→ +∞. 4. ∫

+∞

x

e−t

t
dt, x→ +∞.

Exercice 4.8 : Deux contres exemples afin d’éviter toute confusion.

1. Donner un exemple d’une fonction continue, positive et de limite nulle en +∞ mais n’est pas intégrable au voisinage de
+∞. Indication : penser à la fonction tz→ 1

t
.

2. Donner un exemple d’une fonction cpm, positive et intégrable au voisinage de +∞ mais n’a pas de limite nulle en +∞.
Indication : considérons une fonction affine par morceaux sur les intervalles [n − 1

2n
, n] et [n, n + 1

2n
] , n ∈ N∗ et nulle ailleur.

Exercice 4.9 : Soit a et b deux réels > 0.

1. Démontrer l’existence de l’intégrale I = ∫
+∞

0

e−at − e−bt

t
dt.

2. Démontrer que, pour tout ε > 0 :

∫
+∞

ε

e−at − e−bt

t
dt = ∫

bε

aε

e−t

t
dt.

3. Démontrer que la fonction tz→ e−t −1
t

peut être prolongée par continuité en 0. En déduire la valeur de I.

4. Exemple : Calculer l’intégrale ∫
1

0

t − 1
ln t

dt. Indication : utiliser un changement de variable.

Exercice 4.10 : Intégrales de Bertrand. Soit α et β deux réels. Pour tout t ≥ 2, on pose f(t) = 1
tα(ln t)β

.

1. Supposons α = 1. Montrer que l’intégrale ∫
+∞

2
f(t)dt converge si, et seulement si, β > 1.

2. Supposons α < 1. Montrer 1
t
=
+∞

O(f(t)). En déduire la nature de l’intégrale ∫
+∞

2
f(t)dt.

3. Supposons α > 1. Chercher un réel γ > 1 tel que f(t) =
+∞

o( 1
tγ
). En déduire la nature de l’intégrale ∫

+∞

2
f(t)dt.

4. En déduire ∫
+∞

2

dt

tα(ln t)β
converge ⇐⇒ α > 1 ou (α = 1 et β > 1).

5. En déduire ∫
1/2

0

dt

tα∣ln t∣β
converge ⇐⇒ α < 1 ou (α = 1 et β > 1). Indication : utiliser un changement de variable.

Exercice 4.11 : Intégrales d’Euler. On pose I = ∫
π
2

0
ln (sin t)dt et J = ∫

π
2

0
ln (cos t)dt.

1. Montrer que les intégrales I et J sont bien définies et égales.
2. En étudiant I + J , calculer I et J .

3. Exemple : Calculer l’intégrale ∫
π
2

0

t

tan t
dt. Indication : utiliser le changement de variable u = π

2
− t.

Exercice 4.12 : Calculer, à l’aide d’un changement de variable, les intégrales suivantes :

1. I(a) = ∫
+∞

0

ln t

a2 + t2 dt, a > 0. 2. I(a) = ∫
+∞

0

dt

(1 + t2)(1 + ta)
, a ∈ R. 3. I(a, b) = ∫

b

a

dt√
(b − t)(t − a)

, a < b.

Exercice 4.13 : Intégrale de Dirichlet : une intégrale convergente mais ne converge pas absolument.

1. Soit x > 1. Montrer ∫
x

1
f(t)dt = cos 1 − cos x

x
− ∫

x

1

cos t

t2 dt. En déduire que l’intégrale ∫
+∞

0

sin t

t
dt est converge.

2. Soit n ∈ N∗. Montrer ∫
nπ

0
∣ sin t

t
∣dt ≥ 2

π

n

∑
k=1

1
k

. En déduire que l’intégrale ∫
+∞

0

sin t

t
dt ne converge pas absolument.

Exercice 4.14 : Calculer, pour tout n ∈ N, l’intégrale In = ∫
+∞

0
tn e−t2

dt. Indication : on donne I0 =
√

π

2
.

6 / 6 Binyze Mohamed

https://supsp%C3%A9.com

	Intégrales généralisées
	Intégrabilité
	Calcul d'intégrales généralisées
	Une sélection d'exercices

