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Pour tout 7 € R*u{+o0}, on pose D(0,r) = {z eC, |z|< r}. Si0<r<+o0, D(0,7) est le disque ouvert de centre

0 et de rayon r. Par abus de language, on dira que C est le disque ouvert de rayon +oo.

Convergence des séries entiéres

Séries entiéres, rayon de convergence

( Définition 1.1. série entiere, domaine de convergence, somme
1. On appelle série entiére définie par une suite de coefficients complexes (ay,)y, la série de fonctions Z U,
avec u, : z € C — a,2". Par abus, cette série de fonctions est simplement notée Z anz".

2. L’ensemble D % {z e C, tel que la série numérique Z anz" converge } est appelé le domaine de conver-

gence de la série entiere Z anz".

+0oo

3. La somme S de la série entiére Zanz" est définie sur D par S(z) = Z anz".
n=0
.
+0o0o 1
Exemple 1.1. W La série entiere Y 2" converge pour tout z € C tel que [z|<letona ) 2" = T
n=0 -z
1 +00
m La série entiere ) —‘z" converge pour tout z € C et par définition —'z" =e”.
n: n=0 n:
1 , . .\
[ | Z 2%™ est une série entiere avec a2y = et asp.1 =0 pour tout n € N.
n+1 n+1
Théoreme 1.1. lemme d’Abel

Soit Zanz” une série entiere et zg € C non nul. Si la suite (anzg)n est bornée alors pour tout z € D(O, |zo|),

la série numérique Z apz" est absolument convergente.
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( Définition 1.2. rayon de convergence

On appelle rayon de convergence de la série entiere Zanz", le nombre

R sup {r >0, (anr”)n bornée } eRY U {+00} |

L

1 1
Exemple 1.2. m Soit a € C*. Pour la série entiére Z a2 {r >0, (a"r"), bornée } = [0, H:|7 donc R = ﬂ
a o)

1 1
m Pour la série entiere Z —'z” : {r >0, (—'r") bornée } =R"*, donc R = +o0.
n! n n

® Pour la série entiere ) nlz" : {r >0, (n!r"), bornée } = {0}, donc R =0.

Remarque 1.1 (Autres définitions du rayon de convergence).

m Soit R le rayon de convergence de la série entiere Z anz" :

R =sup {7’ >0, Z anr" converge} = sup {7" >0, Z a,r'" converge absolument} = sup {r >0, apr’t —— O} .

n—+oo

Convergence simple

( Théoréme 1.2. caractérisation du rayon de convergence

Le rayon de convergence de Zanzn est l'unique R € R™ U {+00} vérifiant les conditions suivantes :

2| <R == ) anz" converge (absolument)
Pour tout z € C, et

2| >R = ) anz" diverge (grossiérement)

.

n
- N z

Exemple 1.3. m Rayon de convergence de la série entiere Z —- Ona:
n

n n

. z z 1

e Silz[<1, alors ) — converge absolument car — = of— ).
n n< n—>+oo n
n n

, 2" . |

o Silz[>1, )] — diverge grossierement car —- ——— +o0.
n n n—+oo
n

.. - . Z N
Ainsi, le rayon de convergence de la série entiere Z — ¢gale a 1.
n

[ Corollaire 1.1. domaine de convergence

Soit D le domaine de convergence de la série entiere Z a,z" de rayon de convergence R.

1. Si R=0, alors D ={0}. 3. Si R>0, alors D(0,R) c D c D(0, R).
2. Si R =+o0, alors D =C.

Sur le cercle de centre 0 et de rayon R, les natures de Zanz" peuvent étre diverses.

L

n
- .\ Z . .
Exemple 1.4. m La série entiere Z 5, converge si, et seulement si, |z| < 2. Son rayon de convergence est 2 et pour

tout z € C tel que |z| = 2, la série diverge, donc D = D(0,2).
n —
m La série entiere Z 2—2 est de rayon de convergence 1 et converge pour tout z € C tel que |z| = 1, donc D = D(0,1).
n

Définition 1.3. disque ouvert de convergence

Si R est le rayon de convergence de Z anz", alors le disque D(0, R) est appelé disque ouvert de convergence
de Z anz".
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> anz" diverge grossiérement

\ JUPET P .
. N Z anz" converge absolument

Pie b
L4
- .
* .
» .
L}

A
)
1
: 0 -
' I R
. .
A} '
A
A\ S '\
A 4
L4 . .
el o Zanz" de nature incertaine
§~~ ’¢
Convergence normale
( Théoreme 1.3. convergence normale sur tout compact

Une série entiere de rayon de convergence R > 0 converge normalement, et donc uniformément, sur! tout

compact K c D(0, R).

1. On n’a pas la convergence normale sur D(0, R) tout entier : la série Z 2" est de rayon de convergence 1 et sup [2"|=1.
zeD(0,1)

.
( Corollaire 1.2. continuité de la somme d’une série entiére
La somme d’une série entiere de rayon de convergence R > 0 est continue sur son disque ouvert de convergence.

L

Calcul du rayon de convergence

Remarque 2.1 (Calcul a partir d'un encadrement).
m Soit R le rayon de convergence de Z anz".
o S'il existe a > 0 tel que pour tout z€C, |z|<a = ) a,z" converge absolument alors R > .

e S’il existe 8 >0 tel que pour tout z€C, |z| > = Z anz" diverge alors R < 3.

Regle de d’Alembert

{ Théoréme 2.1. régle de d’Alembert

An+1

—>66R+u{+oo}.

n—>+00

Soit (an), une suite complexe mon nulle & partir d’'un certain rang telle que

1
7 si £e]0,+00]
Alors, le rayon de convergence de Z anz"est 1| R={ 1o i =0

n

0 si f=+o00

L

an+1
Gn

|
n! n!
Exemple 2.1. m Rayon de convergence de Zn—nz" Notons, pour n € N, a, = g On aa, #0 et

1 -n
(1 + —) — ¢! Donc R=e.

n n—+oo

Exemple 2.2 (Un cas particulier de la régle de d’Alembert).

2 2 2n)!
m Rayon de convergence de Z( n)z?’n. Posons u,(z) = ( n)z?’” = %23”. Pour z = 0, la série ) uy(2)
n n n!

converge et pour z #0 on a
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Un+1(2)|  (2n+2)(2n+1) | ,3(n+1) 3
= —— 4[]
Un(Z) (nn+1)2 23n n—>+00

* Si|z[ < {/1/4 alors ) u,(z) converge absolument.

* Si|z[> {/1/4 alors ) u,(z) diverge grossiérement.
On en déduit R = {/1/4.
Comparaison des rayons de convergence
( Théoreme 2.2. comparaison des rayons de convergence

Soit R, et Ry les rayons de convergence de Y anz" et Y bp2".

l.a, = O(b,) = Ry >Ry 2. lap| ~ |bu] = R4 = Ry.

n—>+oo n—+oo

L

( Théoréme 2.3.

> anz" et Y na,z" ont méme rayon de convergence.
n>0 n>0

.

Remarque 2.2. B Pour tout a € R, les séries » a,z" et ¥ n“a,z" ont méme rayon de convergence.
q 9 n

Opérations sur les séries entiéres

Combinaison linéaire

[ Théoreme 3.1. multiplication par un scalaire

Soient R, le rayon de convergence de Zanz" et A e C. Si R est le rayon de convergence de Z)\anz” alors

+00 +o00
R=R,si A#0 et R=+o0si A=0. De plus, pour tout z tel que |2| <R, | Y Xanz" =X > ap2" |
n=0 n=0

( Théoréme 3.2. somme
Soient R, et Ry les rayons de convergence respectifs de Z an,z" et Z b,z". On note R le rayon de convergence

de la série somme Y (a, +b,)z". On a : R>min(R,, Ry) avec égalité lorsque R, # Ry,

+00 +00 +00
De plus, pour tout z tel que |z| < min(Rq, Rp), | Y. (an +by)z" = > anz" + Y bp2™ |
n=0 n=0 n=0

Produit de Cauchy de séries entiéeres

( Définition 3.1. produit de Cauchy

On appelle produit de Cauchy des séries entitres Y a,2" et Y b,2" la série entitre ) ¢,2" avec

n
Cp = Z a;b; = Z arby_p pour tout n e N |.
i+j=n k=0

L

[ Théoreme 3.3.
Soient R, et Ry les rayons de convergence respectifs de Z anz" et Z bnz". On note R le rayon de convergence

+00 +00 +00
de Y ¢,z". Ona: R >min(R,, Ry) et pour tout z tel que |z| < min(Rq, Rp), | Y cn2" = (Z anz") (Z bnz”) i
n=0 n=0 n=0
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nSérie entiére d’une variable réelle

Désormais, nous étudions les séries entieres de la variable réelle, i.e. de la forme Z a,z" pour x € R,

Convergence

Théoreme 4.1.

Si Zana:" est de rayon de convergence R > 0 alors
1. [zf|]<R = ) a,z" converge absolument. 2. |z|>R = ) apa™ diverge grossiérement.

Remarque 4.1. m D det {x €R, tel que la série numérique Y a,z™ converge } vérifie : |-R,R[ c D c[-R, R].

( Définition 4.1. intervalle ouvert de convergence
L’intervalle |-R, R[ est appelé intervalle ouvert de convergence de la série Zanwn.

( Théoreme 4.2. convergence normale sur tout compact
Une série entiere de rayon de convergence R > 0 converge normalement, et donc uniformément, sur tout
compact K c |-R, R[. En particulier, sur tout segment [a,b] c |-R, R][.

.

( Corollaire 4.1. continuité de la somme d’une série entiére
La somme d’une série entiere de rayon de convergence R > ( est continue sur son intervalle ouvert de conver-

gence.
Intégration
[ Définition 4.2. série entiere primitive
s . .o ... - . a
On appelle série entiére primitive de Z anx” la série entiere Z n gt
n>0 nx0 T 1
[ Proposition 4.1.
a/ A
Y anz et Y — z"*! ont méme rayon de convergence.
n>0 nx0 M+ 1
( Théoreme 4.3. intégration d’une série entiére
+00
Soit » anz™ une série entitre de rayon de convergence R >0 et f:z— Y a,z" sa somme.
n=0
b [t+oo + 00 b
1. Pour tout segment [a,b] c |-R, R|, f (Z ant") dt =) (/ ant”dt) .
@ \n=0 n=0 \7 @

x [+ +o00
2. Une primitive sur |-R, R[ de f est / (Z ant”) dt = Z ajlx”” pour tout x € |-R, R[ |
0 n

n=0 n=0

L

1 +00
Exemple 4.1. m Pour tout z € |-1,1[, . = > 2" (série géométrique). Par intégration terme a terme :
—T =0
xT dt +o00 1 +o00 1
Vo e]-1,1[, ln(l—x):—f A o5 Lan,
0o 1-t¢ mon+1 on
1 +00
m Pour tout z € |-1,1[, i a2 > (-1)"z*" (série gbométrique). Par intégration terme & terme :
+2? 5

O

z dt
Voel-1,1[, arctan(a:):fo T 5

n=0
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Dérivation

[ Définition 4.3. série entiére dérivée
On appelle série entiére dérivée de Z an,x” la série entiére Z napz" " = Z (n+1aps1z".

n>0 n>1 n>0

[ Proposition 4.2.

-1 ~
Z anx” et Z nap,z" " ont méme rayon de convergence.

n>0 n>1
( Théoréme 4.4. dérivation d’une série entiere
+00
Soit Zanaz" une série entiere de rayon de convergence R>0et f:z+— Z anx" sa somme.
n=0
& X, (n et = (n+k n
1. festdeclasse C® sur |-R,R[ et |Vze]-R,R[,VkeN, f*)(z)= Z k:!(k)anx = Z k!( " )an+kaz L
n=k n=0
(™ (o
2. |VneN, anzf ©) h
n!
( Corollaire 4.2. unicité des coefficients d'une série entiére
Soient Z anx" et anx" deux séries entieres de rayons de convergence strictement positif.
+ 00 + 00
Ja>0, Vo el-a,af, Y apz" =) ba" = VneN, ap,=b, |
n=0 n=0
+ 00
Remarque 4.2. B Soit »_ a,z" une série entiére de rayon de convergence R >0 et f:z— » a,z" sa somme.
n=0
e f est paire si, et seulement si, Vp € N, agp,1 = 0. e f est impaire si, et seulement si, Vpe N, ag, =0.
B Développement d’une fonction en série entiéere
Dans ce paragraphe, I désigne un intervalle de R tel que 0 € I.
Fonctions développable en série entiére
( Définition 5.1. fonction développable en série entiére
1. On dit que f : I — C est développable en série entiére (DSE) sur |-r,r[ c I s’il existe une série
+00
entiere Y a,z” telle que! | Vo e ]-r,r[, > anz" converge et f(z) =) ana” |
n=0

2. On dit que f: D(0,7) — C est DSE (en 0), s’il existe 0 < o < r et une série entiere y  a,2" telle que

+00
VzeD(0,a), Y anz" converge et f(z)=) anz"|
n=0
1. Cette série entiere est nécessairement de rayon de convergence R > .
.
Exemple 5.1. ® z —> est DSE sur D(0,1).
B z+— e® est DSE sur C et x — e** ou a € C est DSE sur R.
) +00 :n
Exemple 5.2. m VzeR, ¥ = Z —'x", donc les fonctions cos et sin sont DSE sur R avec :
—n!
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eix+e—iz +00 (_1)n on eix_e—iaz +00 (_1)n

VrxeR, cosx= —— = 2" et sinz = = g2+t
2 = (2n)! 2i ,;0 (2n +1)!
+00
mVzeR, &= Z —':U”, donc les fonctions cosh et sinh sont DSE sur R avec :
n=0 -
T, e"C 400 T _ . —T 4o 1
VxeR, coshz =S5 - Z—x2" et sinhz=—o = > z2nL,
2 = (2n)! 2 = (2n+1)!
( Proposition 5.1. DSE d’une primitive
+00
Si f:1 —> C est DSE sur ]-r,r[ avec f(z) = ) anz™ alors les primitives F' de f le sont aussi avec
n=0
+oo a
F(z)=F(0)+ > ——a""! pour tout x € ]-r,r[ |
mon+1
Série de Taylor
[ Définition 5.2. série de Taylor
£(0)
On appelle série de Taylor (en 0) d’une fonction f: I — C de classe C* la série entiére —':L‘".
n!
[ Théoreme 5.1. régularité d’une fonction DSE
+00
Si f:I—> C est DSE sur ]-r,r[ avec f(z) = Y apz™ alors' f est de classe C* sur ]-r,r[ et
n=0
(o
VneN, an:f ©) .
n!
1. Attention la réciproque est fausse : une fonction de classe C*™ n’est pas nécessairement DSE.
Développement du bindme (1 + )
( Théoreme 5.2. développement du binéme (1 + z)“
Pour tout a € R, la fonction x — (1 +z)® est DSE sur |-1,1[ et
= -1)...(a-n+1 = -...(a-n+1
Voel-11[, (1+a)e =y Moz Delaznel) oy SFala-l. (azntl) o)
n=0 n‘ n=1 n'
. . - RV 1
Exemple 5.3. ® La fonction x — arcsinz est dérivable sur |-1,1[ et (arcsm x) = — Or
-z
n termes
-1/-1 -1 1 3 5 2n-1
1 Gt 7—1...?—714-1 . +oo§><§><§><._,>< 5
Veel-1,1[, ———==(1-2%)7 = (-z?)" = ",
1-=z n=0 n' n=0 n'
1 3 5 2n -1
Mai XXX X Ty 1x2x3x4x...x(2n-2)x(2n-1) x (2n) (2n)!
ais, = = .
n! 27(2x 4 x...x(2n))n! 22n(nl)?
Ainsi, z — arcsinx est DSE sur ]-1, 1[ et par intégration terme a terme :
x x too 2 | +o00 2 |
Vo e]-1,1[, arcsinzx = / (arcsint)ldt = f > %t%dt => ( ng 2x2"+1
0 0 = 2%7(n!) = (2n+1)22n(n!)
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Calcul de développements en série entiére en exploitant une équation différentielle

m Développement en série entiere de f:x —> aresme
V1-a?
¢ Les fonctions z — 1;,@2 et x —> arcsinx sont DSE sur ]-1,1[ donc f lest aussi par produit. De plus,
xrarcsin x

1
o) _ ! =
f est dérivable sur |-1,1[ et f'(x) 12 + (1= 22)32"

+00
o fvérifie "EDL1 : (1-22)y’ -2y = 1. Or f étant impaire, son DSE sur ]-1, 1[ peut s’écrire f(z) = > anx®™t,
n=0

+00
o Par dérivation de série entiére sur ]-1,1[, ona f'(z) = > (2n+ 1)anz®™. La relation (1-z2)f'(z)-zf(z) =1

n=0
donne alors
+00
ap + Z ((2n +3)an+1 — (2n + 2)an)x2n+2 =1.
n=0
2n+2
e Par unicité des coeflicients d’un développement en série entiere : ag=1 et VneN, an4q = 2n N 3an.
n
2mn! 2 +00 (9N, 2
Ainsi VneN, a, = ﬂ Finalement, pour tout z € ]-1,1[, f(z)=>_ —( )" onit
(2n+1)! = (2n+1)!

, ;s N 22 [T 2
m Développement en série entiere de f:x+—e™” f el dt.
0

. 2 2 . T 42 .
e Les fonctions z — ¢ et z — ¢® sont DSE sur R donc la fonction z — / e dt Test aussi comme

0
primitive d’une fonction DSE. Enfin f I'est également comme produit de deux fonctions DSE.

+00
o f vérifie "EDLL : ¢ +2zy = 1. Or f étant impaire, son DSE sur R peut s’écrire f(z) = ) anx®"t,
n=0
+00
o Par dérivation de série entiére sur R, on a f'(z) = Y (2n+ 1)anz®™. La relation f'(z) +2xf(x) = 1 donne
n=0
alors
+ 00
ag + Z ((2n +1Da, + 2an_1)$2" =1.
n=1
-2
2n+1

. Finalement, pour tout x ¢ R, f(z) = Z( ”mx%H.

o Par unicité des coefficients d’un développement en série entiére : ag=1 et VYn>1, a, =
Qn

Ap—1-
n!

Ainsi VneN, a, = (- 1)”( TOn

Développements en séries entieres des fonctions usuelles

1 +00 +00 1
- Yo" sur ]-1,1[ In(l-z)=-> —2" sur ]-1,1[
_ - n

& @n+)! & e’
+00o 1 oo — 1 1
sinhz =Y —— 22" qur R (1+x)a:2a(a )...(a-n+1) e
n=0 (2n+ 1)' =0 nl

sur |-1,1]
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