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Séries entières, rayon de convergence

● Pour tout r ∈ R+ ∪ {+∞}, on pose
D(0, r) = {z ∈ C, ∣z∣ < r}.

● Si 0 < r < +∞, D(0, r) est le disque ouvert de centre 0 et de rayon r.
● Par abus de language, on dira que C est le disque ouvert de rayon
+∞.
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Définition 1.1 (série entière, domaine de convergence, somme).
1 On appelle série entière définie par une suite de coefficients

complexes (an)n, la série de fonctions ∑un avec
un ∶ z ∈ Cz→ anzn.

Par abus, cette série de fonctions est simplement notée ∑anzn.
2 L’ensemble

D déf= {z ∈ C, tel que la série numérique ∑anzn converge }

est appelé le domaine de convergence de la série entière ∑anzn.
3 La somme S de la série entière ∑anzn est définie sur D par

S(z) =
+∞
∑
n=0

anzn.
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� 1 La série entière ∑ zn converge pour tout z ∈ C tel que
∣z∣ < 1 et on a

+∞
∑
n=0

zn = 1
1 − z

.

2 La série entière ∑
1
n!

zn converge pour tout z ∈ C et par
définition

+∞
∑
n=0

1
n!

zn = ez.

3 ∑
1

n + 1
z2n est une série entière avec

a2n =
1

n + 1
et a2n+1 = 0 pour tout n ∈ N.
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Théorème 1.1 (lemme d’Abel).
Soit ∑anzn une série entière et z0 ∈ C non nul. Si la suite (anzn

0 )n est
bornée alors pour tout z ∈D(0, ∣z0∣), la série numérique ∑anzn est
absolument convergente.

Définition 1.2 (rayon de convergence).
On appelle rayon de convergence de la série entière ∑anzn, le nombre

R
déf= sup{r ≥ 0, (anrn)

n
bornée } ∈ R+ ∪ {+∞} .
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� 1 Soit α ∈ C∗. Pour la série entière ∑αnzn, on a :

{r ≥ 0, (αnrn)n bornée } = [0,
1
∣α∣
],

donc R = 1
∣α∣

.

2 Pour la série entière ∑
1
n!

zn, on a :

{r ≥ 0, ( 1
n!

rn)
n

bornée } = R+,

donc R = +∞.
3 Pour la série entière ∑n!zn, on a :

{r ≥ 0, (n!rn)n bornée } = {0},
donc R = 0.
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Autres définitions du rayon de convergence

+
Soit R le rayon de convergence de la série entière ∑anzn :

R = sup{r ≥ 0, ∑anrn converge}

= sup{r ≥ 0, ∑anrn converge absolument}

= sup{r ≥ 0, anrn ÐÐÐ→
n→+∞ 0}.
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Convergence simple

Théorème 1.2 (caractérisation du rayon de convergence).
Le rayon de convergence de ∑anzn est l’unique R ∈ R+ ∪ {+∞} vérifiant
les conditions suivantes :

Pour tout z ∈ C,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣z∣ < R Ô⇒ ∑anzn converge (absolument)

et

∣z∣ > R Ô⇒ ∑anzn diverge (grossièrement)

M. BINYZE (https://supspé.com) Séries entières 2025-2026 10 / 51

https://supsp%C3%A9.com


�
Rayon de convergence de la série entière ∑

zn

n2 . On a :

● Si ∣z∣ < 1, alors ∑
zn

n2 converge absolument car

zn

n2 =
n→+∞ o( 1

n2).

● Si ∣z∣ > 1, ∑
zn

n2 diverge grossièrement car

∣z∣n

n2 ÐÐÐ→n→+∞ +∞.

Ainsi, le rayon de convergence de la série entière ∑
zn

n2 égale à
1.
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Corollaire 1.1 (domaine de convergence).
Soit D le domaine de convergence de la série entière ∑anzn de rayon de
convergence R.

1 Si R = 0, alors D = {0}.
2 Si R = +∞, alors D = C.
3 Si R > 0, alors D(0, R) ⊂ D ⊂D(0, R).

Sur le cercle de centre 0 et de rayon R, les natures de ∑anzn peuvent
être diverses.
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� 1 La série entière ∑
zn

2n
converge si, et seulement si, ∣z∣ < 2.

Son rayon de convergence est 2 et pour tout z ∈ C tel que
∣z∣ = 2, la série diverge, donc D =D(0, 2).

2 La série entière ∑
zn

n2 est de rayon de convergence 1 et

converge pour tout z ∈ C tel que ∣z∣ = 1, donc D =D(0, 1).

Définition 1.3 (disque ouvert de convergence).
Si R est le rayon de convergence de ∑anzn, alors le disque D(0, R) est
appelé disque ouvert de convergence de ∑anzn.
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0
R

iR

∑anzn converge absolument

∑anzn diverge grossièrement

∑anzn de nature incertaine

R
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Convergence normale

Théorème 1.3 (convergence normale sur tout compact).
Une série entière de rayon de convergence R > 0 converge normalement, et
donc uniformément, sur1 tout compact K ⊂D(0, R).

1On n’a pas la convergence normale sur D(0, R) tout entier : la série ∑ zn

est de rayon de convergence 1 et sup
z∈D(0,1)

∣zn∣ = 1.

Corollaire 1.2 (continuité de la somme d’une série entière).
La somme d’une série entière de rayon de convergence R > 0 est continue
sur son disque ouvert de convergence.
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Calcul à partir d’un encadrement

Ò
Soit R le rayon de convergence de ∑anzn.

1 S’il existe α ≥ 0 tel que pour tout z ∈ C,
∣z∣ < α Ô⇒ ∑anzn converge absolument

alors R ≥ α.
2 S’il existe β ≥ 0 tel que pour tout z ∈ C,

∣z∣ > β Ô⇒ ∑anzn diverge
alors R ≤ β.

M. BINYZE (https://supspé.com) Séries entières 2025-2026 17 / 51

https://supsp%C3%A9.com


Règle de d’Alembert

Théorème 2.1 (règle de d’Alembert).
Soit (an)n une suite de complexes non nulle à partir d’un certain rang
telle que :

∣
an+1
an
∣ ÐÐÐ→

n→+∞ ℓ ∈ R+ ∪ { +∞}.

Alors, le rayon de convergence de ∑anzn est :

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ℓ

si ℓ ∈ ]0,+∞[

+∞ si ℓ = 0

0 si ℓ = +∞
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�
Rayon de convergence de la série entière ∑

n!
nn

zn.

Notons, pour n ∈ N, an =
n!
nn

. On a an ≠ 0 et

∣
an+1
an
∣ = (1 + 1

n
)
−n

ÐÐÐ→
n→+∞ e−1.

donc R = e.
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Un cas particulier de la règle de d’Alembert

+
Rayon de convergence de la série entière ∑(

2n

n
)z3n.

Posons, pour n ∈ N,

un(z) = (
2n

n
)z3n = (2n)!

(n!)2
z3n.

Pour z = 0, la série ∑un(z) converge et pour z ≠ 0 on a

∣
un+1(z)
un(z)

∣ = (2n + 2)(2n + 1)
(n + 1)2

∣z
3(n+1)

z3n
∣ ÐÐÐ→

n→+∞ 4∣z∣3.

● Si ∣z∣ < 3
√

1/4 alors ∑un(z) converge absolument.
● Si ∣z∣ > 3

√
1/4 alors ∑un(z) diverge grossièrement.

On en déduit R = 3
√

1/4.
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Comparaison des rayons de convergence

Théorème 2.2 (comparaison des rayons de convergence).
Soit Ra et Rb les rayons de convergence de ∑anzn et ∑ bnzn.

1 an =
n→+∞ O(bn) Ô⇒ Ra ≥ Rb.

2 ∣an∣ ∼
n→+∞ ∣bn∣ Ô⇒ Ra = Rb.

Théorème 2.3.
Les séries entières ∑

n≥0
anzn et ∑

n≥0
nanzn ont même rayon de convergence.

+
Pour tout α ∈ R, les séries∑anzn et∑nαanzn ont même rayon
de convergence.
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Combinaison linéaire

Théorème 3.1 (multiplication par un scalaire).
Soient Ra le rayon de convergence de ∑anzn et λ ∈ C. Si R est le rayon
de convergence de ∑λanzn alors

1 R = Ra si λ ≠ 0 et R = +∞ si λ = 0.
2 Pour tout z tel que ∣z∣ < R,

+∞
∑
n=0

λanzn = λ
+∞
∑
n=0

anzn .
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Théorème 3.2 (somme).
Soient Ra et Rb les rayons de convergence respectifs de ∑anzn et
∑ bnzn.
On note R le rayon de convergence de la série somme ∑(an + bn)zn.
On a :

1 R ≥min(Ra, Rb).
2 Pour tout z tel que ∣z∣ <min(Ra, Rb),

+∞
∑
n=0
(an + bn)zn =

+∞
∑
n=0

anzn +
+∞
∑
n=0

bnzn .

3 Si Ra ≠ Rb alors R =min(Ra, Rb).
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Produit de Cauchy de séries entières

Définition 3.1 (produit de Cauchy).
On appelle produit de Cauchy des séries entières ∑anzn et ∑ bnzn la
série entière ∑ cnzn avec

cn = ∑
i+j=n

aibj =
n

∑
k=0

akbn−k pour tout n ∈ N .
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Théorème 3.3.
Soient Ra et Rb les rayons de convergence respectifs de ∑anzn et
∑ bnzn.
On note R le rayon de convergence de la série entière ∑ cnzn.
On a :

1 R ≥min(Ra, Rb).
2 Pour tout z tel que ∣z∣ <min(Ra, Rb),

+∞
∑
n=0

cnzn = (
+∞
∑
n=0

anzn)(
+∞
∑
n=0

bnzn) .
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Convergence

Désormais, nous étudions les séries entières de la variable réelle, i.e. de la
forme ∑anxn pour x ∈ R.

Théorème 4.1.
Si ∑anxn est de rayon de convergence R > 0 alors

1 ∣x∣ < R Ô⇒ ∑anxn converge absolument.
2 ∣x∣ > R Ô⇒ ∑anxn diverge grossièrement.

+
L’ensemble

D déf= {x ∈ R, tel que la série numérique ∑anxn converge }

vérifie : ]−R, R[ ⊂ D ⊂ [−R, R].
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Définition 4.1 (intervalle ouvert de convergence).
L’intervalle ]−R, R[ est appelé intervalle ouvert de convergence de la
série ∑anxn.

Théorème 4.2 (convergence normale sur tout compact).
Une série entière de rayon de convergence R > 0 converge normalement, et
donc uniformément, sur tout compact K ⊂ ]−R, R[. En particulier, sur
tout segment [a, b] ⊂ ]−R, R[.

Corollaire 4.1 (continuité de la somme d’une série entière).
La somme d’une série entière de rayon de convergence R > 0 est continue
sur son intervalle ouvert de convergence.
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Intégration

Définition 4.2 (série entière primitive).
On appelle série entière primitive de ∑

n≥0
anxn la série entière

∑
n≥0

an

n + 1
xn+1.

Proposition 4.1.

∑
n≥0

anxn et ∑
n≥0

an

n + 1
xn+1 ont même rayon de convergence.
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Théorème 4.3 (intégration d’une série entière).
Soit ∑anxn une série entière de rayon de convergence R > 0 et

f ∶ xz→
+∞
∑
n=0

anxn sa somme.

1 Pour tout segment [a, b] ⊂ ]−R, R[,

∫
b

a
(
+∞
∑
n=0

antn)dt =
+∞
∑
n=0
(∫

b

a
antndt) .

2 Une primitive sur ]−R, R[ de f est

∫
x

0
(
+∞
∑
n=0

antn)dt =
+∞
∑
n=0

an

n + 1
xn+1 pour tout x ∈ ]−R, R[ .
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� 1 Pour tout x ∈ ]−1, 1[ , 1
1 − x

=
+∞
∑
n=0

xn (série géométrique).

Par intégration terme à terme :
∀x ∈ ]−1, 1[ , ln(1 − x) = −∫

x

0

dt

1 − t

= −
+∞
∑
n=0

1
n + 1

xn+1

= −
+∞
∑
n=1

1
n

xn.

2 Pour tout x ∈ ]−1, 1[ , 1
1 + x2 =

+∞
∑
n=0
(−1)nx2n (série

géométrique). Par intégration terme à terme :
∀x ∈ ]−1, 1[ , arctan(x) = ∫

x

0

dt

1 + t2

=
+∞
∑
n=0

(−1)n

2n + 1
x2n+1.
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Dérivation

Définition 4.3 (série entière dérivée).
On appelle série entière dérivée de ∑

n≥0
anxn la série entière

∑
n≥1

nanxn−1 = ∑
n≥0
(n + 1)an+1xn.

Proposition 4.2.
∑
n≥0

anxn et ∑
n≥1

nanxn−1 ont même rayon de convergence.
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Théorème 4.4 (dérivation d’une série entière).
Soit ∑anxn une série entière de rayon de convergence R > 0 et

f ∶ xz→
+∞
∑
n=0

anxn sa somme.

1 f est de classe C∞ sur ]−R, R[ et

∀x ∈ ]−R, R[ ,∀k ∈ N, f (k)(x) =
+∞
∑
n=k

k!(n
k
)anxn−k

=
+∞
∑
n=0

k!(n + k

k
)an+kxn

.

2 ∀n ∈ N, an =
f (n)(0)

n!
.
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Corollaire 4.2 (unicité des coefficients d’une série entière).
Soient ∑anxn et ∑ bnxn deux séries entières de rayons de convergence
strictement positif.

∃α > 0, ∀x ∈ ]−α, α[ ,
+∞
∑
n=0

anxn =
+∞
∑
n=0

bnxn Ô⇒ ∀n ∈ N, an = bn .

+
∑anxn une série entière de rayon de convergence R > 0 et f ∶

xz→
+∞
∑
n=0

anxn sa somme.

● f est paire si, et seulement si, ∀p ∈ N, a2p+1 = 0.
● f est impaire si, et seulement si, ∀p ∈ N, a2p = 0.
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Fonctions développable en série entière

Dans ce paragraphe, I désigne un intervalle de R tel que 0 ∈ I.

Définition 5.1 (fonction développable en série entière).
1 On dit que f ∶ I Ð→ C est développable en série entière (DSE) sur
]−r, r[ ⊂ I s’il existe une série entière ∑anxn telle que1

∀x ∈ ]−r, r[ , ∑anxn converge et f(x) =
+∞
∑
n=0

anxn .

2 On dit que f ∶D(0, r) Ð→ C est DSE (en 0), s’il existe 0 < α ≤ r et
une série entière ∑anzn telle que

∀z ∈D(0, α), ∑anzn converge et f(z) =
+∞
∑
n=0

anzn .

1Cette série entière est nécessairement de rayon de convergence R ≥ r.
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� 1 z z→ 1
1 − z

est DSE sur D(0, 1).

2 z z→ ez est DSE sur C
3 xz→ eax où a ∈ C est DSE sur R.

�
∀x ∈ R, eix =

+∞
∑
n=0

in

n!
xn, donc les fonctions cos et sin sont DSE

sur R avec :

∀x ∈ R, cos x = eix + e−ix

2
=
+∞
∑
n=0

(−1)n

(2n)!
x2n

et

sin x = eix − e−ix

2i
=
+∞
∑
n=0

(−1)n

(2n + 1)!
x2n+1.
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�
∀x ∈ R, ex =

+∞
∑
n=0

1
n!

xn, donc les fonctions cosh et sinh sont DSE

sur R avec :

∀x ∈ R, cosh x = ex + e−x

2
=
+∞
∑
n=0

1
(2n)!

x2n

et

sinh x = ex − e−x

2
=
+∞
∑
n=0

1
(2n + 1)!

x2n+1.
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Proposition 5.1 (DSE d’une primitive).

Si f ∶ I Ð→ C est DSE sur ]−r, r[ avec f(x) =
+∞
∑
n=0

anxn alors les primitives

F de f le sont aussi avec

F (x) = F (0) +
+∞
∑
n=0

an

n + 1
xn+1 pour tout x ∈ ]−r, r[ .
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Série de Taylor

Définition 5.2 (série de Taylor).
On appelle série de Taylor (en 0) d’une fonction f ∶ I Ð→ C de classe

C∞ la série entière ∑
f (n)(0)

n!
xn.

Théorème 5.1 (régularité d’une fonction DSE).

Si f ∶ I Ð→ C est DSE sur ]−r, r[ avec f(x) =
+∞
∑
n=0

anxn alors1 f est de

classe C∞ sur ]−r, r[ et

∀n ∈ N, an =
f (n)(0)

n!
.

1Attention la réciproque est fausse : une fonction de classe C∞ n’est pas
nécessairement DSE.
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Développement du binôme (1 + x)α

Théorème 5.2 (développement du binôme (1 + x)α).
Pour tout α ∈ R, la fonction xz→ (1 + x)α est DSE sur ]−1, 1[ et pour
tout x ∈ ]−1, 1[, on a :

(1 + x)α =
+∞
∑
n=0

α(α − 1) . . . (α − n + 1)
n!

xn

= 1 +
+∞
∑
n=1

α(α − 1) . . . (α − n + 1)
n!

xn

.

M. BINYZE (https://supspé.com) Séries entières 2025-2026 42 / 51

https://supsp%C3%A9.com


�
La fonction x z→ arcsin x est dérivable sur ]−1, 1[ et
(arcsin x)′ = 1√

1 − x2
. Or pour tout x ∈ ]−1, 1[, on a :

1√
1 − x2

= (1 − x2)
−1
2

=
+∞
∑
n=0

n termes
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
−1
2
(−1

2
− 1) . . .(−1

2
− n + 1)

n!
(−x2)n

=
+∞
∑
n=0

1
2
× 3

2
× 5

2
× . . . × 2n − 1

2
n!

x2n.
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�
Mais,

1
2
× 3

2
× 5

2
× . . . × 2n − 1

2
n!

= 1 × 2 × 3 × 4 × . . . × (2n − 2) × (2n − 1) × (2n)
2n(2 × 4 × . . . × (2n))n!

= (2n)!
22n(n!)2

.

Ainsi, xz→ arcsin x est DSE sur ]−1, 1[ et par intégration terme
à terme on a :
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�
∀x ∈ ]−1, 1[ , arcsin x = ∫

x

0
(arcsin t)′dt

= ∫
x

0

+∞
∑
n=0

(2n)!
22n(n!)2

t2ndt

=
+∞
∑
n=0

(2n)!
(2n + 1)22n(n!)2

x2n+1.
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Calcul de développements en série entière en
exploitant une équation différentielle

�
Développement en série entière de f ∶ xz→ arcsin x√

1 − x2
.

● Les fonctions xz→ 1√
1 − x2

et xz→ arcsin x sont DSE

sur ]−1, 1[ donc f l’est aussi par produit. De plus, f est
dérivable sur ]−1, 1[ et

f ′(x) = 1
1 − x2 +

x arcsin x

(1 − x2)3/2
.

● f vérifie l’EDL1 :
(1 − x2)y′ − xy = 1.

Or f étant impaire, son DSE sur ]−1, 1[ peut s’écrire

f(x) =
+∞
∑
n=0

anx2n+1.
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� ● Par dérivation de série entière sur ]−1, 1[, on a

f ′(x) =
+∞
∑
n=0
(2n + 1)anx2n.

La relation (1 − x2)f ′(x) − xf(x) = 1 donne alors

a0 +
+∞
∑
n=0
((2n + 3)an+1 − (2n + 2)an)x2n+2 = 1.

● Par unicité des coefficients d’un développement en série
entière :

a0 = 1 et ∀n ∈ N, an+1 =
2n + 2
2n + 3

an.

Ainsi ∀n ∈ N, an =
(2nn!)2

(2n + 1)!
.

Finalement, pour tout x ∈ ]−1, 1[ , f(x) =
+∞
∑
n=0

(2nn!)2

(2n + 1)!
x2n+1.
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�
Développement en série entière de f ∶ xz→ e−x2

∫
x

0
et2

dt.

● Les fonctions xz→ e−x2 et xz→ ex2 sont DSE sur R donc
la fonction xz→ ∫

x

0
et2

dt l’est aussi comme primitive
d’une fonction DSE. Enfin f l’est également comme
produit de deux fonctions DSE.
● f vérifie l’EDL1 :

y′ + 2xy = 1.
Or f étant impaire, son DSE sur R peut s’écrire

f(x) =
+∞
∑
n=0

anx2n+1.
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� ● Par dérivation de série entière sur R, on a

f ′(x) =
+∞
∑
n=0
(2n + 1)anx2n.

La relation f ′(x) + 2xf(x) = 1 donne alors

a0 +
+∞
∑
n=1
((2n + 1)an + 2an−1)x2n = 1.

● Par unicité des coefficients d’un développement en série
entière :

a0 = 1 et ∀n ≥ 1, an =
−2

2n + 1
an−1.

Ainsi ∀n ∈ N, an = (−1)n 22nn!
(2n + 1)!

.

Finalement, pour tout x ∈ R, f(x) =
+∞
∑
n=0
(−1)n 22nn!

(2n + 1)!
x2n+1.
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Développements en séries entières des fonctions usuelles
1

1 − x
=
+∞
∑
n=0

xn sur ]−1, 1[ ln(1 − x) = −
+∞
∑
n=1

1
n

xn sur ]−1, 1[

ex =
+∞
∑
n=0

1
n!

xn sur R cos x =
+∞
∑
n=0

(−1)n

(2n)!
x2n sur R

sin x =
+∞
∑
n=0

(−1)n

(2n + 1)!
x2n+1 sur R cosh x =

+∞
∑
n=0

1
(2n)!

x2n sur R

sinh x =
+∞
∑
n=0

1
(2n + 1)!

x2n+1 sur R (1 + x)α =
+∞
∑
n=0

α(α − 1) . . . (α − n + 1)
n!

xn sur ]−1, 1[
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