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TD No8

Endomorphismes d’un espace euclidien (I)

1 Compléments sur les espaces préhilbertiens réels

Exercice 1. CCINP MP 2021. On munit Mn(R) du produit scalaire canonique (A ∣ B) = Tr (A⊺B).
Déterminer Dn(R)⊥, l’orthogonal des matrices diagonales de Mn(R).

Exercice 2. CCP MP 2006. Soient E = C0([0, 1] ,R) et φ ∶ E ×E Ð→ R définie par φ(f, g) = ∫
1

0
f(t)g(t)dt.

1. Montrer que φ est un produit scalaire sur E.

2. On pose F = {h ∈ E, ∫
1

0
h(t)dt = 1}. Calculer min

h∈F ∫
1

0
h(t)2dt.

Exercice 3. Soient (n, p) ∈ N2 tels que p ≤ n et A ∈ Mn,p(R), B ∈ Mn,1(R). On note (. ∣ .) le produit scalaire canonique et
∥.∥ la norme associée sur Mn,1(R).
Si l’équation AX = B d’inconnue X dans Mp,1(R) n’a pas de solution, on cherche X tel que ∥AX −B∥ soit minimal.

1. On suppose que le rang de A est p.

a. Montrer qu’il existe une seule matrice colonne X0 deMp,1(R) telle que : ∥AX0−B∥ = inf {∥AX −B∥, X ∈ Mp,1(R)}.
b. Montrer que X0 est l’unique solution de A⊺AX = A⊺B.

2. Déterminer inf {(x + y − 1)2 + (x − y)2 + (2x + y + 2)2, (x, y) ∈ R2}.

Exercice 4. Classique. On munit E = C0([a, b] ,R) du produit scalaire défini par (f ∣ g) = ∫
b

a
f(t)g(t)dt.

En exploitant le théorème d’approximation uniforme de Weierstrass, établir que l’orthogonal du sous-espace vectoriel F de
E formé des fonctions polynomiales est réduit à {0}.

Exercice 5. CCP MP 2007. Soit (E, (. ∣ .)) un espace préhilbertien réel et f ∈ GL(E). On suppose que :

∀(x, y) ∈ E, (x ∣ y) = 0 Ô⇒ (f(x) ∣ f(y)) = 0.

1. Calculer (x + y ∣ x − y) lorsque x et y sont deux vecteurs unitaires.

2. Montrer qu’il existe a > 0 tel que ∀x ∈ E, ∥f(x)∥ = a∥x∥.
3. En déduire que : ∀(x, y) ∈ E2, (f(x) ∣ f(y)) = a2(x ∣ y).

Exercice 6. Soit E un espace préhilbertien réel et A une partie de E.

1. Montrer que A⊥ est une partie fermée.

2. Établir A⊥ = A
⊥.

Exercice 7. CNC MP 2022. Soit n ≥ 2. On munit Rn de son produit scalaire canonique et on note (e1, . . . , en) la base canonique
de Rn. Pour tout k ∈ {1, . . . , n − 1}, on pose vk = ek − ek+1. On pose :

H = {(x1, . . . , xn) ∈ Rn,
n

∑
k=1

xk = 0}.

1. On considère l’application φ ∶ Rn Ð→ R, (x1, . . . , xn) z→
n

∑
k=1

xk.

a. Vérifier que φ est une forme linéaire non nulle sur Rn.

b. En déduire que H est un sev de Rn et déterminer sa dimension.

2. Montrer que la famille (v1, . . . , vn−1) est une base de H.

3. Pour tout k ∈ {1, . . . , n − 1}, on pose Fk = Vect (v1, . . . , vk) et on note pk la projection orthogonale sur le sev Fk.

a. Montrer que, pour tout (j, k) ∈ {1, . . . , n − 1}2
, (vj ∣ vk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 si k ∈ {j − 1, j + 1}
2 si k = j

0 si k ∉ {j − 1, j, j + 1}.
b. Considérons la famille (ε1, . . . , εn−1) définie par : ε1 = v1 et εk = vk − pk−1(vk) pour tout k ∈ {2, . . . , n − 1}.

Montrer que :
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i. ∀k ∈ {1, . . . , n − 1}, Vect (v1, . . . , vk) = Vect (ε1, . . . , εk).
ii. (ε1, . . . , εn−1) est une famille orthogonale de H.

c. Soit k ∈ {2, . . . , n − 1}. On pose εk = vk −
k−1
∑
j=1

αjvj .

i. Montrer que (α1, . . . , αk−1) est solution du système linéaire AkX = Bk, où Ak = ((vj ∣ vℓ))1≤j,ℓ≤k−1 et Bk le
vecteur colonne de composantes (v1 ∣ vk), . . . , (vk−1 ∣ vk).

ii. Montrer que le système AkX = Bk s’écrit

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 − x2 = 0
−x1 + 2x2 − x3 = 0
⋮ ⋮
−xk−3 + 2xk−2 − xk−1 = 0
−xk−2 + 2xk−1 = −1

.

iii. Résoudre le système AkX = Bk et en déduire que εk = (
1
k

, . . . ,
1
k

,−1, 0, . . . , 0), le −1 étant situé à la (k + 1)-ième
place.

4. Donner une base orthonormée de H.

Exercice 8. Soit A ∈ Mn(R).
1. Vérifier que Im (A⊺) = (ker(A))⊥.
2. Comparer les espaces ker(A) et ker(A⊺A). Même question pour les espaces Im (A) et Im (AA⊺).

Exercice 9. Soit A ∈ Mn(R) vérifiant ∥AX∥ ≤ ∥X∥ pour toute colonne X ∈ Mn,1(R).
1. Montrer que ∥A⊺X∥ ≤ ∥X∥ pour toute colonne X ∈ Mn,1(R).
2. Soit X ∈ Mn,1(R) vérifiant AX =X. Montrer A⊺X =X.

Exercice 10. 1. Soit (A, B) ∈ (Mn(R))
2. Montrer : ∀(X, Y ) ∈ (Mn,1(R))

2
, X⊺AY =X⊺BY ⇐⇒ A = B.

2. Soit (A, B) ∈ (Sn(R))
2. Montrer : ∀X ∈ Mn,1(R), X⊺AX =X⊺BX ⇐⇒ A = B.

3. Soit A ∈ Mn(R). Montrer : ∀X ∈ Mn,1(R), X⊺AX = 0 ⇐⇒ A ∈ An(R).

Exercice 11. Mines-Ponts MP 2007. Calculer inf {∫
1

0
(t ln t − at − b)2dt, (a, b) ∈ R2}. Indiquer les valeurs de (a, b) pour les-

quelles ce minimum est atteint.

Exercice 12. Inégalité d’Hadamard. Soit E un espace euclidien de dimension n ≥ 1 et B une b.o.n. de E.

1. Montrer que pour tout n-uplet de vecteurs (x1, . . . , xn), on a : ∣detB(x1, . . . , xn)∣ ≤ ∥x1∥ . . . ∥xn∥.
2. Dans quels cas y a-t-il égalité ?

3. Application : soit A = (ai,j)1≤i,j≤n
∈ Mn(R). Montrer que ∣det A∣ ≤

¿
ÁÁÀ

n

∏
j=1
(

n

∑
i=1

a2
i,j).

2 Formes linéaires et adjoint

Exercice 13. Soit φ une forme linéaire sur Mn(R). Montrer qu’il existe A ∈ Mn(R) vérifiant φ(M) = Tr (AM) pour tout
M ∈ Mn(R). Indication : utiliser le théorème de représentation des formes linéaires dans un espace euclidien.

Exercice 14. Soit E = R [X] avec n ∈ N.

1. Montrer l’existence et l’unicité d’un polynôme A de E tel que : P (0) = ∫
1

0
A(t)P (t)dt pour tout P ∈ E.

2. Établir que le polynôme A est de degré n exactement. Indication : raisonner par l’absurde et considérer P =XA.

Exercice 15. Soit a, b deux vecteurs d’un espace euclidien E et u ∈ L(E) définie par : ∀x ∈ E, u(x) = (a ∣ x)b − (b ∣ x)a.
Déterminer l’adjoint u∗ de u.

Exercice 16. L’espace Mn(R), n ≥ 2 est muni de son produit scalaire canonique. Soit A ∈ Mn(R) et φ l’endomorphisme de
Mn(R) définie par : φ(M) = AM⊺A. Calculer l’adjoint de φ.

Exercice 17. Soit E un espace euclidien et u ∈ L(E). Montrer les propriétés suivantes :
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1. Si u ∈ GL(E) alors, u∗ ∈ GL(E) et que (u∗)−1 = (u−1)∗.
2. ∀P ∈ R [X] , (P (u))∗ = P (u∗).
3. Πu∗ = Πu et Sp (u∗) = Sp (u).

4. Tr (u∗) = Tr (u).
5. det(u∗) = det(u).
6. χu∗ = χu.

Exercice 18. Soit E un espace euclidien et u ∈ L(E).On rappelle la norme triple de u : ∣∣∣u∣∣∣ = sup
∥x∥≤1
∥u(x)∥.

Montrer que ∣∣∣u∣∣∣ = ∣∣∣u∗∣∣∣ et que ∣∣∣u ○ u∗∣∣∣ = ∣∣∣u∗ ○ u∣∣∣ = ∣∣∣u∣∣∣2.

Exercice 19. Soit E un espace euclidien et u ∈ L(E). Démontrer que ker(u) = ker(u∗ ○ u) et que Im (u∗) = Im (u∗ ○ u).

Exercice 20. Un adjoint en dimension infinie. Soit E = C0([0, 1] ,R) muni du produit scalaire (f ∣ g) = ∫
1

0
f(t)g(t)dt.

Soit u l’application de E dans E définie par : ∀f ∈ E, ∀x ∈ [0, 1] , u(f)(x) = ∫
x

0
f(t)dt.

1. Montrer que u est un endomorphisme de E et qu’il admet un adjoint u∗ à déterminer.

2. Soit λ une valeur propre de u∗ ○ u et f un vecteur propre associé.

a. Montrer que λ > 0 et que f est de classe C2 sur [0, 1].
b. Déterminer les valeurs propres et les sous-espaces propres de u∗ ○ u.

Exercice 21. Soit E un espace euclidien et u ∈ L(E) tel que, (u(x) ∣ x) = 0 pour tout x ∈ E.
Démontrer que u∗ = −u puis que ker u = (Im u)⊥.

Exercice 22. Soit E un espace euclidien et u ∈ L(E) tel que Im u ⊂ ker u. Montrer que ker(u + u∗) = ker u ∩ ker u∗.

Exercice 23. Sur l’adjoint d’un projecteur. Soit E un espace euclidien et u ∈ L(E) un projecteur.

1. Vérifier que u∗ est un projecteur.

2. Montrer que u∗ = u si, et seulement si, u est la projection orthogonale sur Im u.

3. On suppose que u et u∗ commutent.

a. Démontrer que u ○ u∗ est une projection orthogonale.

b. Démontrer que ker(u ○ u∗)⋂ Im u = {0}.
c. En déduire que ker(u ○ u∗) = ker u et Im (u ○ u∗) = Im u.

4. En déduire que u et u∗ commutent si, et seulement si, u = u∗.

Exercice 24. Centrale MP 2007. Soit E un espace euclidien et p un projecteur de E. Démontrer l’équivalence des assertions
suivantes :

i. Im p est orthogonal à ker p ; ii. p∗ = p ; iii. ∀x ∈ E, ∥p(x)∥ ≤ ∥x∥.

Indication : pour montrer (iii) Ô⇒ (i), on appliquera la propriété (iii) à x + ty.

Exercice 25. Soit E un espace euclidien et u ∈ L(E) tel que : ∀x ∈ E, ∥u(x)∥ ≤ ∥x∥.
1. Montrer que ∀x ∈ E, ∥u∗(x)∥ ≤ ∥x∥.
2. Montrer ker(u − IdE) = ker(u∗ − IdE).
3. Montrer que E = ker(u − IdE) ⊕ Im (u − IdE).

3 Matrices orthogonales, isométries vectorielles

Exercice 26. Sur les coefficients d’une matrice orthogonale. Soit A = (ai,j)1≤i,j≤n
∈ On(R). Démontrer que

1. ∀(i, j) ∈ [[1, n]]2, ∣ai,j ∣ ≤ 1.

2.
n

∑
i=1

n

∑
j=1

a2
i,j = n.

3. ∣
n

∑
i=1

n

∑
j=1

ai,j∣ ≤ n. Indication : remarquer que
n

∑
i=1

n

∑
j=1

xixjai,j =X⊺AX où X = (x1, . . . , xn)
⊺.

4. n ≤
n

∑
i=1

n

∑
j=1
∣ai,j ∣ ≤ n

√
n.
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Exercice 27. L’espace Mn,1(R) est muni de son produit scalaire canonique et ∥.∥ la norme euclidienne associée.
Soit A ∈ On(R). Montrer que ∥AX∥ = ∥X∥ pour toute colonne X ∈ Mn,1(R).

Exercice 28. Montrer que le groupe SOn(R), pour n ≥ 3, n’est pas commutatif.

Exercice 29. Commutant de On(R) dans Mn(R). On note C(On(R)) = {M ∈ Mn(R), ∀Ω ∈ On(R), MΩ = ΩM} le commu-

tant de On(R) dans Mn(R). Démontrer que C(On(R)) = {λ.In, λ ∈ R}.

Exercice 30. CCP PSI 2007. Soit A ∈ Mn(R) une matrice antisymétrique.
1. Montrer que In +A est inversible.
2. On pose B = (In +A)−1(In −A). Montrer que B ∈ SOn(R).

Exercice 31. Soit A ∈ On(R) dont tous les coefficients sont positifs ou nuls.
1. Montrer que les colonnes de A comportent un et un seul coefficient non nul.
2. En déduire que A est constituée des colonnes de la matrice In dans un certain ordre.

Exercice 32. Soit A ∈ Mn(R) une matrice orthogonale et triangulaire supérieure. Démontrer que A est une matrice diagonale
dont les coefficients diagonaux sont égaux à ±1.

Exercice 33. Factorisation QR.

1. Soit E un espace euclidien et B une base de E. On note C l’orthonormalisée de Schmidt de B. Que dire de la matrice de
passage de C à B ?
2. Soit A ∈ GLn(R). Montrer qu’il existe Q ∈ On(R) et R ∈ Mn(R) triangulaire supérieure dont tous les coefficients
diagonaux sont strictement positifs telles que A = QR.
3. Démontrer que le couple (Q, R) est unique.

Exercice 34. Montrer que les matrices A =
⎛
⎝

1 1
0 1

⎞
⎠

et A′ =
⎛
⎝

1 0
1 1
⎞
⎠

sont orthogonalement semblables.

Exercice 35. Soit n ≥ 2.
1. Montrer que On(R) n’est pas convexe. Indication : raisonner par l’absurde.

2. Montrer que On(R) est un compact de Mn(R). Indication : on pourra considérer la norme ∥A∥ =
√

Tr (A⊺A).

Exercice 36. Mines-Ponts MP 2006. Soit E un espace euclidien et u ∈ L(E). Montrer que deux quelconques des trois propriétés
suivantes entraînent la troisième :

i. u ∈ O(E) ; ii. u2 = −IdE ; iii. ∀x ∈ E, u(x) est orthogonal à x.

Exercice 37. Montrer que, dans un espace euclidien :
1. Les symétries orthogonales sont des isométries vectorielles.
2. Les réflexions sont des isométries négatives.
3. Une symétrie orthogonale u est une isométrie positive si, et seulement si, dim ker(u + IdE) est pair.
On rappelle que u est une réflexion de E lorsque u est une symétrie orthogonale par rapport à un hyperplan de E.

Exercice 38. Mines-Ponts MP 2006. Soient E un espace euclidien, u ∈ E non nul et g ∈ O(E). On note σ la symétrie
orthogonale par rapport à l’hyperplan H = Vect (u)⊥.
Démontrer que l’endomorphisme f = g ○ σ ○ g−1 est la symétrie orthogonale par rapport à l’hyperplan Vect (g(u))⊥.

Exercice 39. Soit E un espace euclidien et u ∈ L(E) antisymétrique i.e. u∗ = −u.
1. Montrer que IdE + u est un automorphisme de E.
2. Montrer que v = (IdE − u) ○ (IdE + u)−1 est une isométrie positive.
3. Soit v ∈ L(E) une isométrie qui n’admettant pas −1 pour valeur propre.
Montrer qu’il existe u ∈ L(E) antisymétrique u tel que : v = (IdE − u) ○ (IdE + u)−1.

Exercice 40. CCP MP 2005. Soit E un espace euclidien et u ∈ O(E). Pour k ∈ N∗, on pose vk =
1
k

k−1
∑
j=0

uj .

1. Montrer que (Im (IdE − u))⊥ = ker(IdE − u).
2. Montrer que la suite (vk)k≥1 converge simplement vers le projecteur orthogonal sur ker(IdE − u).
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