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Dans ce chapitre et sauf mentionné, la notation K désigne R ou C et I,J des intervalles non vides de R.

Intégrales généralisées

Intégration sur [a,b[
Soit a un réel et be Ru {+oo} tel que a < b.
( Définition 1.1. intégration sur [a,b]

On dit que I'intégrale d'une fonction f : [a,b[ — K cpm converge si l’intégrale partielle I(x) = f f(t)dt

définie pour x € [a,b] admet une limite finie quand = — b~. Dans ce cas, A ’ f(t)dt def liril_ [ f()de |

Sinon, on dit que 'intégrale [[ [f(t)dt diverge.
a,b
( Théoreme 1.1. cas des fonctions continues

Soit f : [a,b] — K une fonction continue de primitive F'. L’intégrale [[ .’ f(t)dt converge si, et seulement si,

)

b
F(z) admet une limite finie quand = — b~. Dans ce cas, /[ " f@)dt = linlf)l_ F(z)-F(a)= [F(x)]

.

[ Théoreme 1.2. linéarité

Soient f,g: [a,b] — K cpm et X € K. Si f . f(t)dt et /{ b[g(t)dt convergent, alors /{ b[(f(t) + )\.g(t))dt

[a, ;

converge aussi. De plus f[ b[(f(t) +A.g(t))dt = /[- b[f(t)dt+ )\f[ b[g(t)dt ;
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( Théoréme 1.3. cas complexe

Soit f : [a,b] — C cpm.

1. Si f t)dt converge, alors f t)dt converge aussi et f t)dt = f t)dt |.
[ab[f( ) g W[f( ) g [a’b[f( ) [ b[f( )

El i

2. [[ . f(t)dt converge si, et seulement si, [[ . Ref(t)dt et [[ . Imf(t)dt convergent. Dans ce cas,

/[a,b[f(t)dtz f[ab[Re(f(t))dt+i[[ab

) )

[Im(f(t))dt .

.

( Proposition 1.1. croissance

Soient f et g:[a,b[ — R cpm telles que [[ ’ f(t)dt et [[ b[g(t)dt convergent.

1 f<g— f F(H)dt < f g(t)dt. | 2. [20— f F(H)dt > 0.
| [a,b] [a,b] [a,b]
[ Proposition 1.2. stricte positivité
Soit f : [a,b[ — R continue positive telle que f[&b[ f(t)dt converge. /[a,b[ f(t)dt =0 = f nulle sur [a,b[ |
Intégration sur ]a,b] ou sur ]a,b]
Soit a e Ru{-o0} et beR tels que a < b.
[ Définition 1.2. intégration sur ]a, b]

b
On dit que l'intégrale d’une fonction f : Ja,b] — K cpm converge si l’intégrale partielle I(x) = [ f(t)dt
T

. b
définie pour x € ]a,b] admet une limite finie quand 2 - a*. Dans ce cas, f] ’ f(t)dt C im [ fde |
a, z—at Jx

L

Soit a e Ru{-oo} et be RuU{+o0} tels que a <b.

Définition 1.3. intégration sur ]a,b[

On dit que l'intégrale d’une fonction f : Ja,b[ — K cpm conwverge si, pour tout réel ¢ dans |a, b[, les intégrales

_/] ]f(t)dt et f[ b[f(t)dt convergent. Dans ce cas, ﬂ b[f(t)dt dgff] ]f(t)dt+ ﬁ b[f(t)dt .

)

Remarque 1.1. ® Les résultats précédemments énoncés pour les intégrales sur [a,b[ se transposent aux intégrales

sur |a,b] et sur ]a,b[.
( Proposition 1.3. intégration entre deux bornes finies

Soit f : [a,b] — K cpm. Les intégrales [] 5 f()dt, [[ . f()dt et f] " f(t)dt convergent. De plus

f[a’b] f(t)dt:f]ab]f(t)dt:/[mb[f(t)dt:f]a’b[f(t)dt,

)

Remarque 1.2 (Erreur fréquente).

+o00
m Si f:[a,+o00] — R est cpm telle que f(t) P ¢ e R, alors f f(t)dt n’est pas forcément convergente.
—+00 a
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[ Définition 1.4.
Soit f: I — K cpm telle que flf(t)dt converge.

— b
Si a < b désignent les extrémités de I dans R, on pose f f)dt = /If(t)dt et f f(t)d ff(t)dt )

L

( Théoréeme 1.4. relation de Chasles

Soit f: I — K cpm. Si [ f(t)dt converge alors, pour tous a, b, ¢ points de I ou extrémités éventuelement
I

c b b c b
infinies de I, les intégrales f f(t)dt et f f(t)dt convergent et f f(t)dt=f f(t)dt+/ f)de |

.

Intégrales de référence

( Proposition 1.4. fonction exponentielle
+00 +oo
1. Soit A eR. /0 e M dt converge <= A>0. 2. Soit A e C. /0 e M dt converge <= Re()) > 0.
( Théoreme 1.5. intégrales de Riemann
+00 dt
1. Soit o e R. [ — converge <= «a < 1. 2. Soit a € R. / = converge <— « > 1.
1

dt
et [ convergent si, et seulement si, o < 1.

b
R 13. = [
emarque ; (b ~ t)‘)‘

dt
(t-a)

Intégrabilité

Les résultats qui suivent sont présentés pour ’étude de la convergence de I'intégrale d’une fonction sur un inter-

valle [a,b[. Il peuvent aisément se transposer aux intégrales sur ]a,b] ou sur ]a,b[.

Soit a e R et be Ru{+oo} tels que a < b.

( Théoréeme 2.1. intégrale d’une fonction positive

b T
Soit f:[a,b[ — R cpm et positive. f f(t)dt converge <= IM eR,, V€ [a,b[, f f@)dt < M|

b b 43
En revanche, si f f(t)dt diverge, alors [ f(t)dt = linba / f(t)dt = +oo.
a a T—>0" a
( Théoréeme 2.2. comparaison

Soit f,g:[a,b] — R cpm et positives.

f<yg b f z o(g) b
b — / f(t)dt converge 3. b — [ f(t)dt converge
j; g(t)dt converge a f g(t)dt converge a
f=0(9) b
2. bb = / f(t)dt converge 4. f - g = / f(t)dt et f g(t)dt
fa g(t)dt converge “ sont de méme nature.

L

+o00
Remarque 2.1. ® Si f:[a,+o0o[ — R est cpm et f(¢) P L eR* U{+oo}, alors / f(t)dt diverge.
—+00 a
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[ -y - - - -
Proposition 2.1. comparaison aux intégrales de Riemann

1. Soit a€R et f:[a,+oo[ — R cpm et positive.

+00
a. S'il existe a > 1 tel que t* f(t) pow— 0, alors f f(t)dt converge.
—>+00 a

+o0
b. S’il existe a<1let £eR} U { + oo} tel que t* f(t) P ¢, alors f f(t)dt diverge.
—+o00 a
2. Soit aeR et f:]0,a] — R cpm et positive.
a
a. S'il existe o < 1 tel que t* f(t) o 0, alors f f(t)dt converge.
-0+ 0

a
b. S'il existe a > 1 et £ e R} U{ + oo} tel que t*f(t) P ¢, alors f f(t)dt diverge.
-0t 0

L

( Théoreme 2.3. comparaison série-intégrale

Soit f une fonction cpm, positive et décroissante sur [ng,+oo| avec ng € N.

+o00
f f(¢)dt converge <= > f(n) converge.

0 n2ng

L

[ Définition 2.1. fonction intégrable

On dit qu’une fonction f: I — K cpm est intégrable ou 'intégrale flf(t)dt converge absolument lorsque

lintégrale ﬁ|f(t)|dt converge.

.

( Théoréeme 2.4. fonction intégrable vs convergence de son intégrale

< [Irat|

Si f:I — K est cpm et intégrable sur I alors! I'intégrale ff(t)dt converge et ‘ﬁf(t)dt
I

1. La réciproque est fausse.

L

{ Théoreme 2.5. domination

Soit f: I — K, p: I — R, cpm. | Vtel, |f(t)|<p(t) et ¢ intégrable sur I == f intégrable sur I |

( Théoreme 2.6. inégalité de Cauchy-Schwarz

Soit f,g: 1 —> C cpm de carrés intégrables i.e. f? et g* sont intégrables.

| firwaoia] </ [ioran/ [laora.

( Théoreme 2.7. intégration des relations de comparaison

L

Soient a € R, be Ru {+oo} tels que a<bet f:[a,b] — K, g:[a,b] — R deux fonctions cpm.

1. On suppose g positive et intégrable sur [a,b[.

a. sz_ O(g) = f intégrable sur [a,b[ et /xbf = O(/ﬂ;bg).

r—>b~

b. fb:_ o(g) = f intégrable sur [a,b[ et Lbf = o(fxbg).

r—b~

b b
c. f~g= f intégrable sur [a,b[ et / o~ f g
b T rz—b- Jx

2. On suppose g positive et non intégrable sur [a,b[.

a fb:-O(g):}[axfx:b—O([amg)' « fl;g:/axfx:b- famg'
otz = [ 5 o[
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Calcul d’intégrales généralisées

( Théoréeme 3.1. changement de variable généralisé

Soit f: I — K continue et ¢ : J —> I une bijection de classe C!.

/If(t)dt converge si, et seulement si, /Jf(cp(t))|<p'(t)|dt converge.

Dans ce cas, ﬁf(t)dtzLf(go(t))|g0'(t)|dt.

L

Remarque 3.1. B f intégrable sur [ si, et seulement si, f o ¢ x |p’| intégrable sur J.

( Théoréeme 3.2. intégration par parties généralisée
Soit u,v : I — K de classe C! telles que le produit uv admet admet une limite finie en les extrémités ouvertes
—2
aetbdel,avec a<bet (a,b)eR".

flu'(t)v(t)dt converge si, et seulement si, ﬁu(t)v'(t)dt converge.

Dans ce cas, fju'(t)v(t)dt = [u(t)v(t)]z - /Iu(t)v'(t)dt :

n Une sélection d’exercices

Exercice 4.1 : Déterminer la nature des intégrales suivantes :

‘oo 41 +to  Int 11 I Int
1. f T, 6. f 10t 11. f dt. 16. f LT
0o tt+1 1 t(t+1) 0 et-1 0o In(t+1)
+oo arctant +oo Int Ln(1 +¢) e 1
o [Ty, b [0, e (L)
o ; . Ia1 o 1372 17 ) exp t° + 2 dt
too ¢ +oo gint 1¢-1 e Int
3. f dt. 8. f SaLLp _ f t-1. [ Int
0o t2+1 o 32 13 o Int d 18. 1 t- ldt
+oo 1 LVl+t-1 +oo 1 1
4. f tsin(f)dt. 9. [ —dt. 14. f ln(l + f)dt. 19. f Ldt_
1 t 0 t 0 t2 0o 1-1¢2
) 1 1 1 +o00
. , Int
-t 10. f dt. f
. t. 15. 1 . 20. .
5 /(; € d 0 m 5 0 ntdt 0 0 t?’ ~ 1dt
Exercice 4.2 : Déterminer la nature des intégrales suivantes :
+00 t t +0oo —
1. f AL 4t aeR. 2. f I-tanht ), - og
0 t 0 te

Exercice 4.3 : Calculer les intégrales suivantes :

+o0 +00 1 +o0
1. f _ 2. f ln(1+—)dt. 3. f e Vidt.
1 t(t+1) 0 12 0

Exercice 4.4 : Calcul & 1’aide d’une récurrence.

+o00
1. Montrer que, pour tout n € N, la fonction t — t"e™* est intégrable sur [0, +oo[ et calculer f t"etdt.
0
1
2. Montrer que, pour tout n > 1, la fonction ¢t — [Int|” est intégrable sur ]0,1] et calculer [ [In¢|"dt.
0

1
3. Montrer que, pour tout p > -1 et ¢ € N, la fonction ¢t — t?(Int)? est intégrable sur ]0,1] et calculer / t?(Int)?de.
0

dt

+o00
Exercice 4.5 : D’aprés centrale PC. On pose pour n e N* [, = f —_—
(1+¢2)n

1. Justifier U'existence de I,,.

2. Déterminer une relation de récurrence entre I, et I,,1 et en déduire la valeur de I,, a I'aide de factorielles.
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+o0
Exercice 4.6 : 1. Soit @ > 0 et w € R. Calculer aprés avoir vérifié leur convergence : C(a,w) = f cos(wt)e ' dt et
0

S(a,w):fo <><)sin((,ut)e’o‘tdt.
1

+
2. Soit p et ¢ deux réels tels que p? < ¢q. Calculer aprés avoir vérifié la convergence : I(p,q) = f mdt
—oo pt+q

Exercice 4.7 : Donner un équivalent simple de

Lodt arctant +oo ot
1_[ —— -0 2. f , T — +00. 3. f ——dt, > +00. 4, f e—dt T — +00.
z et-1 T t3+

Exercice 4.8 : Deux contres exemples afin d’éviter toute confusion.

1. Donner un exemple d’une fonction continue, positive et de limite nulle en +oc0 mais n’est pas intégrable au voisinage de
+00. Indication : penser a la fonction ¢ — e
2. Donner un exemple d’une fonction cpm, positive et intégrable au voisinage de +oo mais n’a pas de limite nulle en +oo.

I C 12 . . 1 1 . .
Indication : considérons une fonction affine par morceaux sur les intervalles [n — o nlet|n,n+ o |’ n € N* et nulle ailleur.

Exercice 4.9 : Soit a et b deux réels > 0.
400 6—at _ G_bt
1. Démontrer 'existence de 'intégrale I = f 7dt.
0

too gmat _ bt be ot
J gy
€ t ag

peut étre prolongée par continuité en 0. En déduire la valeur de 1.

2. Démontrer que, pour tout € >0 :

-t

3. Démontrer que la fonction t —

Lg-1
4. Exemple : Calculer l'intégrale / ﬁdt. Indication : utiliser un changement de variable.
0 In

1

Exercice 4.10 : Intégrales de Bertrand. Soit a et 8 deux réels. Pour tout ¢ > 2, on pose f(t) = m
n

+00
1. Supposons « = 1. Montrer que 'intégrale f f(t)dt converge si, et seulement si, § > 1.
2
1 +00
2. Supposons « < 1. Montrer T O(f(t)). En déduire la nature de 'intégrale / f(t)de.
+00 2

1 +o0
3. Supposons « > 1. Chercher un réel v > 1 tel que f(t) = o (5) En déduire la nature de l'intégrale f f()de.
+o00 2

+o00 dt
4. En déduire f ————— converge <= a>1 ou (a=1et g>1).
2 to(Int)B & ( p>1)
s 2 dt s :
5. En déduire f W converge <= a <1 ou (a =1 et B> 1). Indication : utiliser un changement de variable.
0 n

Exercice 4.11 : Intégrales d’Euler. On pose [ = f “In (sint)dt et J= f “In (cost) dt.
0 0
1. Montrer que les intégrales I et J sont bien définies et égales.

2. En étudiant I + J, calculer I et J.

™

t ™
3. Exemple : Calculer l'intégrale / ’ ﬁdt. Indication : utiliser le changement de variable u = 57 t.
0 tan

Exercice 4.12 : Calculer, a ’aide d’un changement de variable, les intégrales suivantes :

1 I _ +oo h’lt d O 2. I R ' dt
_ (a)_fo mt,a> . (a) = f 1+t2)(1+ta) aeR. 3. I(a,b):fa m,ad)

Exercice 4.13 : Intégrale de Dirichlet : une intégrale convergente mais ne converge pas absolument.
. z cos T cost *o° sint
1. Soit « > 1. Montrer f f@)dt =cos1- - f Tdt En déduire que l'intégrale f Tdt est converge.
1 T 1 0
2
T

sint

sint 2l L. y +oo
Z E En déduire que l'intégrale f Tdt ne converge pas absolument.
k=1 0

2. Soit n € N*. Montrer f
0

st

+o0o
Exercice 4.14 : Calculer, pour tout n € N, 'intégrale I,, = f " et dt. Indication : on donne Iy = ?
0
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