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Convergence simple

Dans ce chapitre et sauf mentionné, la notation K désigne R ou C. E et
F' deux espaces vectoriels de dimension finie et X une partie de E.

On désigne par (f,) une suite de fonctions de X vers F i.e. pour
chaque n, f, est une fonction de X vers F' et f une fonction définie de X
vers F'.
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Définition 1.1 (convergence simple (CS)).

On dit que (f”)n converge simplement vers f sur X et on note

CS .
fo TS

Vo e X, fulz) —— f(x) ]

Autrement dit

VeeX,Ve>0,INeN, n>N = ||fu(z) - f(z)|p<e|

Dans ce cas, on dit! alors que f est la limite simple de (fn)

°

U1y a unicité de la fonction vers laquelle une suite de fonctions peut
converger simplement.
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@ fn(x) =2™ sur [0,1]. Soit x €[0,1] fixé. On a

fn(x)mf(a:ﬁ{(l) si ze[0,1]

si x=1.

donc fp C—f> f sur [0,1].
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Convergence uniforme

Définition 1.2 (convergence uniforme (CU)).

On dit que (f")n converge uniformément vers f sur X et on note

CU .
Jo s TS

Ve>0, AINeN,VneN, n>N = Ve eX, |fu(x)-f(z)|r<e|

Dans ce cas, On dit alors que f est la limite uniforme de (f")n'

Proposition 1.1 (cu s cs).

|
wn
A

fn—)CU fsurX e fn—>fSUI’X.

n—+oo n—+o0o
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Théoreme 1.1 (condition nécessaire et suffisante de la CU).

CU
fn—— fsurX —
n—>+oo

sup| fn(z) - f(z)|F —— 0.
zeX =<2
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@ Convergence uniforme de f,(z) = \/nz"(1-x) sur [0,1].
® Par croissances comparées, si x € [0, 1], on a
lim /nz" =0 et f,(1) =0 pour tout n € N* donc pour
n—+00
tout € [0,1], on a lim f,(z)=0. Ainsi,
n—>+o0o

Jio — 5,0 sur [0,1].

n—+oo

® Soit n € N*. Pour tout z € [0,1], on a

fi(z) =/nz" H(n-(n+1)z).

T 0 ﬁ 1
frn(2) + 0 -
! 0o— T~
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@ Donc

sup |fn(x) = 0|

z€[0,1]

n—>+00
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D'ou f, Y0 sur [0,1].
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Convergence en norme uniforme

On menu |'espace vectoriel B(X, F') des fonctions bornées de X vers F
par la norme de la convergence uniforme :

VieB(X,F), [floox = SU)I?Hf(w)llF-

Théoréme 1.2 (caractérisation a I'aide de la norme de la convergence uniforme).
Soient f e B(X,F) et f, € B(X,F) pour tout n € N.

CU
fn—>f — ”fn‘f”oo,X—>
n—>+00 n—>+oo
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Approximations uniformes

Soit (a,b) € R? tels que a < b.

Définition 2.1 (subdivision, fonction en escalier).

On appelle subdivision d'un segment [a, b] toute suite réelle finie
o= (ag,ai,...,a,) avec
a=ap<a;<...<ap-1<ap=>o.
Une fonction ¢ : [a,b] — K est dite en escalier s'il existe une
subdivision ¢ = (ag,a1,...,a,) de [a,b] telle que, pour tout
i € [[1,n]], la restriction de ¢ a ]a;_1, a;[ est constantel.

1Une telle subdivision est alors dite adaptée 3 .
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Théoreme 2.1 (approximation par des fonctions en escalier).

Soit f : [a,b] — K une fonction continue par morceaux.

Ve >0, 3p: [a,b] — K fonction en escalier telle que | f — @[ o [ap] <€ |

o En d’autres termes, toute fonction continue par morceaux
sur un segment est limite uniforme d'une suite de fonctions

en escalier.

L'espace des fonctions en escaliers de [a,b] vers K est une
partie dense de |'espace des fonctions continues par
morceaux de [a,b] vers K normé par la norme de la
convergence uniforme |.| o [a,5]-
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Lemme de Riemann-Lebesgue

c{} Si f:[a,b] — K est continue par morceaux, alors

fbf(x) ™ dxr —— 0.

n—+00
® Cas f constante.
INeK, Vze[a,b], f(x)=A. Ona

b . einx b
‘f f(a:)elmdx| =\ =
a m @
inb ina
|
m
N,

n n-o+oo
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& -
o e Cas f en escalier.

Soit (ag,ai,...,ap) une subdivision de [a,b] adaptée a f.

On a
b S [ oyt
; () e dr
L f(:l?)enxdl‘ = S Jaja Naj-1,a;(
constant=\;
< i faj \je™ dx
< 2oy j
—— 0. (d'apres le premier cas)
n—+oo
b .
Ainsi, f f(z)e"*de —— 0.
a n—+oo
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o .
o3 ® Cas f continue par morceaux.

Soit € > 0. Il existe ¢ : [a,b] — K en escalier telle que :
Vz e la,b], |f(z)-p(z)]<

D'apres le deuxieme cas,

b .
f p(x)e™ de —— 0,

n—>+00

2(b a)

donc il existe N € N, tel que :

n>N=‘f o(z)e™ dz| <

=
2’
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& | Pour n> N, on a
Qﬁ fabf(x)eimdx| <

[ 0@ - e@) e a

+

b .
[ o(x)e™ dx‘

a

< @)~ p)ldas

b .
[ o(x) e dx

<ef2+¢gl2=¢.

b .
Par suite, [ f(z)e™*de —— 0.

n—+00
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Théoreme 2.2 (théoréme de Weierstrass).

Soit f :[a,b] — K une fonction continue.

Ve >0,3¢: [a,b] — K fonction polynomiale telle que | f — ¢| o [qp] S € |

o En d’autres termes, toute fonction continue sur un segment
est limite uniforme d'une suite de fonctions polynomiales.

L'espace des fonctions polynomiales de [a,b] vers K est
une partie dense de |'espace des fonctions continues de
[a,b] vers K normé par |.[ e [a,5]-
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© Analyse de la limite d'une suite de fonctions
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Continuité par convergence uniforme

Soit (fn)n une suite de fonctions définies sur X a valeurs dans F' et f une
fonction définie sur X vers F.

Théoreme 3.1 (continuité Iocale).

Vn eN, f, est continue enxzye X

CU . .
fn —— f sur un voisinage de xy dans X

n—+oo

Alors

f est continue en xy.
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Théoreme 3.2 (continuité globale).

VneN, f, est continue sur X

cu
fn —— f sur tout compact c X
n—+oo
Alors

f est continue sur X.

On remplace la CU sur tout compact par la CU sur tout segment® lorsque
la variable est réelle.

LEn pratique, on vérifie la convergence uniforme sur des intervalles adaptés 3
la situation.
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La suite de fonctions (f”)n définie par f,(x) = 2™ ne converge
pas uniformément sur [0, 1] car la limite simple n’est pas continue

sur [0,1].
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Théoreme de la double limite

Théoreme 33 (interversion des Iimites).

SoitaeX.
Si

VneN, f,(x) — £, (limite finie)

r—a
(610) ..
fn ——— f sur un voisinage de a dans X
n—>+o00

Alors

la suite (¢y,)n, admet une limite finie

lim( 1_1>r+n<><> fn(x)) =

T—a \n

(I ()

li
n—
Ce résultat peut étre adapté en a = +oo d’une fonction définie sur un
intervalle réel non borné.
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Intégration sur un segment

Théoreme 3.4.
Ici X est un intervalle de R et zg € X.
. CU
On suppose que les f, sont continues sur X et que f, —— f sur tout
n—>+oo
segment c X. Posons, pourx € X etneN :

@n(x):fx:fn(t)dt et @(x):fx:f(t)dt.

cuU
Alors &, ——— & sur tout segment c X.

n—+00
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Corollaire 3.1 (interversion limite intégrale).

On suppose X = [a,b].

Si
VneN, f, est continue sur [a,b]
fo———> f sur [a,1]

Alors

f est continue sur [a,b]

s ([ 0]« [ (am )
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Dérivation

Ici, le domaine de définition X est un intervalle réel I d'intérieur non vide.

Théoreme 3.5 (caractére Cl).

Si
VneN, f, est de classeC' surl

I 9, fsurl

n—>+00

f Cu
., ——> g sur tout segment c [

n—>+oo
Alors

f est de classe C* sur I

=9 , .

viel, (lim fn(t)) - lim f(0)
n—+o0o n—>+00

En pratique, on vérifie la convergence uniforme sur des intervalles adaptés a la situation.
v
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Théoréeme 3.6 (caractére CP).

Soit p e N*.

Si
Vn eN, f, est de classe C? surl
vke[0,p-11, (f"), CSsurl
(fé”))n CU sur tout segment c [

Alors

la limite simple f de ( fn)nest de classe C? sur

® (k)
viel, vke[0,p0, (Jm fu) = lm 70

En pratique, on vérifie la convergence uniforme sur des intervalles adaptés a la situation.
v
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Corollaire 3.2 (caractére C°°).

Si
Vn eN, f, est de classe C*™ surl
j _o fsurl
n—+oo
Vk e N*, ( ék))n CU sur tout segment c [
Alors

f est de classe C* sur I

")
Viel, Yk eN, (lilp fn(t)) = 1im_ [P

En pratique, on vérifie la convergence uniforme sur des intervalles adaptés a la situation.
v
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Convergence simple et convergence uniforme

On désigne par an une série de fonctions de X vers F i.e. pour
chaque n, f, est une fonction de X vers F.

n
On note, pour z € X et neN, S,(z) =) fi(x) : la somme partielle
k=0
d’ordre n de la série Y f,.
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Définition 4.1 (convergence simple et uniforme d’'une série de fonctions).

On dit que an converge simplement sur X si, pour tout z € X,
la série an(ac) converge i.e. la suite (S”)n de ses sommes partielles
converge simplement sur X. Dans le cas de convergence, on note :

* S la somme de la série ) f,
+o00
VzeX, S(z)= lim S,(z)=) fu(z).
n—+oo =0
* R, le reste d’ordre n de la série ) f, :
+o0o
Vre X, Rn(x): Z fk(J:)
k=n+1

On dit que an converge uniformément sur X lorsque la suite

(Sn)n de ses sommes partielles converge uniformément sur X.
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n

fu(z) = x—e’m, n € N*. Convergence simple de an sur
Vn
[0,1].
Soit z € [0,1]. On a, par croissances comparées,
In? fn(2)] < n3/22™ —— 0 pour z € [0, 1]
n—>+oo
et pourz =1, on a

n?fo(1) =n3e™ —— 0.

n—+00

1
Donc pour tout z € [0,1], fn(x) = 0(—) et la série Y fy

—+00 n2
CS sur [0,1].
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Théoréme 4.1 (condition nécessaire et suffisante de la CU).
Z fn CSsur X

Efn CUsur X — ou
R, —— O sur X.

n—+0o

Pratique
QQ Pour étudier la convergence uniforme de la suite (R”)n des restes
€¥ | sur X, on peut déterminer une suite réelle (an)n telle que

VeeX, VneN, |Ry(z)|r<a, e o, ——0|

n—>+0o
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mn
@ fa(z) = %e‘m, n € N*. Convergence uniforme de ) f, sur
n

[0,1].
La série Y f CS sur [0,1].
Pour tout 2 €[0,1], on a:

+00 (xe ac k +00 e—k
R, = <
| (x)| k‘=zn;l—l fk(x) : k;rl \/E k%;rl

La deuxiéme inégalité est justifier par le fait que I'application
x+—>xe " est cr0|ssante sur [0,1].

Or la série Z converge d'apres la regle de d'Alembert et

donc le reste

+00 e—k
. 50
k=n+1 k n—tee

c-3-d Ry —2 5 0 sur [0,1]. D’ou la série Y f, CU sur [0,1].
n—+00
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Convergence normale

Définition 4.2 (convergence normale (CN)).

On dit que an converge normalement sur X lorsque :

® Pour tout n, f, est bornée sur X.

* La série numérique Y | fn]oo,x converge.

s

Pratique
Pour étudier la convergence normale de la série an sur X, on
peut déterminer une suite réelle (an)n telle que

VzeX, VneN, |fo(z)|r<an etlasérie > a, converge |
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n
fulz) = x—e_m, n € N*. Convergence normale de )" f,, sur
vn
[0,1].
Pour tout z € [0,1] et n e N*, on a

()| < %

La série Z étant convergente car CH. o(i)
\/_ & \/ﬁ n—+oo '
D'od la série Y f, CN sur [0,1].

Proposition 4.1 (cn s cu).

an CN sur X — an CU sur X.
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Convergence absolue

Définition 4.3 (convergence absolue (CA)).

On dit que an converge absolument sur X lorsque la série
Y | fa(z)| F est convergente pour tout z € X.

Proposition 4.2 (cn vs ca).
Y fo CNsur X = > f, CAsurX.
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En résumé, on a les implications suivantes, pour une série de
fonctions :

’ Convergence uniforme ‘

el

’ Convergence normale ‘ ’ Convergence simple

’ Convergence absolue ‘

Toute implication non écrite étant fausse.
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Continuité de la somme d’une série de fonctions

Soit an une série de fonctions de X vers F' de somme S :

S(z) = i:fnu)

ot z € X tel que la série an(m) converge.

Théoreme 5.1 (continuité Iocale).

Vn eN, f, est continue enxge X

Z fn CU sur un voisinage de xo dans X
Alors

la somme S est continue en x.
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Théoreme 5.2 (continuité globale).

Vn eN, f, est continue sur X

Z fn CU sur un tout compact de X
Alors
la somme S est continue sur X .

On remplace la CU sur tout compact par la CU sur tout segment' de X
lorsque la variable est réelle.

'En pratique, on vérifie la convergence uniforme sur des intervalles adaptés a
la situation.
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)n+1

@ L'application z — Z ~ (- est continue sur ]0, +oo].
-1 n®
" ( 1)n+1

On pose, pour x € |0, +oo[ et n e N*|  f,(x) = ——

* VYneN, f, estcontinue sur ]0,+oo].

® Par le critére de Leibniz, la série an converge
simplement sur ]0, +oo[.

® Soit a>0 et ze€[a,+o0[. On a

f fe(x)

VneN, [Ry(z)|] =
k=n+1
majoration du reste 1
par le premier terme = (n + 1)2:
1

T (n+1)% notoo
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@ Donc la série  f, CU sur [a,+oo[ pour tout a > 0. Ainsi,

I'application

est continue sur [a,+oo[ pour tout a > 0, donc continue sur
10, +o0].

Proposition 5.1

Soit A une algébre normée de dimension finie d'élément unité e et B la
boule unité ouverte.
+00
L'application a — (e —a)™ = ) a" est continue sur B.
n=0
+00 n
L'application a — exp(a) = > ] est continue sur A.
n=0 "
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Limite et comportement asymptotique

Théoreme 53 (interversion des Iimites).

SoitaeX.
Si
VneN, fn.(x) — £, (limite finie)
Z fn CU sur un voisinage de a dans X
Alors

la série Y £y, converge

gg(gfn(m) - 5% (1 )

Ce résultat peut étre adapté en a = +oo d’une série de fonctions définie sur
un intervalle réel non borné.
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1 sin=1
0 sin>2

Fal2) —— £, = {

et la série )" f,, CU sur [c,+oo[ pour tout ¢ >0 donc

hm (Z fn(l')) = irl—linoofn($) = i?lgn =1.

En revanche, la série an ne converge pas uniformément sur
10, +oo[ car sinon, on obtient la convergence de la série Y (- 1)+t
puisque f(z) — £y = (=1)"".

xTr—>
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Intégration sur un segment

Théoreme 5.4 (interversion somme intégrale).

On suppose X = [a,b].
Si

VneN, f, est continue sur [a,b]

> fn CU sur [a,b]
Alors

la somme S est continue sur [a,b]

fab(zf”(t))dt::g(Lbfn(t)dt).
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@ Soit z € C tel que |z| > 1. Calculer I = f -
_el

Soit |z| >1 et t € [0,27]. On a

1 1 1 1+ eit u 't
i L _g:_Z(?) _Zzn+l
z

z—elt  z1 7=
eint
On pose, pour neNet te[0,2r], fn(t)= —oT
* VneN, f, est continue sur [0,27].
1
* VneN, ”fn”oo,[0,27r] = W

Or la série )’ HW est convergente (série géométrique),
z

donc la série >_ f, CN sur [0,27] donc CU sur [0,27].
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@ Par suite,
dt

I
o\

[\&)

3
o)
N | e
AR
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Dérivation

Ici, le domaine de définition X est un intervalle réel I d'intérieur non vide.

eme 5.5 (caractére Cl).

Vn eN, f, est de classe Clsurl

an CS surl

> fr, CU sur tout segment c I

Alors

la somme S est de classe C! sur T
+00 ' 4o

Vtel, (Z fn(t)) = > fn(®).
n=0 n=0

En pratique, on vérifie la convergence uniforme sur des intervalles adaptés a la situation.
v
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Théoreme 56 (caractére Cf’).

Soit p € N*.

Si
VneN, f, est de classeCP surl
VEke[[0,p—1]], Zf,(Lk) CS surl
> f,(Lp) CU sur tout segment c I

Alors

la somme S est de classe CP sur I

+ 00

(k)
Viel, Vke[[0,p]], (an(t)) =Y P @).
n=0

En pratique, on vérifie la convergence uniforme sur des intervalles adaptés a la situation.
V.
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Corollaire 5.1 (caractere ).

Si

VneN, f, est de classe C* sur I

> fn CSsurl

Vi e N*, S £ CU sur tout segment c I
Alors

la somme S est de classe C™ sur I

+00

+oo (k)
Vtel, VkeN, (an(t)) =Y fB ).
n=0 n=0

En pratique, on vérifie la convergence uniforme sur des intervalles adaptés a la situation.

v
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1
@ fn(w):_a TLEN*,.%E]I,—FOO[.
n.Z‘
* VYneN, f, est de classe C* sur ]1,+oo[ et
_ k
Vae]l,+oo[, Vk e N* fék)(:c) =

* > fn CSsur ]1,+o0].
® Soit [a,b] c |1, +oo[. Pour z € [a,b] et ke N*, on a:

|f7§k)(:1:)|:‘(_1;_$”)k )t

ne "
La série )y, converge car
1+a l+a
nz o, — 0 et >1,
n—>+oo

donc la série 3" £} CN donc CU sur [a,b].
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+00
@ Par suite, la somme ) f, est de classe C* sur ]1,+oo[ et pour
n=1

tout z€]l,+oo[ et keN, on a:

+ 00 (k')

Z_

az
n=1"M

Z % (- lnn)k
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Proposition 5.2.

Soit A une algébre normée de dimension finie et a € A.

I'application

est définie et de classe C*° sur R.
De plus, pour toutteR et k€N, on a :

e (1) = aF ea(t) = eq(t)a |.

Pour tout (s,t) e R?, on a :

ea(s+1) =eq(s)eq(t) =eq(t)eq(s)

et

(ea(®)) " =ea(~t) |
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