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Pour tout r ∈ R+ ∪{+∞}, on pose D(0, r) = {z ∈ C, ∣z∣ < r}. Si 0 < r < +∞, D(0, r) est le disque ouvert de centre
0 et de rayon r. Par abus de language, on dira que C est le disque ouvert de rayon +∞.

1 Convergence des séries entières

Séries entières, rayon de convergence

Définition 1.1. série entière, domaine de convergence, somme

1. On appelle série entière définie par une suite de coefficients complexes (an)n, la série de fonctions ∑un

avec un ∶ z ∈ Cz→ anzn. Par abus, cette série de fonctions est simplement notée ∑anzn.

2. L’ensemble D déf= {z ∈ C, tel que la série numérique ∑anzn converge } est appelé le domaine de conver-
gence de la série entière ∑anzn.

3. La somme S de la série entière ∑anzn est définie sur D par S(z) =
+∞
∑
n=0

anzn.

Exemple 1.1. ∎ La série entière ∑ zn converge pour tout z ∈ C tel que ∣z∣ < 1 et on a
+∞
∑
n=0

zn = 1
1 − z

.

∎ La série entière ∑
1
n!

zn converge pour tout z ∈ C et par définition
+∞
∑
n=0

1
n!

zn = ez.

∎ ∑
1

n + 1
z2n est une série entière avec a2n =

1
n + 1

et a2n+1 = 0 pour tout n ∈ N.

Théorème 1.1. lemme d’Abel
Soit ∑anzn une série entière et z0 ∈ C non nul. Si la suite (anzn

0 )n est bornée alors pour tout z ∈ D(0, ∣z0∣),
la série numérique ∑anzn est absolument convergente.
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https://supspé.com 1 CONVERGENCE DES SÉRIES ENTIÈRES

Définition 1.2. rayon de convergence
On appelle rayon de convergence de la série entière ∑anzn, le nombre

R
déf= sup{r ≥ 0, (anrn)

n
bornée } ∈ R+ ∪ {+∞} .

Exemple 1.2. ∎ Soit α ∈ C∗. Pour la série entière ∑αnzn ∶ {r ≥ 0, (αnrn)n bornée } = [0,
1
∣α∣
], donc R = 1

∣α∣
.

∎ Pour la série entière ∑
1
n!

zn ∶ {r ≥ 0, ( 1
n!

rn)
n

bornée } = R+, donc R = +∞.

∎ Pour la série entière ∑n!zn ∶ {r ≥ 0, (n!rn)n bornée } = {0}, donc R = 0.

Remarque 1.1 (Autres définitions du rayon de convergence).

∎ Soit R le rayon de convergence de la série entière ∑anzn :

R = sup{r ≥ 0, ∑anrn converge} = sup{r ≥ 0, ∑anrn converge absolument} = sup{r ≥ 0, anrn ÐÐÐ→
n→+∞ 0} .

Convergence simple

Théorème 1.2. caractérisation du rayon de convergence
Le rayon de convergence de ∑anzn est l’unique R ∈ R+ ∪ {+∞} vérifiant les conditions suivantes :

Pour tout z ∈ C,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣z∣ < R Ô⇒ ∑anzn converge (absolument)
et
∣z∣ > R Ô⇒ ∑anzn diverge (grossièrement)

Exemple 1.3. ∎ Rayon de convergence de la série entière ∑
zn

n2 . On a :

• Si ∣z∣ < 1, alors ∑
zn

n2 converge absolument car zn

n2 =
n→+∞ o( 1

n2).

• Si ∣z∣ > 1, ∑
zn

n2 diverge grossièrement car ∣z∣
n

n2 ÐÐÐ→n→+∞ +∞.

Ainsi, le rayon de convergence de la série entière ∑
zn

n2 égale à 1.

Corollaire 1.1. domaine de convergence
Soit D le domaine de convergence de la série entière ∑anzn de rayon de convergence R.

1. Si R = 0, alors D = {0}.
2. Si R = +∞, alors D = C.

3. Si R > 0, alors D(0, R) ⊂ D ⊂D(0, R).

Sur le cercle de centre 0 et de rayon R, les natures de ∑anzn peuvent être diverses.

Exemple 1.4. ∎ La série entière ∑
zn

2n
converge si, et seulement si, ∣z∣ < 2. Son rayon de convergence est 2 et pour

tout z ∈ C tel que ∣z∣ = 2, la série diverge, donc D =D(0, 2).

∎ La série entière∑
zn

n2 est de rayon de convergence 1 et converge pour tout z ∈ C tel que ∣z∣ = 1, donc D =D(0, 1).

Définition 1.3. disque ouvert de convergence
Si R est le rayon de convergence de∑anzn, alors le disque D(0, R) est appelé disque ouvert de convergence
de ∑anzn.
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https://supspé.com 2 CALCUL DU RAYON DE CONVERGENCE

0
R

iR

∑anzn converge absolument

∑anzn diverge grossièrement

∑anzn de nature incertaine

R

Convergence normale

Théorème 1.3. convergence normale sur tout compact
Une série entière de rayon de convergence R > 0 converge normalement, et donc uniformément, sur 1 tout
compact K ⊂D(0, R).

1. On n’a pas la convergence normale sur D(0, R) tout entier : la série ∑ zn est de rayon de convergence 1 et sup
z∈D(0,1)

∣zn∣ = 1.

Corollaire 1.2. continuité de la somme d’une série entière
La somme d’une série entière de rayon de convergence R > 0 est continue sur son disque ouvert de convergence.

2 Calcul du rayon de convergence

Remarque 2.1 (Calcul à partir d’un encadrement).

∎ Soit R le rayon de convergence de ∑anzn.
• S’il existe α ≥ 0 tel que pour tout z ∈ C, ∣z∣ < α Ô⇒ ∑anzn converge absolument alors R ≥ α.

• S’il existe β ≥ 0 tel que pour tout z ∈ C, ∣z∣ > β Ô⇒ ∑anzn diverge alors R ≤ β.

Règle de d’Alembert

Théorème 2.1. règle de d’Alembert

Soit (an)n une suite complexe non nulle à partir d’un certain rang telle que ∣
an+1
an
∣ ÐÐÐ→

n→+∞ ℓ ∈ R+ ∪ { +∞}.

Alors, le rayon de convergence de ∑anzn est : R =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
ℓ

si ℓ ∈ ]0,+∞[

+∞ si ℓ = 0
0 si ℓ = +∞

Exemple 2.1. ∎ Rayon de convergence de ∑
n!
nn

zn. Notons, pour n ∈ N, an =
n!
nn

. On a an ≠ 0 et ∣
an+1
an
∣ =

(1 + 1
n
)
−n

ÐÐÐ→
n→+∞ e−1. Donc R = e.

Exemple 2.2 (Un cas particulier de la règle de d’Alembert).

∎ Rayon de convergence de ∑(
2n

n
)z3n. Posons un(z) = (

2n

n
)z3n = (2n)!

(n!)2
z3n. Pour z = 0, la série ∑un(z)

converge et pour z ≠ 0 on a
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∣
un+1(z)
un(z)

∣ = (2n + 2)(2n + 1)
(n + 1)2

∣z
3(n+1)

z3n
∣ ÐÐÐ→

n→+∞ 4∣z∣3.

• Si ∣z∣ < 3
√

1/4 alors ∑un(z) converge absolument.

• Si ∣z∣ > 3
√

1/4 alors ∑un(z) diverge grossièrement.

On en déduit R = 3
√

1/4.

Comparaison des rayons de convergence

Théorème 2.2. comparaison des rayons de convergence
Soit Ra et Rb les rayons de convergence de ∑anzn et ∑ bnzn.

1. an =
n→+∞ O(bn) Ô⇒ Ra ≥ Rb. 2. ∣an∣ ∼

n→+∞ ∣bn∣ Ô⇒ Ra = Rb.

Théorème 2.3.
∑
n≥0

anzn et ∑
n≥0

nanzn ont même rayon de convergence.

Remarque 2.2. ∎ Pour tout α ∈ R, les séries ∑anzn et ∑nαanzn ont même rayon de convergence.

3 Opérations sur les séries entières

Combinaison linéaire

Théorème 3.1. multiplication par un scalaire
Soient Ra le rayon de convergence de ∑anzn et λ ∈ C. Si R est le rayon de convergence de ∑λanzn alors

R = Ra si λ ≠ 0 et R = +∞ si λ = 0. De plus, pour tout z tel que ∣z∣ < R,
+∞
∑
n=0

λanzn = λ
+∞
∑
n=0

anzn .

Théorème 3.2. somme
Soient Ra et Rb les rayons de convergence respectifs de∑anzn et∑ bnzn. On note R le rayon de convergence
de la série somme ∑(an + bn)zn. On a : R ≥min(Ra, Rb) avec égalité lorsque Ra ≠ Rb.

De plus, pour tout z tel que ∣z∣ <min(Ra, Rb),
+∞
∑
n=0
(an + bn)zn =

+∞
∑
n=0

anzn +
+∞
∑
n=0

bnzn .

Produit de Cauchy de séries entières

Définition 3.1. produit de Cauchy
On appelle produit de Cauchy des séries entières ∑anzn et ∑ bnzn la série entière ∑ cnzn avec

cn = ∑
i+j=n

aibj =
n

∑
k=0

akbn−k pour tout n ∈ N .

Théorème 3.3.
Soient Ra et Rb les rayons de convergence respectifs de∑anzn et∑ bnzn. On note R le rayon de convergence

de∑ cnzn. On a : R ≥min(Ra, Rb) et pour tout z tel que ∣z∣ <min(Ra, Rb),
+∞
∑
n=0

cnzn = (
+∞
∑
n=0

anzn)(
+∞
∑
n=0

bnzn) .
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4 Série entière d’une variable réelle

Désormais, nous étudions les séries entières de la variable réelle, i.e. de la forme ∑anxn pour x ∈ R.

Convergence

Théorème 4.1.
Si ∑anxn est de rayon de convergence R > 0 alors

1. ∣x∣ < R Ô⇒ ∑anxn converge absolument. 2. ∣x∣ > R Ô⇒ ∑anxn diverge grossièrement.

Remarque 4.1. ∎ D déf= {x ∈ R, tel que la série numérique ∑anxn converge } vérifie : ]−R, R[ ⊂ D ⊂ [−R, R].

Définition 4.1. intervalle ouvert de convergence
L’intervalle ]−R, R[ est appelé intervalle ouvert de convergence de la série ∑anxn.

Théorème 4.2. convergence normale sur tout compact
Une série entière de rayon de convergence R > 0 converge normalement, et donc uniformément, sur tout
compact K ⊂ ]−R, R[. En particulier, sur tout segment [a, b] ⊂ ]−R, R[.

Corollaire 4.1. continuité de la somme d’une série entière
La somme d’une série entière de rayon de convergence R > 0 est continue sur son intervalle ouvert de conver-
gence.

Intégration

Définition 4.2. série entière primitive

On appelle série entière primitive de ∑
n≥0

anxn la série entière ∑
n≥0

an

n + 1
xn+1.

Proposition 4.1.

∑
n≥0

anxn et ∑
n≥0

an

n + 1
xn+1 ont même rayon de convergence.

Théorème 4.3. intégration d’une série entière

Soit ∑anxn une série entière de rayon de convergence R > 0 et f ∶ xz→
+∞
∑
n=0

anxn sa somme.

1. Pour tout segment [a, b] ⊂ ]−R, R[, ∫
b

a
(
+∞
∑
n=0

antn)dt =
+∞
∑
n=0
(∫

b

a
antndt) .

2. Une primitive sur ]−R, R[ de f est ∫
x

0
(
+∞
∑
n=0

antn)dt =
+∞
∑
n=0

an

n + 1
xn+1 pour tout x ∈ ]−R, R[ .

Exemple 4.1. ∎ Pour tout x ∈ ]−1, 1[ , 1
1 − x

=
+∞
∑
n=0

xn (série géométrique). Par intégration terme à terme :

∀x ∈ ]−1, 1[ , ln(1 − x) = −∫
x

0

dt

1 − t
= −

+∞
∑
n=0

1
n + 1

xn+1 = −
+∞
∑
n=1

1
n

xn.

∎ Pour tout x ∈ ]−1, 1[ , 1
1 + x2 =

+∞
∑
n=0
(−1)nx2n (série géométrique). Par intégration terme à terme :

∀x ∈ ]−1, 1[ , arctan(x) = ∫
x

0

dt

1 + t2 =
+∞
∑
n=0

(−1)n
2n + 1

x2n+1.
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Dérivation

Définition 4.3. série entière dérivée
On appelle série entière dérivée de ∑

n≥0
anxn la série entière ∑

n≥1
nanxn−1 = ∑

n≥0
(n + 1)an+1xn.

Proposition 4.2.

∑
n≥0

anxn et ∑
n≥1

nanxn−1 ont même rayon de convergence.

Théorème 4.4. dérivation d’une série entière

Soit ∑anxn une série entière de rayon de convergence R > 0 et f ∶ xz→
+∞
∑
n=0

anxn sa somme.

1. f est de classe C∞ sur ]−R, R[ et ∀x ∈ ]−R, R[ ,∀k ∈ N, f (k)(x) =
+∞
∑
n=k

k!(n
k
)anxn−k =

+∞
∑
n=0

k!(n + k

k
)an+kxn .

2. ∀n ∈ N, an =
f (n)(0)

n!
.

Corollaire 4.2. unicité des coefficients d’une série entière
Soient ∑anxn et ∑ bnxn deux séries entières de rayons de convergence strictement positif.

∃α > 0, ∀x ∈ ]−α, α[ ,
+∞
∑
n=0

anxn =
+∞
∑
n=0

bnxn Ô⇒ ∀n ∈ N, an = bn .

Remarque 4.2. ∎ Soit ∑anxn une série entière de rayon de convergence R > 0 et f ∶ xz→
+∞
∑
n=0

anxn sa somme.

• f est paire si, et seulement si, ∀p ∈ N, a2p+1 = 0. • f est impaire si, et seulement si, ∀p ∈ N, a2p = 0.

5 Développement d’une fonction en série entière

Dans ce paragraphe, I désigne un intervalle de R tel que 0 ∈ I.

Fonctions développable en série entière

Définition 5.1. fonction développable en série entière

1. On dit que f ∶ I Ð→ C est développable en série entière (DSE) sur ]−r, r[ ⊂ I s’il existe une série

entière ∑anxn telle que 1 ∀x ∈ ]−r, r[ , ∑anxn converge et f(x) =
+∞
∑
n=0

anxn .

2. On dit que f ∶D(0, r) Ð→ C est DSE (en 0), s’il existe 0 < α ≤ r et une série entière ∑anzn telle que

∀z ∈D(0, α), ∑anzn converge et f(z) =
+∞
∑
n=0

anzn .

1. Cette série entière est nécessairement de rayon de convergence R ≥ r.

Exemple 5.1. ∎ z z→ 1
1 − z

est DSE sur D(0, 1).

∎ z z→ ez est DSE sur C et xz→ eax où a ∈ C est DSE sur R.

Exemple 5.2. ∎ ∀x ∈ R, eix =
+∞
∑
n=0

in
n!

xn, donc les fonctions cos et sin sont DSE sur R avec :
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∀x ∈ R, cos x = eix + e−ix

2
=
+∞
∑
n=0

(−1)n
(2n)!

x2n et sin x = eix − e−ix

2i
=
+∞
∑
n=0

(−1)n
(2n + 1)!

x2n+1.

∎ ∀x ∈ R, ex =
+∞
∑
n=0

1
n!

xn, donc les fonctions cosh et sinh sont DSE sur R avec :

∀x ∈ R, cosh x = ex + e−x

2
=
+∞
∑
n=0

1
(2n)!

x2n et sinh x = ex − e−x

2
=
+∞
∑
n=0

1
(2n + 1)!

x2n+1.

Proposition 5.1. DSE d’une primitive

Si f ∶ I Ð→ C est DSE sur ]−r, r[ avec f(x) =
+∞
∑
n=0

anxn alors les primitives F de f le sont aussi avec

F (x) = F (0) +
+∞
∑
n=0

an

n + 1
xn+1 pour tout x ∈ ]−r, r[ .

Série de Taylor

Définition 5.2. série de Taylor

On appelle série de Taylor (en 0) d’une fonction f ∶ I Ð→ C de classe C∞ la série entière ∑
f (n)(0)

n!
xn.

Théorème 5.1. régularité d’une fonction DSE

Si f ∶ I Ð→ C est DSE sur ]−r, r[ avec f(x) =
+∞
∑
n=0

anxn alors 1 f est de classe C∞ sur ]−r, r[ et

∀n ∈ N, an =
f (n)(0)

n!
.

1. Attention la réciproque est fausse : une fonction de classe C∞ n’est pas nécessairement DSE.

Développement du binôme (1 + x)α

Théorème 5.2. développement du binôme (1 + x)α

Pour tout α ∈ R, la fonction xz→ (1 + x)α est DSE sur ]−1, 1[ et

∀x ∈ ]−1, 1[ , (1 + x)α =
+∞
∑
n=0

α(α − 1) . . . (α − n + 1)
n!

xn = 1 +
+∞
∑
n=1

α(α − 1) . . . (α − n + 1)
n!

xn .

Exemple 5.3. ∎ La fonction xz→ arcsin x est dérivable sur ]−1, 1[ et (arcsin x)′ = 1√
1 − x2

. Or

∀x ∈ ]−1, 1[ , 1√
1 − x2

= (1 − x2)
−1
2 =

+∞
∑
n=0

n termes
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
−1
2
(−1

2
− 1) . . .(−1

2
− n + 1)

n!
(−x2)n =

+∞
∑
n=0

1
2
× 3

2
× 5

2
× . . . × 2n − 1

2
n!

x2n.

Mais,

1
2
× 3

2
× 5

2
× . . . × 2n − 1

2
n!

= 1 × 2 × 3 × 4 × . . . × (2n − 2) × (2n − 1) × (2n)
2n(2 × 4 × . . . × (2n))n!

= (2n)!
22n(n!)2

.

Ainsi, xz→ arcsin x est DSE sur ]−1, 1[ et par intégration terme à terme :

∀x ∈ ]−1, 1[ , arcsin x = ∫
x

0
(arcsin t)′dt = ∫

x

0

+∞
∑
n=0

(2n)!
22n(n!)2

t2ndt =
+∞
∑
n=0

(2n)!
(2n + 1)22n(n!)2

x2n+1.
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Calcul de développements en série entière en exploitant une équation différentielle

∎ Développement en série entière de f ∶ xz→ arcsin x√
1 − x2

.

• Les fonctions x z→ 1√
1 − x2

et x z→ arcsin x sont DSE sur ]−1, 1[ donc f l’est aussi par produit. De plus,

f est dérivable sur ]−1, 1[ et f ′(x) = 1
1 − x2 +

x arcsin x

(1 − x2)3/2
.

• f vérifie l’EDL1 : (1−x2)y′−xy = 1. Or f étant impaire, son DSE sur ]−1, 1[ peut s’écrire f(x) =
+∞
∑
n=0

anx2n+1.

• Par dérivation de série entière sur ]−1, 1[, on a f ′(x) =
+∞
∑
n=0
(2n+1)anx2n. La relation (1−x2)f ′(x)−xf(x) = 1

donne alors

a0 +
+∞
∑
n=0
((2n + 3)an+1 − (2n + 2)an)x2n+2 = 1.

• Par unicité des coefficients d’un développement en série entière : a0 = 1 et ∀n ∈ N, an+1 =
2n + 2
2n + 3

an.

Ainsi ∀n ∈ N, an =
(2nn!)2

(2n + 1)!
. Finalement, pour tout x ∈ ]−1, 1[ , f(x) =

+∞
∑
n=0

(2nn!)2

(2n + 1)!
x2n+1.

∎ Développement en série entière de f ∶ xz→ e−x2
∫

x

0
et2 dt.

• Les fonctions x z→ e−x2 et x z→ ex2 sont DSE sur R donc la fonction x z→ ∫
x

0
et2 dt l’est aussi comme

primitive d’une fonction DSE. Enfin f l’est également comme produit de deux fonctions DSE.

• f vérifie l’EDL1 : y′ + 2xy = 1. Or f étant impaire, son DSE sur R peut s’écrire f(x) =
+∞
∑
n=0

anx2n+1.

• Par dérivation de série entière sur R, on a f ′(x) =
+∞
∑
n=0
(2n + 1)anx2n. La relation f ′(x) + 2xf(x) = 1 donne

alors

a0 +
+∞
∑
n=1
((2n + 1)an + 2an−1)x2n = 1.

• Par unicité des coefficients d’un développement en série entière : a0 = 1 et ∀n ≥ 1, an =
−2

2n + 1
an−1.

Ainsi ∀n ∈ N, an = (−1)n 22nn!
(2n + 1)!

. Finalement, pour tout x ∈ R, f(x) =
+∞
∑
n=0
(−1)n 22nn!

(2n + 1)!
x2n+1.

Développements en séries entières des fonctions usuelles
1

1 − x
=
+∞
∑
n=0

xn sur ]−1, 1[ ln(1 − x) = −
+∞
∑
n=1

1
n

xn sur ]−1, 1[

ex =
+∞
∑
n=0

1
n!

xn sur R cos x =
+∞
∑
n=0

(−1)n
(2n)!

x2n sur R

sin x =
+∞
∑
n=0

(−1)n
(2n + 1)!

x2n+1 sur R cosh x =
+∞
∑
n=0

1
(2n)!

x2n sur R

sinh x =
+∞
∑
n=0

1
(2n + 1)!

x2n+1 sur R (1 + x)α =
+∞
∑
n=0

α(α − 1) . . . (α − n + 1)
n!

xn sur ]−1, 1[
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