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@ Convergence des séries entiéres
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Séries entiéres, rayon de convergence

® Pour tout 7 € R* U {+00}, on pose
D(0,r)={z€C, |¢|<r}.
® Si0<r<+oo, D(0,r) est le disque ouvert de centre 0 et de rayon r.

® Par abus de language, on dira que C est le disque ouvert de rayon

+00.
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Définition 11 (série entiére, domaine de convergence, somme).

On appelle série entiére définie par une suite de coefficients
complexes (ay)n, la série de fonctions Zun avec

Up 2 € C— a,2".
Par abus, cette série de fonctions est simplement notée Zanz".
L'ensemble

déf - -
D = {z e C, tel que la série numérique Zanz” converge }

est appelé le domaine de convergence de la série entiére Zanz".

La somme S de la série entiere Zanz" est définie sur D par

+00
S(z) =) anz".
n=0
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@ La série entiere Zz" converge pour tout z € C tel que
|z] <1 eton a

a5
3
—_

" . 1
La série entiere Z —'z" converge pour tout z € C et par
n!

définition

DY

2%™ est une série entiére avec
n+1

Aon = et agny1 =0 pour tout n € N.

n+1
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Théoreme 1.1 (lemme d'Abel).

Soit Zanz” une série entiere et zg € C non nul. Si la suite (anzg)n est

bornée alors pour tout z € D(0, |z|), la série numérique > a,2" est
absolument convergente.

| \

Définition 1.2 (rayon de convergence).

On appelle rayon de convergence de la série entiére Zanz”, le nombre

R sup {r >0, (anr”)n bornée } eRY U {+00} [
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@ Soit a € C*. Pour la série entiére ) 2", on a :
, 1
{r >0, (a"r™), bornée } = [0, —]
|af
1
donc R= —.
o

L. “ 1
Pour la série entiere Z—z", on a:
n!
1 n 4 +
{r >0, | —r bornée } =R",
n! n
donc R = +o0.
Pour la série entiere Zn!zn, on a:
{r >0, (n!lr™), bornée } = {0}
donc R =0.
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Autres définitions du rayon de convergence
o Soit R le rayon de convergence de la série entiere Zanz" :

R =sup {r >0, > apr” converge}

sup {7“ >0, Z anr" converge absolument}

sup {7" >0, a,r" —— O}.

n—+o0o
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Convergence simple

réeme 1.2 (caractérisation du rayon de convergence).

Le rayon de convergence de Z apz" est I'unique R € R U {+o0} vérifiant
les conditions suivantes :

|zl <R == ) anz" converge (absolument)
Pour tout z € C, et

|z2|>R = ) anz" diverge (grossiérement)
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n
Z.c o5 z
@ Rayon de convergence de la série entiere E = On a:
n

n
. z
* Silz|<1,alors ) — converge absolument car
n

z" 1
— = o|l—=)
n2 n—+oo n2

n
. z . o5
° Silz|>1, ) — diverge grossierement car
n

2"
3 o +00.
n

- Z.q o z R
Ainsi, le rayon de convergence de la série entiere Z — égale a
n
1.
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Corollaire 1.1 (domaine de convergence).

Soit D le domaine de convergence de la série entiere Z anz" de rayon de
convergence R.

SiR=0, alors D = {0}
Si R=+00, alors D =C.
SiR>0, alors D(0,R) c D c D(0,R).

Sur le cercle de centre O et de rayon R, les natures de Z anz" peuvent
étre diverses.
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@ s Z" : :
La série entiére ) on converge si, et seulement si, |z| < 2.

Son rayon de convergence est 2 et pour tout z € C tel que
|z| = 2, la série diverge, donc D = D(0,2).

n
L. 25 z
La série entiere Z — est de rayon de convergence 1 et
n

converge pour tout z € C tel que |z| =1, donc D = D(0,1).

Définition 1.3 (disque ouvert de convergence).

Si R est le rayon de convergence de Zanz”, alors le disque D(0, R) est
appelé disque ouvert de convergence de Zanzn
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0 N iRy
> an2" diverge grossierement

-
\ P e VO >~ an2" converge absolument
£ d ~
* -~
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. .
. .
. .
. [y
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Convergence normale

Théoreme 1.3 (convergence normale sur tout compact).

Une série entiére de rayon de convergence R >0 converge normalement, et
donc uniformément, sur' tout compact K c D(0, R).

'On n'a pas la convergence normale sur D(0, R) tout entier : la série ). 2"

est de rayon de convergence 1 et sup [z"|=1.
2eD(0,1)

Corollaire 1.2 (continuité de la somme d’une série entiére).

La somme d’une série entiére de rayon de convergence R > 0 est continue
sur son disque ouvert de convergence.
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© Calcul du rayon de convergence
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Calcul a partir d’un encadrement

0{} Soit R le rayon de convergence de > a,z".
o] S'il existe o > 0 tel que pour tout z € C,

|zl <o = > anz" converge absolument
alors R > «.
S'il existe 8 >0 tel que pour tout z € C,
2] > = > anz" diverge
alors R < (5.
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Regle de d’Alembert

Théoréeme 2.1 (régle de d’AIembert).

Soit (an)n une suite de complexes non nulle a partir d’un certain rang
telle que :

Gn+1

—>£eR+u{+oo}.

Qg n—+oo

Alors, le rayon de convergence de Z anz" est :

si £€]0,+o0o[

R=1\ too si £=0

0 si =400
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Notons, pour n € N, a,

an+1
an,

donc R =e.

supspé.com)

N

Rayon de convergence de la série entiere Z

n!

|

n!

=—.0Onaa,#0et
nn

1 -n
1+—)
n

—_— e
n—>+00

Séries entiéres

n

=1

.zn
n
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Un cas particulier de la régle de d’Alembert

o Rayon de convergence de la série entiere Z(

Posons, pour n € N,

o=

Pour z =0, la série )" u,(z) converge et pour z # 0 on a

271)23”'
n

_(2n+2)(2n+1)
- (n+1)2

un+1(z) Z3(n+1)

un(2)

Z3n

* Si|z| < {/1/4 alors > uy,(z) converge absolument.
* Silz|> /1/4 alors > u,(z) diverge grossiérement.
On en déduit R = J/1/4.
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Comparaison des rayons de convergence

Théoréme 2.2 (comparaison des rayons de convergence).

Soit R, et Ry, les rayons de convergence de ) anz" et ) bpz".
ap = O(bn) =— R,>Ry.
n—>+00

—+

|an| ~ |bn| = R, =Ry.
n—>+00

| A

Théoréeme 2.3.

Les séries entiéres )" anz" et Y  nanz" ont méme rayon de convergence.
n>0 n>0

Pour tout v € R, les séries Y a,2" et ) n%ayz" ont méme rayon
de convergence.
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© Opérations sur les séries entieres
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Combinaison linéaire

me 3.1 (multiplication par un scalaire).

Soient R, le rayon de convergence de Zanz" et A\eC. Si R est le rayon
de convergence de Z Aa,z" alors

R=R,siAN+0 et R=+00 si A=0.
Pour tout z tel que |z| < R,

+o00 +o00
2 Aapz" =\ Z anz™ |
n=0 n=0
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Théoreme 32 (somme).

Soient R, et Ry les rayons de convergence respectifs de Z anz" et
Z b, 2".

On note R le rayon de convergence de la série somme ) (ay, + b, )z".
On a:

R >min(R,, Ry).
Pour tout z tel que |z| < min(R,, Rp),

+00 +00 +00

an +b,)2" = a2 + Y bn2" |
Z( n n n n
n=0 n=0 n=0

Si R, # Ry alors R = min(R,, Ry).
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Produit de Cauchy de séries entiéres

Définition 3.1 (produit de Cauchy).

On appelle produit de Cauchy des séries entieres > a,z" et > b,z" la
série entiére chz” avec

n
cn= Y, aibj= ) apby_j pour tout n €N |
i+j=n k=0
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Théoréme 3.3.

Soient R, et Ry les rayons de convergence respectifs de Z anz" et
Z by z".

On note R le rayon de convergence de la série entiére Z cn2".
Ona:

R >min(R,, Ry).
Pour tout z tel que |z| < min(R,, Rp),

+00 +o0 +00
Z et = (Z anz") (Z bnzn) .
n=0 n=0 n=0
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@ Série entiere d’une variable réelle
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Convergence

Désormais, nous étudions les séries entieres de la variable réelle, i.e. de la
forme )" anz" pour z € R.

Théoreme 4.1.
Si Z anx" est de rayon de convergence R > 0 alors

|lt|] <R == ) ana™ converge absolument.

|z| >R == ) anz" diverge grossiérement.

o L'ensemble
déf . . n
D= {zeR, tel que la série numérique ) anz" converge

vérifie : |-R,R[ c D c [-R, R].

2025-2026
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Définition 4.1 (intervalle ouvert de convergence).

L'intervalle |-R, R[ est appelé intervalle ouvert de convergence de |a
série » apa™.

Théoreme 4.2 (convergence normale sur tout compact).

Une série entiére de rayon de convergence R >0 converge normalement, et
donc uniformément, sur tout compact K c |-R, R[. En particulier, sur
tout segment [a,b] c |-R, R].

Corollaire 4.1 (continuité de la somme d’une série entiére).

La somme d’une série entiére de rayon de convergence R > 0 est continue
sur son intervalle ouvert de convergence.
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Intégration

Définition 4.2 (série entiere primitive).

On appelle série entiére primitive de Z anx" la série entiere

n>0
an n+l1

Z apx" et Z a:’”l ont méme rayon de convergence.

2025-2026
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Théoreme 4.3 (intégration d’une série entiére).

Soit Z an,x" une série entiére de rayon de convergence R > 0 et
+00
fiz+— > a,z™ sa somme.
n=0
Pour tout segment [a,b] c |-R, R],

F(Ee)- 5

n=0

Une primitive sur |-R, R| de f est

+00

x [ +o0 a
apt™ | dt = " _ 2" pour tout x € |-R, R |.
[0 (Y;) " ) HZ:% n+1 P ] [

2025-2026
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1 +00
@ Pour tout z € ]-1,1[, —— = > 2" (série géométrique).

-z n=0
Par intégration terme a terme :

z dt
Voel]-1,1], In(1- :—f —
110, (1 -2) == [* ==
+00 1 1
_ o
mon+1
+00 1
__ Z )
n=1T
1 +00 9
A Pour tout € ]-1,1[, = -1)"x“™ (série
B AL e = LD (
géométrique). Par intégration terme a terme :

z dt
Vze]-1,1[, arctan(z) = [0 T
n

2025-2026
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Dérivation

Définition 43 (série entiere dérivée).

On appelle série entiere dérivée de Z a,x" la série entiére

n>0
Z napz™ ! = Z (n+1)apz"™.
nx1 n>0

Proposition 4.2.

> anz” et Y nanx™ "t ont méme rayon de convergence.
n>0 n>1
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Théoreme 4.4 (dérivation d’une série entiére).

Soit Z anx" une série entiére de rayon de convergence R >0 et

+o00
fixz— > ana" sa somme.
n=0

[ est de classe C*° sur |-R, R[ et

+o00
Vo e]-R,R[,VkeN, fF(z) =Y k!(Z)anx”_k

n=k
+00
= Z k!(n ; k)an+kx
n=0
(n)
VneN, a, = f—l(()) .
n!
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Corollaire 4.2 (unicité des coefficients d’une série entiére).

Soient Z anpx" et Z bpx" deux séries entiéres de rayons de convergence
strictement positif.

+0oo +00
Ja>0, Vrel-a,qf, Zanx": anx” = VneN, a,=0by, |
n=0 n=0

+o00

o Ean:v” une série entiere de rayon de convergence R > 0 et f:

x— Y apz” sa somme.
n=0
® f est paire si, et seulement si, Vp e N, agp.1 =0.

® f est impaire si, et seulement si, Vp e N, ag, = 0.

M. BINYZE (https://supspé.com) Séries entiéres 2025-2026


https://supsp%C3%A9.com

© Développement d'une fonction en série entiére
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Fonctions développable en série entiere

Dans ce paragraphe, I désigne un intervalle de R tel que 0 € [I.

Définition 5.1 (fonction développable en série entiére).

On dit que f: I — C est développable en série entiére (DSE) sur
]-r,r[ c I s'il existe une série entiére »_ a,z” telle que

On dit

+00
Vo el-rr[, Zan:r" converge et f(z)= Z ana” |

n=0

que f: D(0,7) — C est DSE (en 0), s'il existe 0 < «

une série entiere Zanz" telle que

+o00
VzeD(0,a), Y anz" converge et f(z)=) anz"|

n=0

!Cette série entiére est nécessairement de rayon de convergence R > 7.

<ret
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1
@ H:z:—
1

est DSE sur D(0,1).
-z

z —> e® est DSE sur C
z — e ou aq € C est DSE sur R.

. Pl L . .
@ VreR, €% = Z —'x”, donc les fonctions cos et sin sont DSE
n=0 10
sur R avec :
eix+e—ix +00 (_1)n
VreR, cosx = =Z( )" on
2 n=0 (277’)'
et
) B eia: _e—ix ~ +00 (_1)n P
sing = —— = Z —_ :
2i = (2n+1)!
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+00

1
@ VzeR, e” =) —a", donc les fonctions cosh et sinh sont DSE

n=0 n!
sur R avec :
ef+e® = 1
Vz eR, coshz = Z "
2 (2n)'
et
T _ efw +00 1

. e
sinhz = 2

2 Z(@n+1)
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Pl‘OpOSitiOI’I 5.1 (DSE d’une primitive).

+00
Si f:1—> C est DSE sur ]-r,r[ avec f(z) =) anz™ alors les primitives
n=0
F de f le sont aussi avec
+00 a
F(z)=F(0)+ Y ——a""! pour tout x € ]-r,r[ |
on+1
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Série de Taylor

Définition 5.2 (série de Taylor).

On appelle série de Taylor (en 0) d'une fonction f: I — C de classe

o f™©) ,
C® la série entiere ZTx :

Théoreme 5.1 (régularité d’une fonction DSE).

+o00

Si f:I— C est DSE sur ]-r,r[ avec f(z) =) ana™ alors' f est de
n=0
classe C* sur |-r,r[ et
()

VneN, ap,=——=|
n!

! Attention la réciproque est fausse : une fonction de classe C* n’est pas
nécessairement DSE.
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Développement du binéme (1 + x)*

Théoréme 5.2 (développement du binéme (1 + T)“)

Pour tout « € R, la fonction x — (1 + 2)® est DSE sur |-1,1[ et pour
tout x € |-1,1[, on a :

= -1)...(a— 1
(1+m)a :Za(a ) '(Ck n+ )xn
n=0 n.
+ 00 _ _
:1+Za(a ... (« n+1)x"
n=1 n!
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@ La fonction 2z +—— arcsinx est dérivable sur ]-1,1[ et
1
V1 -2

1 =i
V1-z2 =(1—x2)2

(arcsinx), — . Or pour tout z € ]-1,1[, on a :

n termes
-1/-1 -1
+00 7(?—1)(?—77,4‘1)
N
- , (~a?)
n=0 n.
1 3 5 2n-1
too — X — X — X X
_ 2 2 2 2 2n
= T
n=0 n!
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_Ix2x3x4x...x(2n-2)x(2n~-1) x (2n)
- 27(2x 4 x...x(2n))n!

(2n)!
= (a2

Ainsi, z — arcsinx est DSE sur ]-1, 1[ et par intégration terme
a termeon a:
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x
Vxe]-1,1[, arcsinz :f (arcsint)ldt
0
x Too 2 '
=f 2—2( gy
0 n:O2 n(n!)2

= (2n)! 2n+1

C 4 (2n+ 1)22n(n!)2
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Calcul de développements en série entiére en

exploitant une équation différentielle

, L. " arcsin x
@ Développement en série entiere de f: x +— \/:2
1-2x

. 1 .
® |es fonctions z — - et x — arcsinx sont DSE

l-=z
sur |-1,1[ donc f I'est aussi par produit. De plus, f est
dérivable sur |-1,1] et
1 T arcsin x
/
= + .
F@) = Ay

e f vérifie 'EDLI :

(1-2%)y -2y =1.
Or f étant impaire, son DSE sur |-1,1[ peut s'écrire

+00
f(.’L') — Z anx2n+1.
n=0

2025-2026
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@ * Par dérivation de série entiére sur |-1,1[, on a
+00
f'(x) = Z (2n + l)anxzn
n=0
La relation (1 - 22)f'(x) —zf(x) = 1 donne alors

+00
ap + Z ((2n +3)an+1 — (2n + 2)an)x2”+2 -1

n=0
® Par unicité des coefficients d’'un développement en série
entiére :
2n + 2
apg=1 et VneN, ap.q = Q.
2n + 3
2n!)?
Ainsi VneN, a, = u
(2n+1)!
2"n)
Finalement, pour tout z € |-1,1[, f(z) = Z 2)” )’ g2t

L (2n+1)!
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, . . a2 [T g2
@ Développement en série entiere de f: oz +——e™* f el dt.
0
a _m2 2
® Les fonctions x — ¢ etz — e’ sont DSE sur R donc
la fonction z — e'” dt I'est aussi comme primitive

0
d'une fonction DSE. Enfin f I'est également comme
produit de deux fonctions DSE.

e f vérifie 'EDL1 :
y +2xy=1.

Or f étant impaire, son DSE sur R peut s'écrire

+00
f(l‘) _ Z anx2n+1.
n=0
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@ ® Par dérivation de série entiére sur R, on a
+00

(@) => 2n+1)az™
n=0

La relation f'(x) + 2z f(x) = 1 donne alors

+00
ap+ Y. ((2n+1)a, + 2an_1)x2” =1.
n=1

® Par unicité des coefficients d’un développement en série

entiere :
-2

2n+1

apg=1 et Vn>1, a,= Ap_1-
2211

Ainsi VneN, a, = (- 1)”(2 +1)'
n

Finalement, pour tout z € R, f(z) = Z( e (2 - 1); ™
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Développements en séries entiéres des fonctions usuelles
1 +0o n +0o 1
—— =) 2" sur ]-1,1] In(l-2)=-> —a" sur |-1,1[
1-z n;) ,; n
o | oo (_1)n >
e’=> —a” sur R cosz =y, " sur R
Ao n! = (2n)!
ilnx=§ (=D)" 22 sur R coshav=+i:o 22 sur R
ns0 (2n+1)! n=0 (2n)!
+00 1 +o00 _ 1 . _ 1
sinhz =) 2 sur R[(L+2)*= Y afa-l)...(a-n+ ).7:” sur ]-1,1[
= (2n+1)! foper n!
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