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Rappels et compléments sur les espaces
préhilbertiens réels

Dans ce chapitre et sauf mentionné, E désigne un R-espace vectoriel.

Le couple (E, (. ∣ .)) désigne un espace préhilbertien réel et F un
sous-espace vectoriel de E de dimension finie.

Définition 1.1 (projection orthogonale).
On appelle projection orthogonale sur F , la projection pF sur F
parallèlement à F ⊥.
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●
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F

0E pF (x)

F ⊥
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Théorème 1.1 (expression du projeté orthogonal dans une b.o.n).
Soit (e1, . . . , ep) une b.o.n. de F .

∀x ∈ E, pF (x) =
p

∑
i=1
(ei ∣ x)ei .

Théorème 1.2.
Soit x ∈ E.

∀y ∈ F, ∥x − y∥ ≥ ∥x − pF (x)∥

avec égalité si, et seulement si, y = pF (x).
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Corollaire 1.1 (la distance d’un vecteur à un sev est atteinte en son projeté

orthogonal).
Soit x ∈ E.

d(x, F ) =min
y∈F
∥x − y∥ = ∥x − pF (x)∥ =

√
∥x∥2 − ∥pF (x)∥2 .

●

d(x, F )

x

F

0E
pF (x)
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Théorème 1.3 (inégalité de Bessel).
Soit (en)n∈N une suite orthonormale de vecteurs de E.
Pour tout x ∈ E, la suite ((x ∣ en))n∈N est de carré sommable et

∑
n∈N
(x ∣ en)2 ≤ ∥x∥2 .
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Formes linéaires d’un espace euclidien

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Soit a ∈ E. L’application

φa ∶ E Ð→ R
x z→ (a ∣ x)

est une forme linéaire sur E.
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Théorème 2.1 (représentation des formes linéaires dans un espace euclidien).
L’application

Φ ∶ E Ð→ L(E,R)
a z→ φa

est un isomorphisme d’espaces vectoriels appelé l’isomorphisme
canonique de E vers L(E,R).
En particulier,

∀φ ∈ L(E,R), ∃! a ∈ E, ∀x ∈ E, φ(x) = (a ∣ x) .
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Adjoint d’un endomorphisme

Proposition 2.1 (existence de l’adjoint dans un espace euclidien).
Soit u ∈ L(E). Il existe v ∈ L(E) unique tel que

∀(x, y) ∈ E2, (u(x) ∣ y) = (x ∣ v(y)) .

L’endomorphisme v est appelé l’adjoint de u. On le note u⋆.

M. BINYZE (https://supspé.com) Endomorphismes d’un espace euclidien 2025-2026 12 / 51

https://supsp%C3%A9.com


�
L’espace Mn(R) est muni de son produit scalaire canonique.
Soit A ∈ Mn(R) et uA l’endomorphisme de Mn(R) définie par
uA(X) =XA. Pour tout X, Y ∈ Mn(R), on a :

(uA(X) ∣ Y ) = Tr ((XA)⊺Y )
= Tr (A⊺X⊺Y )
= Tr (X⊺Y A⊺)
= (X ∣ Y A⊺)
= (X ∣ uA⊺(Y )).

D’où u⋆A = uA⊺ .

Proposition 2.2 (matrice de l’adjoint dans une b.o.n).
Soit u ∈ L(E) et B une b.o.n. de E. Si A =Mat B(u) alors

A⊺ =Mat B(u⋆) .
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Proposition 2.3 (propriétés).
Soit u, v ∈ L(E) et (λ, µ) ∈ R2.

1 (λu + µv)⋆ = λu⋆ + µv⋆.
2 (u ○ v)⋆ = v⋆ ○ u⋆.
3 (u⋆)⋆ = u.
4 rg (u⋆) = rg (u).
5 ker(u⋆) = Im (u)⊥.
6 Im (u⋆) = ker(u)⊥.

Théorème 2.2 (sous-espaces stables).
Soit u ∈ L(E). Si F est un sev de E stable par u alors F ⊥ est stable par
u⋆.
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Matrices orthogonales

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Définition 3.1 (matrice orthogonale).
On dit que A ∈ Mn(R) est orthogonale si A⊺A = In. On note On(R)
l’ensemble des matrices orthogonales d’ordre n.

On(R)
déf= {A ∈ Mn(R), A⊺A = In} .

+ 1 A ∈ On(R) ⇐⇒ A ∈ GLn(R) et A−1 = A⊺.
2 Si A ∈ On(R) alors det(A) = ±1.
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Proposition 3.1 (structure de On(R)).
L’ensemble On(R) est un sous-groupe de (GLn(R),×) appelé groupe
orthogonal d’ordre n.

Théorème 3.1 (caractérisation par la famille des lignes, des colonnes).
Soit A ∈ Mn(R). On a équivalence entre :

1 A ∈ On(R);
2 Les vecteurs colonnes de A forment une famille orthonormale1 de
Mn,1(R);

3 Les vecteurs lignes de A forment une famille orthonormale de
M1,n(R).

1Pour le produit scalaire canonique de Mn,1(R) : (X ∣ Y ) =X⊺Y .
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�
M = 1

3

⎛
⎜
⎝

1 2 2
2 1 −2
−2 2 −1

⎞
⎟
⎠

est orthogonale : ses colonnes sont unitaires

et deux à deux orthogonales.

Théorème 3.2 (matrice de passage entre deux b.o.n).
Soit B = (e1, . . . , en) une b.o.n de E et B′ = (e′1, . . . , e′n) une famille de
vecteurs de E. On a équivalence entre :

1 B′ est une b.o.n. de E;
2 P =Mat B(B′) ∈ On(R).

De plus, si tel est le cas,

Mat B′(B) = P ⊺ .
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Définition 3.2 (matrices orthogonalement semblables).
On dit que A et B de Mn(R) sont orthogonalement semblables s’il
existe P ∈ On(R) telle que B = P ⊺AP .

Définition 3.3 (matrice orthogonale positive, négative).
1 On dit que A ∈ Mn(R) est orthogonale positive ou directe si

A ∈ On(R) et det(A) = 1. On note SOn(R) ou O+n(R) l’ensemble
des matrices orthogonales positives.

SOn(R)
déf= {A ∈ On(R), det(A) = 1} .

2 On dit que A ∈ Mn(R) est orthogonale négative ou indirecte si
A ∈ On(R) et det(A) = −1. On note O−n(R) l’ensemble des matrices
orthogonales négatives.

O−n(R)
déf= {A ∈ On(R), det(A) = −1} .
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Proposition 3.2 (structure de SOn(R)).
L’ensemble SOn(R) est un sous-groupe1 de (GLn(R),×) appelé groupe
spécial orthogonal d’ordre n.

1Attention, l’ensemble O−n(R) n’est pas un groupe : In ∉ O
−
n(R).

Proposition 3.3.
Soit B et B′ deux b.o.n.d. (base orthonormale directe) de l’espace
euclidien orienté E.

∀(u1, . . . , un) ∈ En, detB(u1, . . . , un) = detB′(u1, . . . , un) .
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Isométries vectorielles

Définition 3.4 (isométrie vectorielle).
On dit que u ∈ L(E) est une isométrie vectorielle ou automorphisme
orthogonal de E si u conserve la norme :

∀x ∈ E, ∥u(x)∥ = ∥x∥ .

On note O(E) l’ensemble des isométries vectorielles de E.

O(E) déf= {u ∈ L(E), ∀x ∈ E, ∥u(x)∥ = ∥x∥} .
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Théorème 3.3 (caractérisation des isométries vectorielles).
Soit u ∈ L(E). On a équivalence entre :

1 u ∈ O(E);
2 ∀(x, y) ∈ E2, (u(x) ∣ u(y)) = (x ∣ y);
3 u transforme une (toute) b.o.n. de E en une b.o.n de E;
4 Mat (u) dans une (toute) b.o.n. de E est une matrice orthogonale;
5 u⋆ ○ u = IdE .

+
Si u ∈ O(E) alors det(u) = ±1.
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Définition 3.5 (isométrie vectorielle directe, indirecte).
1 On dit que u ∈ L(E) est une isométrie positive ou directe si

u ∈ O(E) et det(u) = 1. On note SO(E) ou O+(E) l’ensemble des
isométries positives1.

SO(E) déf= {u ∈ O(E), det(u) = 1} .

2 On dit que u ∈ L(E) est une isométrie négative ou indirecte si
u ∈ O(E) et det(u) = −1. On note O−(E) l’ensemble des isométries
négatives.

O−(E) déf= {u ∈ O(E), det(u) = −1} .

1Les éléments de SO(E) sont appelés aussi des rotations de E.
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Proposition 3.4 (structure de SO(E)).
L’ensemble SO(E) est un sous-groupe1 de (GL(E), ○) appelé groupe
spécial orthogonal.

1Attention, l’ensemble O−(E) n’est pas un groupe : IdE ∉ O
−
(E).

Théorème 3.4 (caractérisation des isométries positives).
Soit E un espace euclidien orienté et u ∈ L(E).
u ∈ SO(E) si, et seulement si, u transforme une (toute) b.o.n.d. de E en
une b.o.n.d. de E.
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+
Soit E un espace euclidien orienté et u ∈ L(E).

1 u ∈ SO(E) si, et seulement si, u transforme une (toute)
b.o.n. de E en une b.o.n. de E de même orientation.

2 u ∈ O−(E) si, et seulement si, u transforme une (toute)
b.o.n. de E en une b.o.n. de E d’orientation opposé.
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Isométries vectorielles en dimension 2

Le couple (E, (. ∣ .)) désigne un espace euclidien orienté de dimension 2.

Proposition 3.5 (description de O2(R), SO2(R), O−2 (R)).

1 O2(R) = {(
a −b
b a

) , (a b
b −a

) , (a, b) ∈ R2 tel que a2 + b2 = 1} .

2 SO2(R) = {R(θ) = (
cos θ − sin θ
sin θ cos θ

) avec θ ∈ R}

3 O−2 (R) = {(
cos θ sin θ
sin θ − cos θ

) avec θ ∈ R} .
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+
L’application

R ∶ (R,+) Ð→ (SO2(R),×)
θ z→ R(θ)

est un morphisme de groupes surjectif appelé le morphisme
canonique de R sur SO2(R) de noyau 2πZ.

Ainsi SO2(R) est un groupe commutatif .
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Théorème 3.5 (nature des isométries positives).
Soit u ∈ SO(E).

1 Il existe un unique θ ∈ ]−π, π] tel que pour toute b.o.n.d. B de E :

Mat B(u) = R(θ) .
On dit que u est la rotation vectorielle d’angle θ et on note
u = Rotθ.

2 Soit (Ð→i ,
Ð→
j ) une b.o.n.d. de E.

Rotθ(
Ð→
i ) = cos θ.

Ð→
i + sin θ.

Ð→
j

et

Rotθ(
Ð→
j ) = − sin θ.

Ð→
i + cos θ.

Ð→
j

.
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●0E x

Rotθ(x)

θ

E

+
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+
SO(E) est un groupe commutatif (ici E est un plan euclidien).

Corollaire 3.1 (classification des isométries d’un plan euclidien).
Dans un plan euclidien E, toute isométrie est soit une réflexion, soit une
rotation.

Théorème 3.6 (les réflexions engendrent SO(E)).
1 Toute rotation est la composée de deux réflexions.
2 Plus précisément, si r ∈ SO(E) et s ∈ O−(E), alors il existe

s1 ∈ O−(E) unique tel que1

r = s1 ○ s .

1De même, il existe s2 ∈ O
−
(E) unique tel que r = s ○ s2.
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Réduction des isométries vectorielles

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Théorème 4.1 (sous-espaces stables par une isométrie, spectre).
1 Si u ∈ O(E) et F un sev de E stable par u alors F ⊥ est stable par u.
2 Si u ∈ O(E) alors Sp (u) ⊂ { − 1, 1} et les sous-espaces ker(u − IdE)

et ker(u + IdE) sont orthogonaux.

Théorème 4.2 (réduction d’une isométrie dans une b.o.n).
Soit u ∈ O(E). Il existe une b.o.n. B de E telle que :

Mat B(u) = diag (Ip,−Iq, R(θ1), . . . , R(θr))

avec θ1, . . . , θr ∈ R et p, q, r ∈ N tels que p = dim(ker(u − IdE)),
q = dim(ker(u + IdE)) et p + q + 2r = n.
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+
Le groupe SO(E) n’est pas commutatif pour dim(E) ≥ 3.

Théorème 4.3 (réduction d’une matrice orthogonale).
Soit A ∈ On(R). Il existe P ∈ On(R) telle que :

A = PRP ⊺ où R = diag (Ip,−Iq, R(θ1), . . . , R(θr))

avec θ1, . . . , θr ∈ R et p, q, r ∈ N tels que p + q + 2r = n.
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Isométries vectorielles en dimension 3

Soit E un espace euclidien orienté de dimension 3.

Proposition 4.1 (rotation de l’espace).
Soit f ∈ SO(E) ∖ {IdE} (rotation autre que l’identité).

1 1 ∈ Sp (f).
2 f peut être représentée dans une b.o.n. par la matrice

⎛
⎜
⎝

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎟
⎠

, θ ∈ R ∖ 2πZ.

On dit que f est la rotation d’axe dirigée et orienté par Ð→u et d’angle
θ. On la note RotÐ→u ,θ

.
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●

Ð→
b

Rotθ(
Ð→
b )

D

Ð→u

Ð→a

Ð→x

RotÐ→u ,θ
(Ð→x )

θ

θ

P =D⊥

Ð→0

+
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Propriétés de RotÐ→u ,θ

+ 1 Pour tout θ, θ′ ∈ R, on a :

RotÐ→u ,θ
= RotÐ→u ,θ′

⇐⇒ θ ≡ θ′ [2π]

et
RotÐ→u ,θ

○RotÐ→u ,θ′
= RotÐ→u ,θ′

○RotÐ→u ,θ
= RotÐ→u ,θ+θ′

.

2 Pour tout θ ∈ R, on a :

Rot−1Ð→u ,θ
= RotÐ→u ,−θ

et
RotÐ→u ,θ

= Rot−Ð→u ,−θ
.

M. BINYZE (https://supspé.com) Endomorphismes d’un espace euclidien 2025-2026 36 / 51

https://supsp%C3%A9.com


Plan

1 Rappels et compléments sur les espaces préhilbertiens réels

2 Formes linéaires et adjoint

3 Matrices orthogonales, isométries vectorielles

4 Réduction des isométries vectorielles

5 Endomorphismes autoadjoints d’un espace euclidien

M. BINYZE (https://supspé.com) Endomorphismes d’un espace euclidien 2025-2026 37 / 51

https://supsp%C3%A9.com


Endomorphismes autoadjoints

Le couple (E, (. ∣ .)) désigne un espace euclidien de dimension n ≥ 1.

Définition 5.1 (endomorphisme autoadjoint).

On dit que u ∈ L(E) est autoadjoint ou symétrique si u⋆ = u .
On note S (E) l’ensemble des endomorphismes autoadjoints de E.

S (E) déf= {u ∈ L(E), u⋆ = u} .

Théorème 5.1 (caractérisation des endomorphismes autoadjoints).
Soit u ∈ L(E). On a équivalence entre :

1 u ∈S (E);
2 ∀x, y ∈ E, (u(x) ∣ y) = (x ∣ u(y));
3 Mat (u) dans une (toute) b.o.n. de E est une matrice symétrique.
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�
Soit E = Rn [X] muni du produit scalaire

(P ∣ Q) = ∫
1

−1
P (t)Q(t)dt

et φ l’endomorphisme de E définie, pour tout P ∈ E, par

φ(P ) = ((X2 − 1)P ′)′.
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�
Pour tout P, Q ∈ E, on a :

(φ(P ) ∣ Q) = ∫
1

−1
((t2 − 1)P ′(t))′Q(t)dt

= [(t2 − 1)P ′(t)Q(t)]1−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0
−∫

1

−1
(t2 − 1)P ′(t)Q′(t)dt

= − [(t2 − 1)Q′(t)P (t)]1−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0
+∫

1

−1
((t2 − 1)Q′(t))′P (t)dt

= (P ∣ φ(Q)).

D’où φ ∈S (E).

M. BINYZE (https://supspé.com) Endomorphismes d’un espace euclidien 2025-2026 40 / 51

https://supsp%C3%A9.com


Corollaire 5.1 (structure de S (E)).
S (E) est un sev de L(E) isomorphe à Sn(R). En particulier

dim S (E) = n(n + 1)
2

.

M. BINYZE (https://supspé.com) Endomorphismes d’un espace euclidien 2025-2026 41 / 51

https://supsp%C3%A9.com


Réduction des endomorphismes autoadjoints

Théorème 5.2 (stabilité de l’orthogonal d’un sev stable).
Si u ∈S (E) et F un sev de E stable par u alors F ⊥ est stable par u.
De plus :

uF ∈S (F ) et uF ⊥ ∈S (F ⊥).

Proposition 5.1 (propriétés).
Si u ∈S (E) alors le polynôme caractéristique χu est scindé sur R et les
sous-espaces propres Eλ(u) et Eµ(u) sont orthogonaux pour λ ≠ µ.
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Théorème 5.3 (théorème spectral (version vectorielle)).
Soit u ∈ L(E). On a équivalence entre :

1 u ∈S (E);

2 E =
⊥
⊕

λ∈Sp (u)
Eλ(u).

3 u est diagonalisable dans une b.o.n. de E;

Théorème 5.4 (théorème spectral (version matricielle)).
A ∈ Sn(R) si, et seulement si, il existe P ∈ On(R) et D ∈ Mn(R)
diagonale telles que :

A = PDP ⊺ .
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�
Soit A =

⎛
⎜
⎝

−1 1 1
1 −1 1
1 1 −1

⎞
⎟
⎠

. Déterminer P ∈ On(R) et D ∈ Mn(R)

diagonale telle que A = PDP ⊺.
● χA(X) = (X − 1)(X + 2)2. On a

E−2(A) = Vect
⎛
⎜
⎝

⎛
⎜
⎝

1
0
−1

⎞
⎟
⎠

,
⎛
⎜
⎝

0
1
−1

⎞
⎟
⎠

⎞
⎟
⎠

.

● Sans calcul, on peut affirmer que E1(A) est une droite
normale1 au plan E−2(A) :

E1(A) = Vect
⎛
⎜
⎝

1
1
1

⎞
⎟
⎠

.

1un vecteur normal au plan est le produit vectoriel de deux vecteurs qui engendrent
ce plan.
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� ● On obtient une b.o.n. du plan E−2(A) en considérant les
vecteurs

e1 =
1√
2

⎛
⎜
⎝

1
0
−1

⎞
⎟
⎠

et e2 =
1√
6

⎛
⎜
⎝

−1
2
−1

⎞
⎟
⎠

.

● On obtient une b.o.n. de la droite E1(A) avec le vecteur

e3 =
1√
3

⎛
⎜
⎝

1
1
1

⎞
⎟
⎠

.

● Les vecteurs e1, e2, e3 déterminent alors les colonnes d’une
matrice de passage orthogonale P convenable : A = PDP ⊺

avec

P = 1√
6

⎛
⎜
⎝

√
3 −1

√
2

0 2
√

2
−
√

3 −1
√

2

⎞
⎟
⎠

et D =
⎛
⎜
⎝

−2 0 0
0 −2 0
0 0 1

⎞
⎟
⎠

.
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�
La matrice A = (1 i

i −1) ∈ M2(C) est symétrique non diagonal-

isable car nilpotente (A2 = O2).
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Endomorphismes autoadjoints positifs, définis
positifs

Définition 5.2 (endomorphisme autoadjoint positif, défini positif).
Soit u ∈S (E).

1 On dit que u est positif si

∀x ∈ E, (u(x) ∣ x) ≥ 0 .

On note S +(E) l’ensemble des endomorphismes autoadjoints positifs
de E.

2 On dit que u est défini positif si

∀x ∈ E ∖ {0E}, (u(x) ∣ x) > 0 .

On note S ++(E) l’ensemble des endomorphismes autoadjoints définis
positifs de E.
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Théorème 5.5 (caractérisation spectrale).
Soit u ∈S (E). On a :

u ∈S +(E) ⇐⇒ Sp (u) ⊂ R+ et u ∈S ++(E) ⇐⇒ Sp (u) ⊂ R+∗ .

�
L’endomorphisme φ (exemple ci-dessus) de E = Rn [X] définie
par φ(P ) = ((X2 − 1)P ′)′ vérifie :
● φ ∈S (E).
● φ(1) = 0, φ(X) = 2X et

φ(Xk) = k(k + 1)Xk − k(k − 1)Xk−2 pour 2 ≤ k ≤ n

donc la matrice de φ dans la base canonique de E est
triangulaire supérieure et par suite,

Sp (φ) = {k(k + 1), k ∈ [[0, n]]}.

Ainsi φ ∈S +(E).
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Définition 5.3 (matrice symétrique positive, définie positive).
Soit A ∈ Sn(R).

1 On dit que A est positive si

∀X ∈ Mn,1(R), X⊺AX ≥ 0 .

On note S +
n (R) l’ensemble des matrices symétriques positives d’ordre

n.
2 On dit que A est définie positive si

∀X ∈ Mn,1(R) ∖ {On,1}, X⊺AX > 0 .

On note S ++
n (R) l’ensemble des matrices symétriques définies

positives d’ordre n.
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Théorème 5.6 (caractérisation spectrale).
Soit A ∈ Sn(R). On a :

A ∈S +
n (R) ⇐⇒ Sp (A) ⊂ R+ et A ∈S ++

n (R) ⇐⇒ Sp (A) ⊂ R+∗ .

+ 1 Les ensembles précédents peuvent être écrits de la manière
suivante :

S ++(E) =S +(E) ∩ GL(E)
et

S ++
n (R) =S +

n (R) ∩ GLn(R).
2 Soit B une b.o.n. de E. On a :

u ∈S +(E) ⇐⇒ Mat B(u) ∈S +
n (R)

et
u ∈S ++(E) ⇐⇒ Mat B(u) ∈S ++

n (R).
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