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TD No6

Suites et séries de fonctions (correction)

1 Suites de fonctions

Corrigé de l’exercice 1. 1. On a : fn(x) ÐÐÐ→
n→+∞

f(x) =
⎧⎪⎪⎨⎪⎪⎩

0 si 0 ≤ x < π/2
1 si x = 1

donc fn
CSÐÐÐ→

n→+∞
f sur [0, π

2
].

La convergence n’est pas uniforme sur [0, π
2
] puisque la limite simple f n’est pas continue sur [0, π

2
].

2. Si x = 0, fn(x) = 0 et si x > 0, fn(x) = x2 e−nx ÐÐÐ→
n→+∞

0 (croissance comparée) donc fn
CSÐÐÐ→

n→+∞
0 sur [0,+∞[.

Pour tout n ∈ N∗, la fonction fn est dérivable sur [0,+∞[ et f ′(x) = x e−nx(2 − nx).

x

f ′n(x)

fn

0 2
n

+∞
+ 0 −

00

fn ( 2
n
)fn ( 2

n
)

00

Donc

∥fn − 0∥∞,[0,+∞[ = sup
x∈[0,+∞[

∣fn(x) − 0∣ = sup
x∈[0,+∞[

∣fn(x)∣ = fn (
2
n
) = 4

n2 e−2 ÐÐÐ→
n→+∞

0.

Ainsi, fn
CUÐÐÐ→

n→+∞
0 sur [0,+∞[.

3. Si x = 0 ou x = 1, fn(x) = 0. Si x ∈ ]0,1[ , fn(x) = nxn(1−x2) ÐÐÐ→
n→+∞

0 (croissance comparée) donc fn
CSÐÐÐ→

n→+∞
0 sur [0,1].

Pour tout n ∈ N∗, la fonction fn est dérivable sur [0,1] et f ′(x) = n2xn−1 (1 − n + 2
n

x2).

x

f ′n(x)

fn

0
√

n
n+2 1

+ 0 −

00

fn (
√

n
n+2)fn (

√
n
n+2)

00

Donc

∥fn − 0∥∞,[0,1] = sup
x∈[0,1]

∣fn(x) − 0∣ = sup
x∈[0,1]

∣fn(x)∣ = fn (
√

n
n+2) =

2n
n + 2

( n

n + 2
)
n/2
= 2n
n + 2

(1 + 2
n
)
−n/2
ÐÐÐ→
n→+∞

2 e−1 ≠ 0.

Ainsi, (fn)n ne converge pas uniformément sur [0,1].

4. Si x = 0 ou x = 1, fn(x) = 0. Si x ∈ ]0,1[ , fn(x) = xn(1 − x) ÐÐÐ→
n→+∞

0 (suite géométrique) donc fn
CSÐÐÐ→

n→+∞
0 sur [0,1].

Pour tout n ∈ N∗, la fonction fn est dérivable sur [0,1] et f ′(x) = xn−1(n − (n + 1)x).

x

f ′n(x)

fn

0 n
n+1 1

+ 0 −

00

fn ( n
n+1)fn ( n
n+1)

00

Donc

∥fn − 0∥∞,[0,1] = sup
x∈[0,1]

∣fn(x) − 0∣ = sup
x∈[0,1]

∣fn(x)∣ = fn ( n
n+1) = (

n

n + 1
)
n

(1 − n

n + 1
) = (1 + 1

n
)
−n 1
n + 1

∼
+∞

e−1

n
ÐÐÐ→
n→+∞

0.

Ainsi, fn
CUÐÐÐ→

n→+∞
0 sur [0,1].
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5. Si x = 0, fn(x) = 0. Si x > 0, il existe n0 ∈ N∗ tel que, pour tout n ≥ n0,
1
n
≤ x donc fn(x) =

1
x

pour n ≥ n0 et par suite,

fn(x) ÐÐÐ→
n→+∞

1
x

. Ainsi, fn(x) ÐÐÐ→
n→+∞

f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 si x = 0
1
x

si x > 0
. D’où fn

CSÐÐÐ→
n→+∞

f sur [0,+∞[.

Soit x ∈ [0,+∞[ et n ∈ N∗. On a : fn(x) − f(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n2x2 − 1
x

si 0 < x < 1
n

0 si x ≥ 1
n

. Par conséquent, lim
x→0+
(fn(x) − f(x)) = +∞ et

donc la fonction fn − f n’est pas bornée sur [0,+∞[. D’où la suite (fn)n ne converge pas uniformément vers f sur [0,+∞[.

6. Soit x ∈ [0,+∞[. On a fn(x) = (x +
e−x
n
)

2

ÐÐÐ→
n→+∞

f(x) = x2 donc fn
CSÐÐÐ→

n→+∞
f sur [0,+∞[.

Soit x ∈ [0,+∞[ et n ∈ N∗. On a ∣fn(x) − f(x)∣ =
2x e−x
n
+ e−2x

n2 .
L’étude de la fonction xz→ x e−x sur [0,+∞[ montre que 0 ≤ x e−x ≤ e−1 pour tout x ≥ 0. Ainsi,

∀x ≥ 0, ∣fn(x) − f(x)∣ ≤
2 e−1

n
+ 1
n2 ÐÐÐ→n→+∞

0.

i.e. ∥fn − f∥∞,[0,+∞[ ÐÐÐ→
n→+∞

0. D’où fn
CUÐÐÐ→

n→+∞
f sur [0,+∞[.

7. Soit x ≥ 0. On a fn(x) = exp((1 + 1/n) ln(1 + x)) ÐÐÐ→
n→+∞

f(x) = 1
(1 + x)

donc fn
CSÐÐÐ→

n→+∞
f sur [0,+∞[.

Pour tout n ∈ N∗, la fonction gn = fn − f est dérivable sur [0,+∞[ et g′n(x) =
1

(1 + x)2+1/n ((1 + x)
1/n − 1 − 1

n
).

x

g′n(x)

gn

0 (1 + 1/n)n − 1 +∞
+ 0 −

00

gn ((1 + 1/n)n − 1)gn ((1 + 1/n)n − 1)

00

∥fn − f∥∞,[0,+∞[ = sup
x∈[0,+∞[

∣fn(x) − f(x)∣ = gn ((1 + 1/n)n − 1) = (1 + 1
n
)
−n 1
n + 1

∼
+∞

e−1

n
ÐÐÐ→
n→+∞

0.

D’où fn
CUÐÐÐ→

n→+∞
f sur [0,+∞[.

Corrigé de l’exercice 2. 1. Soit x ∈ [0,+∞[. On a fn(x) ÐÐÐ→
n→+∞

f(x) =
⎧⎪⎪⎨⎪⎪⎩

(x2 + 1) e−x si x > 0
0 si x = 0

donc fn
CSÐÐÐ→

n→+∞
f sur [0,+∞[.

2. La fonction fn est continue sur [0,+∞[ mais la limite simple f n’est pas continue sur [0,+∞[ donc la convergence ne
peut pas être uniforme sur [0,+∞[.

3. Soit [a, b] un segment ⊂ [0,+∞[. On a :

∀n ∈ N, ∀x ∈ [a, b] , ∣fn(x) − f(x)∣ = ∣n(x
3 + x) e−x
nx + 1

− (1 + x2) e−x∣

= (1 + x
2) e−x

nx + 1

≤ 1 + b2

na + 1
ÐÐÐ→
n→+∞

0

i.e. ∥fn − f∥∞,[a,b] ÐÐÐ→
n→+∞

0. D’où fn
CUÐÐÐ→

n→+∞
f sur tout segment [a, b] ⊂ ]0,+∞[.

Corrigé de l’exercice 3. Convergence simple sur [0,+∞[ :
Si x = 0, fn(x) = 0. Si x > 0, il existe n0 ∈ N∗ tel que, pour tout n ≥ n0,

1
n
≤ x donc fn(x) = 0 pour n ≥ n0 et par suite,

fn(x) ÐÐÐ→
n→+∞

0. Ainsi, fn(x) ÐÐÐ→
n→+∞

f(x) pour tout x ∈ [0,+∞[. D’où fn
CSÐÐÐ→

n→+∞
0 sur [0,+∞[.

Convergence uniforme sur [0,+∞[ :
On a : ∥fn−0∥∞,[0,+∞[ = sup

x∈[0,+∞[
∣fn(x)∣ = nÐÐÐ→

n→+∞
+∞ donc la suite (fn)n ne converge pas uniformément vers 0 sur [0,+∞[.
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Convergence uniforme sur [a,+∞[ avec a > 0 :
Soit a > 0 et x ∈ [a,+∞[. Il existe n0 ∈ N∗ tel que, pour tout n ≥ n0,

1
n
≤ a donc fn(x) = 0 pour n ≥ n0 donc

∃n0 ∈ N∗, ∀n ≥ n0, ∥fn − 0∥∞,[a,+∞[ = 0.

i.e. fn
CUÐÐÐ→

n→+∞
0 sur [a,+∞[.

Corrigé de l’exercice 4. 1. Supposons fn
CUÐÐÐ→

n→+∞
f sur X, donc ∥fn − f∥∞,X ÐÐÐ→

n→+∞
0. Or

∀n ∈ N, ∣fn(xn) − f(xn)∣ ≤ ∥fn − f∥∞,X

donc fn(xn) − f(xn) ÐÐÐ→
n→+∞

0 ce qui est absurde. Ainsi, (fn)n ne converge pas uniformément vers f sur X.

2. Pour tout x ∈ R, on pose fn(x) =
sin(nx)
1 + n2x2 .

a. Si x = 0, fn(x) = 0 et si x ∈ R∗,

∣fn(x)∣ ≤
1

1 + n2x2 ÐÐÐ→n→+∞
0

donc fn(x) ÐÐÐ→
n→+∞

0 pour tout x ∈ R. Ainsi, fn
CSÐÐÐ→

n→+∞
0 sur R.

b. Soit a > 0 et x ∈ [a,+∞[. On a :

∣fn(x)∣ ≤
1

1 + n2x2 ≤
1

1 + n2a2 ÐÐÐ→n→+∞
0

donc ∥fn − 0∥∞,[a,+∞[ ÐÐÐ→
n→+∞

0 i.e. fn
CUÐÐÐ→

n→+∞
0 sur [a,+∞[.

Par contre, la convergence n’est pas uniforme sur ]0,+∞[ car fn (
π

2n
) = 1

1 + π2/4
ÐÐÐ→
n→+∞

1
1 + π2/4

≠ 0.

Corrigé de l’exercice 5. 1. Si t = 0, fn(t) = 1 et si t ∈ ]0,1] , fn(t) ∼
n→+∞

e−t
n2t2

ÐÐÐ→
n→+∞

0 donc fn(t) ÐÐÐ→
n→+∞

0 pour tout

t ∈ ]0,1]. Ainsi, fn(t) ÐÐÐ→
n→+∞

f(t) =
⎧⎪⎪⎨⎪⎪⎩

1 si t = 0
0 si t ∈ ]0,1]

. Par suite, fn
CSÐÐÐ→

n→+∞
f sur [0,1].

2. Soit a ∈ ]0,1[ et t ∈ [a,1]. On a :

∣fn(t) − f(t)∣ = ∣fn(t) − 0∣ ≤ e−a
1 + n2a2 ÐÐÐ→n→+∞

0

i.e. ∥fn − f(t)∥∞,[a,1] ÐÐÐ→
n→+∞

0 donc fn
CUÐÐÐ→

n→+∞
f sur [a,1].

3. La fonction fn est continue sur [0,1] mais la limite simple f n’est pas continue sur [0,1] donc la convergence ne peut
pas être uniforme sur [0,1].
4. Soit n ∈ N∗. On a :

un =
®
nt=s

1
n
∫

n

0

e−s/n
1 + s2 ds

= 1
n
([e−s/n arctan s]n0 +

1
n
∫

n

0
e−s/n arctan sds)

= e−1 arctann
n

+ 1
n2 ∫

n

0
e−s/n arctan sds

donc 0 ≤ un −
e−1 arctann

n
≤ π

2n2 ∫
n

0
e−s/n ds = π

2n
(1 − e−1) ÐÐÐ→

n→+∞
0 et par suite, lim

n→+∞
un = lim

n→+∞

e−1 arctann
n

= 0.

Corrigé de l’exercice 6. 1. Soit n ∈ N∗. Pour t ∈ R∗, on a :

fn(t) =
n

∏
k=1

sin( t

2k−1 )

2 sin( t
2k
)
= sin t

2n sin( t
2n
)

i.e. sin( t
2n
) fn(t) =

sin t
2n

et l’égalité est triviale si t = 0. Ainsi, ∀t ∈ R, sin( t
2n
) fn(t) =

sin t
2n

.
Convergence simple de (fn)n≥1 : Si t = 0, fn(t) = 1 et si t ∈ R∗,
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fn(t) =
sin t

2n sin( t
2n
)
ÐÐÐ→
n→+∞

sin t
t

.

Ainsi, fn(t) ÐÐÐ→
n→+∞

f(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sin t
t

si t ≠ 0
1 si t = 0

donc fn
CSÐÐÐ→

n→+∞
f sur R.

2. On a :

fn (
π

2
+ 2nπ) − f (π

2
+ 2nπ) = − 1

2n sin( π

2n+1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ÐÐÐ→

n→+∞
2/π

− 1
π

2
+ 2nπ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ÐÐÐ→
n→+∞

0

ÐÐÐ→
n→+∞

−2
π
≠ 0.

Ainsi, la suite (fn)n≥1 ne converge pas uniformément vers f sur R.

Corrigé de l’exercice 7. 1. Si x = 0, fn(x) = 0 et si x > 0, fn(x) = x(1 + nα e−nx) ÐÐÐ→
n→+∞

x (croissance comparée) donc

fn(x) ÐÐÐ→
n→+∞

f(x) = x pour tout x ∈ [0,+∞[. Ainsi, fn
CSÐÐÐ→

n→+∞
f sur [0,+∞[.

2. Pour tout n ∈ N∗, la fonction gn = fn − f est dérivable sur [0,+∞[ et g′n(x) = nα(1 − nx) e−nx.

x

g′n(x)

gn

0 1
n

+∞
+ 0 −

00
gn (

1
n
)gn (

1
n
)

00

∥fn − f∥∞,[0,+∞[ = sup
x∈[0,+∞[

∣fn(x) − f(x)∣ = gn (
1
n
) = e−1

n1−α ÐÐÐ→n→+∞
0 si, et seulement si, α < 1.

Donc fn
CUÐÐÐ→

n→+∞
f sur [0,+∞[ si, et seulement si, α < 1.

3. Ici α = 1
2
< 1 donc fn

CUÐÐÐ→
n→+∞

f sur [0,+∞[. Par suite,

lim
n→+∞

∫
1

0
x(1 +

√
n e−nx)dx = lim

n→+∞
∫

1

0
fn(x)dx = ∫

1

0
f(x)dx = ∫

1

0
xdx = 1

2
.

Corrigé de l’exercice 8. Convergence simple sur [1,+∞[ : Si x = 1, fn(x) = 0 et si x > 1,

fn(x) = n(e
ln x

n −1) ∼
n→+∞

n
lnx
n
= lnx.

Donc fn(x) ÐÐÐ→
n→+∞

f(x) = lnx pour tout x ∈ [1,+∞[ et par suite, fn
CSÐÐÐ→

n→+∞
f sur [1,+∞[.

Convergence uniforme sur [1,+∞[ : On a

fn(en) − f(en) = n(e−2) ÐÐÐ→
n→+∞

+∞

donc la suite (fn)n ne converge pas uniformément vers f sur [1,+∞[.
Convergence uniforme sur [1, a] avec a > 1 :
Pour tout n ∈ N∗, la fonction gn = fn − f est dérivable sur [1, a] et g′n(x) =

1
x
(e ln x

n −1).

x

g′n(x)

gn

1 a

+

00

gn(a)gn(a)

∥fn − f∥∞,[1,a] = sup
x∈[1,a]

∣fn(x) − f(x)∣ = gn(a) = fn(a) − f(a) ÐÐÐ→
n→+∞

0 i.e. fn
CUÐÐÐ→

n→+∞
f sur [1, a].

Corrigé de l’exercice 9. On note, pour x ∈ R, un(x) = x e−nx2 . Pour tout n ∈ N, la fonction fn est paire. On limite donc
l’étude de la convergence à R+.
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• Convergence simple : Si x = 0, fn(x) = 1 et si x > 0, fn(x) = cos (x e−nx2
) ÐÐÐ→
n→+∞

cos 0 = 1 donc fn(x) ÐÐÐ→
n→+∞

f(x) = 1

sur R+ i.e. fn
CSÐÐÐ→

n→+∞
f sur R.

• Convergence uniforme : Pour tout n ∈ N∗, la fonction un est dérivable sur R+ et u′n(x) = (1 − 2nx2) e−nx2 .

x

u′n(x)

un

0 1
√

2n +∞
+ 0 −

00

1√
2n

e−1/21√
2n

e−1/2

00

Pour n assez grand, les valeurs de un se situent donc dans l’intervalle [0, π/2] sur lequel la fonction cosinus est
strictement décroissante. On en déduit que, pour n assez grand :

∥fn − f∥∞,R+ = ∥fn − 1∥∞,R+ = sup
x∈R+
∣fn(x) − 1∣ = sup

x∈R+
(1 − fn(x)) = 1 − cos( 1√

2n
e−1/2).

Donc ∥fn − f∥∞,R+ ÐÐÐ→
n→+∞

0 i.e. fn
CUÐÐÐ→

n→+∞
f sur R. (f est la fonction constante sur R égale à 1)

La suite (fn)n converge uniformément sur [0,1] vers la fonction constante f égale à 1. De plus, les fonctions fn sont
continues sur [0,1]. Par suite,

lim
n→+∞

In = lim
n→+∞

= lim
n→+∞

∫
1

0
fn(x)dx = ∫

1

0
f(x)dx = ∫

1

0
1dx = 1.

Corrigé de l’exercice 10. 1. Soit x > 0. On a fn(x) =
nx2 e−nx
(1 − e−x)2

ÐÐÐ→
n→+∞

0 (croissance comparée) donc fn
CSÐÐÐ→

n→+∞
0 sur R∗

+
.

2. On a fn(x) ∼
x→0+

nx2

x2 = n donc lim
x→0+

fn(x) = n et sup
x>0
∣fn(x)∣ ≥ n. Par suite, la convergence de la suite (fn)n ne peut pas

être uniforme sur R∗
+
.

3. La fonction g est continue sur [a,+∞[ et lim
x→+∞

g(x) = 0 donc g est bornée sur [a,+∞[. Par ailleurs, gn(x) = g(x)n e−(n+1)x.
Soit M un majorant de ∣g∣ sur [a,+∞[. On a :

∀x ≥ a, ∀n ∈ N∗, ∣fn(x)∣ ≤Mn e−(n+1)a ÐÐÐ→
n→+∞

0,

donc ∥fn∥∞,[a,+∞[ ÐÐÐ→
n→+∞

0 i.e. fn
CUÐÐÐ→

n→+∞
0 sur [a,+∞[.

Corrigé de l’exercice 11. 1. Soit ε > 0. g est uniformément continue sur F , il existe η > 0 tel que :

∀(y, y′) ∈ F 2, ∥y − y′∥F ≤ η Ô⇒ ∥g(y) − g(y′)∥G ≤ ε.

Comme (fn)n converge uniformément vers f , il existe n0 ∈ N tel que : ∀n ≥ n0, ∀x ∈X, ∥fn(x) − f(x)∥F ≤ η. Ainsi,

∀n ≥ n0, ∀x ∈X, ∥(g ○ fn)(x) − (g ○ f)(x)∥G ≤ ε.

i.e. g ○ fn
CUÐÐÐ→

n→+∞
g ○ f sur X.

2. Considérons, pour n ∈ N∗, x ∈ R, fn(x) = x +
1
n

et g(x) = x2. La fonction g n’est pas uniformément continue sur R. De

plus, fn
CUÐÐÐ→

n→+∞
f sur R où f(x) = x. Par ailleurs,

∀n ∈ N∗, ∀x ∈ R, ∣(g ○ fn)(x) − (g ○ f)(x)∣ = ∣(x +
1
n
)

2
− x2∣ = ∣2x

n
+ 1
n2 ∣.

En particulier, ∀n ∈ N∗, ∣(g ○ fn)(n) − (g ○ f)(n)∣ = 2 + 1
n2 ÐÐÐ→n→+∞

2 ≠ 0 i.e. (g ○ fn)n ne converge pas uniformément vers
g ○ f .

Corrigé de l’exercice 12. 1. Soit x ∈K et (xk)k≥1 une suite d’éléments de K telle que xk ÐÐÐ→
k→+∞

x ∈K. On veut montrer que
f(xk) ÐÐÐ→

k→+∞
f(x).

Comme la suite (fn)n converge simplement vers f , pour tout k ≥ 1, fn(xk) ÐÐÐ→
n→+∞

f(xk) donc par définition,

∀k ≥ 1, ∀ε > 0, ∃Nk ∈ N tel que ∀n ∈ N, n ≥ Nk Ô⇒ ∥fnk
(xk) − f(xk)∥F ≤ ε.
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• Pour ε = 1, il existe φ(1) = N1 ∈ N tel que, ∥fφ(1)(x1) − f(x1)∥F ≤ 1.

• Pour ε = 1
2

, il existe φ(2) =max(N2, φ(1) + 1) > φ(1) tel que, ∥fφ(2)(x2) − f(x2)∥F ≤
1
2

.

• À l’étape k, on prend ε = 1
k

, il existe φ(k) =max(Nk, φ(k − 1) + 1) > φ(k) tel que, ∥fφ(k)(xk) − f(xk)∥F ≤
1
k

.

Ainsi, on construit par récurrence une application φ ∶ NÐ→ N strictement croissante telle que :

∥fφ(k)(xk) − f(xk)∥F ≤
1
k

pour tout k ∈ N∗.

Par hypothèse, on a ∥fφ(k)(xk) − f(x)∥F ÐÐÐ→
k→+∞

0 donc par l’inégalité triangulaire,

∥f(xk) − f(x)∥F ≤ ∥fφ(k)(xk) − f(xk)∥F
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ð→0

+∥fφ(k)(xk) − f(x)∥F
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ð→0

ÐÐÐ→
k→+∞

0.

Par suite, f(xk) ÐÐÐ→
k→+∞

f(x). D’où par la caractérisation séquentielle de la continuité, la fonction f est continue en x choisi
arbitrairement dans K i.e. f est continue sur K.

2. Supposons que la suite (fn)n ne converge pas uniformément vers f sur K donc

∃ε > 0, ∀n ∈ N, ∃N ≥ n, ∃(xn)n ∈KN telle que, ∥fN(xn) − f(xn)∥F ≥ ε.

Fixons un ε > 0.

• Pour n = 1, il existe ψ(1) = N1 ∈ N et x1 ∈K tel que, ∥fψ(1)(x1) − f(x1)∥F ≥ ε.

• Pour n = 2, il existe ψ(2) =max(N2, ψ(1) + 1) > ψ(1) tel que, ∥fψ(2)(x2) − f(x2)∥F ≥ ε.

• À l’étape k, on prend n = k, il existe ψ(k) =max(Nk, ψ(k − 1) + 1) > ψ(k) tel que, ∥fψ(k)(xk) − f(xk)∥F ≥ ε.

Ainsi, on construit par récurrence une application ψ ∶ NÐ→ N strictement croissante et une suite (xk)k≥1 ∈KN telles que :

∥fψ(k)(xk) − f(xk)∥F ≥ ε pour tout k ∈ N∗.

K étant un compact, il existe alors (xθ(k))k≥1 ∈KN une sous-suite de la suite (xk)k≥1 telle que xθ(k) ÐÐÐ→
k→+∞

x ∈K.
Posons

yn = xθ(n) et ρ(n) = ψ(θ(n)).

Par hypothèse, on a : fρ(n)(yn) ÐÐÐ→
n→+∞

f(x). Et par continuité de f , on a aussi, f(yn) ÐÐÐ→
n→+∞

f(x). Il vient alors,

fρ(n)(yn) − f(yn) ÐÐÐ→
n→+∞

f(x) − f(x) = 0

ce qui contredit l’inégalité ∥fψ(k)(xk) − f(xk)∥F ≥ ε. D’où la convergence de la suite (fn)n est uniforme.

Corrigé de l’exercice 13. 1. Puisque fn
CUÐÐÐ→

n→+∞
f et que les fn sont continues, f est continue.

Soit ε > 0. Il existe η > 0 tel que :

∀x ∈X, ∥x − ℓ∥E ≤ η Ô⇒ ∥f(x) − f(ℓ)∥ ≤
ε

2
.

Comme un ÐÐÐ→
n→+∞

ℓ, il existe N1 ∈ N tel que : ∀n ∈ N, n ≥ N1 Ô⇒ ∥un − ℓ∥E ≤ η.

Comme fn
CUÐÐÐ→

n→+∞
f , il existe N2 ∈ N tel que : ∀x ∈X,

∀n ∈ N, n ≥ N2 Ô⇒ ∥fn(x) − f(x)∥ ≤
ε

2
.

Notons N =max(N1,N2), et soit n ∈ N tel que n ≥ N . On a alors σ(n) ≥ n ≥ N1 et τ(n) ≥ n ≥ N2 donc :

∥fσ(n)(uτ(n)) − f(ℓ)∥ ≤ ∥fσ(n)(uτ(n)) − f(uτ(n))∥ + ∥f(uτ(n)) − f(ℓ)∥ ≤
ε

2
+ ε

2
= ε.

D’où fσ(n)(uτ(n)) ÐÐÐ→
n→+∞

f(ℓ).

2. Soit (fn)n une suite de fonctions de R vers R convergeant uniformément vers f .

a. Soit x ∈ R. Puisque fn − f
CUÐÐÐ→

n→+∞
0 et fn(x) ÐÐÐ→

n→+∞
f(x) d’après la question précédente, on a :

fn(fn(x)) − f(fn(x)) = (fn − f)(fn(x)) ÐÐÐ→
n→+∞

0.

Par ailleurs, puisque fn(x) ÐÐÐ→
n→+∞

f(x) et que f est continue (en particulier en f(x)), on a :
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f(fn(x)) − f(f(x)) ÐÐÐ→
n→+∞

0.

On déduit que

∣(fn ○ fn)(x) − (f ○ f)(x)∣ ≤ ∣fn(fn(x)) − f(fn(x))∣ + ∣f(fn(x)) − f(f(x))∣ ÐÐÐ→
n→+∞

0

i.e. (fn ○ fn)(x) ÐÐÐ→
n→+∞

(f ○ f)(x). D’où fn ○ fn
CSÐÐÐ→

n→+∞
f ○ f .

b. Soit ε > 0. Puisque f est uniformément continue sur R, il existe η > 0 tel que η ≤ ε et :

∀(y, y′) ∈ R2, ∣y − y′∣ ≤ η Ô⇒ ∣f(y) − (y′)∣ ≤ ε.

Comme fn
CUÐÐÐ→

n→+∞
f , il existe N ∈ N tel que : ∀n ≥ N, ∀x ∈ R, ∥fn(x) − f(x)∥ ≤ η. Donc

∀n ≥ N, ∀x ∈ R, ∣f(fn(x)) − f(f(x))∣ ≤ ε.

Par ailleurs, ∀n ≥ N, ∀x ∈ R, ∣fn(fn(x)) − f(fn(x))∣ ≤ η ≤ ε. Donc

∀n ≥ N, ∀x ∈ R, ∣(fn ○ fn)(x) − (f ○ f)(x)∣ ≤ ∣fn(fn(x)) − f(fn(x))∣ + ∣f(fn(x)) − f(f(x))∣ ≤ ε + ε = 2ε.

D’où fn ○ fn
CUÐÐÐ→

n→+∞
f ○ f .

3. On suit l’indication donnée, on a

∀n ∈ N∗,∀x ∈ R, ∣(fn ○ fn)(x) − (f ○ f)(x)∣ =
2x2

n2 +
1
n4 +

1
n2

et, en particulier, (fn ○ fn − f ○ f)(n) = 2 + 1
n4 +

1
n2 ÐÐÐ→n→+∞

2 ≠ 0. D’où la suite (fn ○ fn)n ne converge pas uniformément
vers f ○ f .

2 Approximations uniformes

Corrigé de l’exercice 14. L’inégalité de Taylor-Lagrange permet d’écrire :

∀(a, x) ∈ [0, π] , ∣sinx − sina∣ ≤ ∣x − a∣.

On fixe alors un entier n ∈ N∗ et on choisit une subdivision (aj)0≤j≤p de [0, π] de pas inférieur ou égal à 1
n

. (il suffit de

choisir une subdivisio régulière de [0, π] de pas égal à π

p
≤ 1
n

i.e. p = ⌊nπ⌋ + 1)
Ensuite, soit la fonction fn définie sur [0, π] par :

fn(x) =
⎧⎪⎪⎨⎪⎪⎩

sinaj si x ∈ [aj , aj+1[
sinap si x = ap = π.

On a alors, par l’inégalité de Taylor-Lagrange, pour tout x ∈ [0, π] , ∣fn(x) − f(x)∣ ≤
1
n

. Ainsi, fn
CUÐÐÐ→

n→+∞
f .

Corrigé de l’exercice 15. Soit P =
p

∑
k=0

akX
k ∈ C [X]. On a :

∫
b

a
P (t)f(t)dt = ∫

b

a

p

∑
k=0

akt
kf(t)dt =

p

∑
k=0

ak ∫
b

a
tkf(t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0.

Soit ε > 0 et f ∈ C0([a, b] ,C). Par le théorème d’approximation de Weierstrass, il existe φ ∶ [a, b] Ð→ C une fonction
polynomiale telle que ∥f − φ∥∞,[a,b] ≤

ε

b − a
. Donc

∫
b

a
f2(t)dt = ∫

b

a
f2(t)dt − ∫

b

a
φ(t)f(t)dt

= ∫
b

a
f(t)(f(t) − φ(t))dt

≤ ∥f∥∞,[a,b]∥f − φ∥∞,[a,b] ∫
b

a
dt

≤ ε∥f∥∞,[a,b]
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i.e. ∫
b

a
f2(t)dt ≤ ε∥f∥∞,[a,b] pour tout ε > 0 et par suite, ∫

b

a
f2(t)dt = 0. Or la fonction tz→ f2(t) est continue et positive

sur [a, b] donc f est la fonction nulle sur [a, b].

Notons, P0 = 1 et pour tout n ∈ N∗, Pn =
n−1
∏
k=0
(X + k). On a degPn = n donc la suite (Pn)n∈N est une base de C [X]. On

peut écrire alors, pour tout n ∈ N,

tn =
p

∑
k=0

ak,nPk(t) avec ak,n ∈ C.

On a, pour tout n ∈ N, ∫
b

a
tnf(t)dt = ∫

b

a

p

∑
k=0

ak,nPk(t)f(t)dt =
p

∑
k=0

ak,n ∫
b

a
Pk(t)f(t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0. D’après la première question,

f est nulle sur [a, b].

Corrigé de l’exercice 16. 1. Supposons h constante sur [a, b]. Il existe c ∈ R tel que, pour tout t ∈ [a, b] , h(t) = c. On a

∣Jn(h)∣ = ∣∫
b

a
h(t) sin((2n + 1)t

2
)dt∣

= ∣c∫
b

a
sin((2n + 1)t

2
)dt∣

=
RRRRRRRRRRR
[ −2c

2n + 1
cos((2n + 1)t

2
)]
b

a

RRRRRRRRRRR

= ∣ −2c
2n + 1

cos((2n + 1)b
2

) + 2c
2n + 1

cos((2n + 1)a
2

)∣ ≤ 4∣c∣
2n + 1

ÐÐÐ→
n→+∞

0.

Ainsi, la suite (Jn(h))n∈N converge vers 0.
2. Supposons h en escalier sur [a, b]. Il existe (a0, a1, . . . , ap) une subdivision de [a, b] adaptée à h. On a

∣Jn(h)∣ = ∣∫
b

a
h(t) sin((2n + 1)t

2
)dt∣

=
RRRRRRRRRRRRRR

p

∑
j=1
∫

aj

aj−1
h∣]aj−1,aj[

(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

constant=cj

sin((2n + 1)t
2

)dt
RRRRRRRRRRRRRR

≤
p

∑
j=1
∣∫

aj

aj−1
cj sin((2n + 1)t

2
)dt∣ ÐÐÐ→

n→+∞
0 (d’après la première question)

Ainsi, la suite (Jn(h))n∈N converge vers 0.
3. Supposons h continue sur [a, b] et soit ε > 0. Par le théorème d’approximation par des fonctions en escalier, il existe φ ∶

[a, b] Ð→ C en escalier telle que ∥h−φ∥∞,[a,b] ≤
ε

2(b − a)
. D’après la deuxième question, ∫

b

a
φ(t) sin((2n + 1)t

2
)dtÐÐÐ→

n→+∞
0,

donc il existe N ∈ N, tel que : n ≥ N Ô⇒ ∣∫
b

a
φ(t) sin((2n + 1)t

2
)dt∣ ≤ ε

2
. Pour n ≥ N , on a

∣Jn(h)∣ = ∣∫
b

a
h(t) sin((2n + 1)t

2
)dt∣

≤ ∣∫
b

a
(h(t) − φ(t)) sin((2n + 1)t

2
)dt∣ + ∣∫

b

a
φ(t) sin((2n + 1)t

2
)dt∣

≤ ∫
b

a
∣h(t) − φ(t)∣dt + ∣∫

b

a
φ(t) sin((2n + 1)t

2
)dt∣

≤ ∥h − φ∥∞,[a,b] ∫
b

a
dt + ε/2 ≤ ε/2 + ε/2 = ε.

On a montrer que : ∀ε > 0, ∃N ∈ N, tel que ∀n ∈ N, n ≥ N Ô⇒ ∣Jn(h)∣ ≤ ε. Ainsi, la suite (Jn(h))n∈N converge vers 0.
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Corrigé de l’exercice 17. Soit k ∈ N∗. L’application g ∶ [0,1] Ð→ C
y z→ f(y1/k)

est continue sur [0,1]. Par le théorème

d’approximation de Weierstrass, il existe une suite (Pn)n∈N de polynômes à coefficients complexes, telle que Pn
CUÐÐÐ→

n→+∞
g.

En notant, pour tout n ∈ N, An = Pn(Xk), qui est un polynôme à coefficients complexes, on a :

∀n ∈ N, ∀t ∈ [0,1] , ∣An(t) − f(t)∣ = ∣Pn(tk) − g(tk)∣ ≤ ∥Pn − f∥∞,[0,1].

Ainsi, An
CUÐÐÐ→

n→+∞
f sur [0,1].

Corrigé de l’exercice 18. 1. Soit (aj)0≤j≤p des réels deux à deux distincts. En utilisant les polynômes de Lagrange, la fonction
polynôme Pn s’écrit :

∀n ∈ N, Pn(x) =
p

∑
j=0

Pn(aj) ∏
0≤i≤p
i≠j

( x − ai
aj − ai

).

Donc la fonction polynôme Pn est parfaitement déterminée par ses valeurs en les aj .
Soit x ∈ R. Comme Pn

CSÐÐÐ→
n→+∞

f sur R, on fait tendre n vers +∞ dans l’égalité ci-dessus :

f(x) =
p

∑
j=0

f(aj) ∏
0≤i≤p
i≠j

( x − ai
aj − ai

).

La fonction f est donc une fonction polynôme de degré ≤ p.
Montrons ensuite que la convergence est uniforme sur tout segment de R. Soit [a, b] un segment de R. On a :

∀x ∈ [a, b] , ∣f(x) − Pn(x)∣ =
RRRRRRRRRRRRR

p

∑
j=0
(f(aj) − Pn(aj)) ∏

0≤i≤p
i≠j

( x − ai
aj − ai

)
RRRRRRRRRRRRR

≤
p

∑
j=0
∣f(aj) − Pn(aj)∣

RRRRRRRRRRRRR

∏
0≤i≤p
i≠j

( x − ai
aj − ai

)
RRRRRRRRRRRRR

≤
p

∑
j=0
∣f(aj) − Pn(aj)∣Mj ÐÐÐ→

n→+∞
0.

Où on a noté Mj = sup
x∈[a,b]

RRRRRRRRRRRRR

∏
0≤i≤p
i≠j

( x − ai
aj − ai

)
RRRRRRRRRRRRR

qui est bien définie puisque xz→
RRRRRRRRRRRRR

∏
0≤i≤p
i≠j

( x − ai
aj − ai

)
RRRRRRRRRRRRR

est continue sur [a, b].

Ainsi, Pn
CUÐÐÐ→

n→+∞
f sur tout segment de R.

2. Supposons que la convergence de la suite (Pn)n vers f est uniforme sur R. La fonction polynôme Pn − f est donc bornée
sur R. C’est une fonction constante. On en conclut, qu’à partir d’un certain rang N , on a Pn = f + an, et la suite (an)n≥N
est une suite de réels qui converge vers 0.

Corrigé de l’exercice 19. 1. Soit t ∈ [0,1]. On procède par récurrence sur n ∈ N.
Initialisation : Pour n = 0, la propriété est triviale.
Hérédité : Supposons la propriété vraie au rang n et montrons quelle est vraie au rang n + 1. On a :

√
t − Pn+1(t) =

√
t − Pn(t) −

1
2
(t − (Pn(t))

2) = (
√
t − Pn(t)) (1 −

1
2
(
√
t + Pn(t))).

Comme Pn(t) ≤
√
t, on a : 1

2
(
√
t + Pn(t)) ≤

√
t ≤ 1 et donc 0 ≤

√
t − Pn+1(t).

Par ailleurs, comme 0 ≤
√
t − Pn(t) ≤

2
√
t

2 + n
√
t

et que 1 − 1
2
(
√
t + Pn(t)) ≤ 1 − 1

2
√
t (car Pn(t) ≥ 0), on a :

√
t − Pn+1(t) ≤

2
√
t

2 + n
√
t
(1 − 1

2
√
t)

= 2
√
t

2 + (n + 1)
√
t

(2 + (n + 1)
√
t)(2 −

√
t)

2(2 + n
√
t)

= 2
√
t

2 + (n + 1)
√
t

2(2 + n
√
t) − (n + 1)t

2(2 + n
√
t)

≤ 2
√
t

2 + (n + 1)
√
t
.
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Conclusion : par le principe de récurrence, ∀n ∈ N, ∀t ∈ [0,1] , 0 ≤
√
t − Pn(t) ≤

2
√
t

2 + n
√
t
.

2. D’après la première question, ∀n ∈ N, ∀t ∈ [0,1] , 0 ≤
√
t − Pn(t) ≤

2
√
t

2 + n
√
t
≤ 2
n

, donc ∥Pn − f∥∞,[0,1] ≤
2
n
ÐÐÐ→
n→+∞

0.

Ainsi, Pn
CUÐÐÐ→

n→+∞
f sur [0,1].

3. Soient n ∈ N∗ et t ∈ [−1,1]. Notons x = ∣t∣ ∈ [0,1]. On a :

∣φ(t) −Qn(t)∣ = ∣x − (Pn(x))
2∣ = ∣

√
x − Pn(x)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2/n

∣
√
x + Pn(x)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2

≤ 4
n

donc ∥Qn − φ∥∞,[−1,1] ≤
4
n
ÐÐÐ→
n→+∞

0. Ainsi, Qn
CUÐÐÐ→

n→+∞
φ sur [−1,1].

3 Séries de fonctions

Corrigé de l’exercice 20. Supposons la série ∑ fn converge uniformément sur X, donc la suite des restes (Rn)n converge
uniformément vers 0 sur X. Ainsi, fn = Rn−1 −Rn

CUÐÐÐ→
n→+∞

0 sur X.

• On a fn (
1√
n + 1

) = n

n + 1
e−
√
n/
√

n+1 ÐÐÐ→
n→+∞

e−1 ≠ 0, donc la suite (fn)n ne converge pas uniformément ves la fonction

nulle sur [0,+∞[, et par suite, la série ∑ fn ne converge pas uniformément sur [0,+∞[.

• La fonction fn est dérivable sur [0,+∞[ et f ′n(x) = nx e−x
√
n(2 − x

√
n). Pour a > 0 fixé, on a 2√

n
≤ a pour n assez

grand.

x

f ′n(x)

fn

0 2
√
n +∞

+ 0 −

00
fn (

2√
n
)fn (

2√
n
)

00

Donc ∥fn∥∞,[a,+∞[ = ∣fn(a)∣ ÐÐÐ→
n→+∞

0 i.e. la série ∑ fn CN sur [a,+∞[ donc CU sur [a,+∞[.

Corrigé de l’exercice 21. 1. Soit x > 0 fixé. On a fn(x) ∼
+∞

1
n3x2 et la série∑

1
n3x2 converge donc la série∑ fn(x) converge.

Par suite, la série ∑ fn CS sur ]0,+∞[.

2. La fonction xz→ fn(x) n’est pas bornée sur ]0,+∞[ donc la série ∑ fn ne converge pas normalement sur ]0,+∞[.
Soit a > 0. On a ∥fn∥∞,[a,+∞[ = fn(a) et la série ∑ fn(a) converge donc la série ∑ fn CN sur [a,+∞[.

3. Comme la fonction x z→ fn(x) n’est pas bornée sur ]0,+∞[, alors la suite (fn)n ne converge pas uniformément vers 0
sur ]0,+∞[ et par suite, la série ∑ fn ne converge pas uniformément sur ]0,+∞[.
Soit a > 0. La série ∑ fn CN sur [a,+∞[ donc CU sur [a,+∞[.

Corrigé de l’exercice 22. Notons, pour x ∈ [0,+∞[ , n ∈ N∗, un(x) = ln(1 + x

n(1 + x)
).

1. Soit x ∈ [0,+∞[. La suite (un(x))n est décroissante de limite nulle donc par le critère de Leibniz, la série ∑(−1)nun(x)
converge i.e. la série ∑ fn CS sur [0,+∞[.

2. Si x = 0, ∣fn(x)∣ = 0 et si x > 0, ∣fn(x)∣ = ln(1 + x

n(1 + x)
) ∼
+∞

x

n(1 + x)
et la série ∑

x

n(1 + x)
diverge donc la série

∑∣fn(x)∣ diverge. Par suite, la série ∑ fn ne converge pas absolument sur [0,+∞[.
Puisque la série∑ fn ne converge pas absolument sur [0,+∞[, alors la série∑ fn ne converge pas normalement sur [0,+∞[.

3. Soit x ∈ [0,+∞[. On a :

∣Rn(x)∣ = ∣
+∞

∑
k=n+1

(−1)k ln(1 + x

k(1 + x)
)∣ ≤ ln(1 + x

(n + 1)(1 + x)
) ≤ ln(1 + 1

n + 1
) ÐÐÐ→
n→+∞

0

donc la suite des restes (Rn)n converge uniformément vers 0 sur [0,+∞[. Ainsi, la série ∑ fn CU sur [0,+∞[.
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Corrigé de l’exercice 23. Pour tout n ∈ N∗, fn est de classe C1 sur [0,+∞[ et, pour tout x ∈ [0,+∞[ :

f ′n(x) =
xα−1

(x2 + n2)2
((α − 2)x2 + αn2).

• Si α > 2, alors pour tout n ∈ N∗, fn est croissante et fn(x) ÐÐÐ→
x→+∞

+∞, donc fn n’est pas bornée et la suite (fn)n
ne converge pas uniformément vers 0 sur [0,+∞[. Il en résulte que la série ∑ fn ne converge pas uniformément sur
[0,+∞[.

• Si α = 2, alors pour tout n ∈ N∗, ∥fn∥∞,[0,+∞[ = 1. La suite (fn)n ne converge pas uniformément vers 0 sur [0,+∞[.
Il en résulte que la série ∑ fn ne converge pas uniformément sur [0,+∞[.

• Supposons 0 ≤ α < 2. On forme le tableau de variations de fn :

x

f ′n(x)

fn

0
√

α
2−α +∞

+ 0 −

0 ou 1
n20 ou 1
n2

fn (
√

α
2−α)fn (

√
α

2−α)

00

∥fn∥∞,[0,+∞[ = fn (
√

α

2 − α
) = 2 − α

2
( α

2 − α
)
α/2 1

n2−α .

• Si 0 ≤ α < 1, la série ∑
1

n2−α converge donc la série ∑∥fn∥∞,[0,+∞[ converge et par suite, la série ∑ fn CN sur
[0,+∞[ donc CU sur [0,+∞[.

• Supposons 1 ≤ α < 2. Soit x ∈ [0,+∞[ et n ∈ N∗. On a :

Rn(x) =
+∞

∑
k=n+1

xα

x2 + k2 ≥
2n
∑

k=n+1

xα

x2 + k2 ≥ n
xα

x2 + 4n2 .

En particulier, Rn(n) ≥ n
nα

5n2 ≥
1
5

donc ∥Rn∥∞,[0,+∞[ ≥
1
5

. La suite des restes (Rn)n ne converge pas uniformé-
ment vers 0 sur [0,+∞[ et par suite, la série ∑ fn ne converge pas uniformément sur [0,+∞[.

Finalement, la série ∑ fn CU sur [0,+∞[ si, et seulement si, 0 ≤ α < 1

Corrigé de l’exercice 24. 1. Si x = 0, un(x) = 0 et si x ∈ ]0,1] , n2un(x) ÐÐÐ→
n→+∞

0 (croissance comparée) donc un(x) =
+∞

o( 1
n2 )

et la série ∑ fn(x) converge. Par suite, la série ∑ fn CS sur [0,1].

2. Soit n ∈ N∗. Une étude de fonction mène à : ∥fn∥∞,[0,1] =
e−n
nα

et la série ∑
e−n
nα

converge pour tout α ∈ R puisque
e−n
nα
=
+∞

o( 1
n2 ). Ainsi, la série ∑ fn CN sur [0,1] pour tout α ∈ R.

Corrigé de l’exercice 25. 1. Si x ≤ 0, la suite (un(x))n ne tend pas vers 0 quand n tend vers +∞.

Si x > 0, on a un(x) =
+∞

o( 1
n2 ) donc la série ∑un(x) converge. D’où la série ∑un CS sur R∗

+
.

2. Pour tout n ∈ N∗, la fonction un est continue sur R∗
+
.

Soit a > 0 et x ∈ [a,+∞[. On a : ∣un(x)∣ ≤ un(a) et la série ∑un(a) converge donc la série ∑un CN sur [a,+∞[ donc CU
sur [a,+∞[. Par le théorème de continuité sous le signe somme, la fonction S est continue sur R∗

+
.

Soit 0 < x ≤ y, on a un(y) ≤ un(x) donc S(y) =
+∞

∑
n=1

un(y) ≤
+∞

∑
n=1

un(x) = S(x) i.e. S est décroissante sur R∗
+
.

3. ∀n ∈ N∗, un(x) ÐÐÐ→
x→+∞

0 et la série∑un CU sur [1,+∞[ donc par le théorème de permutation lim et somme, on obtient :
lim
x→+∞

S(x) = 0.

4. Montrons que lim
x→+∞

ex S(x) = 1. Pour n ∈ N∗ et x > 0, on pose vn(x) = ex un(x). On a :

∀n ∈ N∗, vn(x) ÐÐÐ→
x→+∞

ℓn =
⎧⎪⎪⎨⎪⎪⎩

1 si n = 1
0 si n ≥ 2

De plus, ∥vn∥∞,[1,+∞[ = vn(1) = e1−
√
n puisque vn est décroissante et positive sur [1,+∞[. Or la série ∑ vn(1) converge car

e1−
√
n =
+∞

o( 1
n2 ) donc la série ∑ vn CN sur [1,+∞[ donc CU sur [1,+∞[. Par le théorème d’interversion somme limite, on

obtient :
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lim
x→+∞

ex S(x) = lim
x→+∞

+∞

∑
n=1

vn(x) =
+∞

∑
n=1

ℓn = 1.

D’où : S(x) ∼
x→+∞

e−x.

Corrigé de l’exercice 26. On pose, pour z ∈ C ∖ {0,−1,−2, . . .} et n ∈ N, fn(z) =
(−1)n
n!

1
n + z

.

• Chaque fn est définie et continue sur C ∖ {0,−1,−2, . . .}.

• Soit K un compact de C ∖ {0,−1,−2, . . .} et z ∈K. Il existe α > 0 tel que ∀z ∈K, ∣z∣ ≤ α donc

∀z ∈K, ∀n > α, ∣fn(z)∣ =
1
n!

1
∣n + z∣

≤ 1
n!

1
n − ∣z∣

≤ 1
n!

1
n − α

.

La série ∑
1
n!

1
n − α

est convergente (règle de d’Alembert) par suite, la série ∑ fn CN sur K donc CU sur K.

Par le théorème de continuité, l’application z z→
+∞

∑
n=0

(−1)n
n!

1
n + z

est définie et continue sur C ∖ {0,−1,−2, . . .}.

Corrigé de l’exercice 27. 1. Soit x ∈ [0,+∞[. La suite (e−nx
n
)
n≥1

est décroissante de limite nulle, donc par le critère de

Leibniz, la série ∑un(x) converge et la série ∑un CS sur [0,+∞[.

Soit x ∈ [0,+∞[ et n ∈ N∗. On a :

∣Rn(x)∣ = ∣
+∞

∑
k=n+1

(−1)k+1

k
e−kx∣ ≤ e−(n+1)x

n
≤ 1
n
ÐÐÐ→
n→+∞

0

donc Rn
CUÐÐÐ→

n→+∞
0 sur [0,+∞[ et la série ∑un CU sur [0,+∞[.

2. Pour tout n ∈ N∗, xz→ un(x) est continue sur [0,+∞[ et la série ∑un CU sur [0,+∞[. Par le théorème de continuité,
g est continue sur [0,+∞[.
3. Pour tout n ∈ N∗, xz→ un(x) est de classe C1 sur ]0,+∞[ et u′n(x) = (−1)n e−nx.
Soit a > 0. On a ∥u′n∥∞,[a,+∞[ = e−na et la série ∑ e−na converge (série géométrique) donc la série ∑u′n CN sur [a,+∞[
donc CU sur [a,+∞[. Ainsi, la fonction g est de classe C1 sur ]0,+∞[ et, pour tout x > 0 :

g′(x) =
+∞

∑
n=1
(−1)n e−nx =

+∞

∑
n=1
(− e−x)n = − e−x 1

1 + e−x
= − e−x

1 + e−x
.

4. Soit x > 0. On a :

g(x) = g(0) + ∫
x

0
g′(t)dt = ln 2 + [ln(1 + e−t)]

x

0
= ln 2 + ln(1 + e−x) − ln 2 = ln(1 + e−x)

et pour x = 0, l’égalité est vérifiée. D’où ∀x ∈ [0,+∞[ , g(x) = ln(1 + e−x).

Corrigé de l’exercice 28. 1. Convergence simple : Soit x ∈ ]1,+∞[. On a :

fn(x) =
n→+∞

(−1)n
nx

(1 + (−1)n
nx
)
−1

=
n→+∞

(−1)n
nx

+O ( 1
n2 ).

Les séries ∑
(−1)n
nx

et ∑O ( 1
n2 ) convergent donc la série ∑ fn(x) converge i.e. la série ∑ fn CS sur ]1,+∞[.

Convergence absolue : Soit x ∈ ]1,+∞[. On a : ∣fn(x)∣ ∼
n→+∞

1
nx

et la série ∑
1
nx

diverge donc la série ∑ fn ne converge
pas absolument sur ]1,+∞[.
Convergence normale : Comme la série ∑ fn ne converge pas absolument sur ]1,+∞[ alors la série ∑ fn ne converge pas
normalement sur ]1,+∞[.
Convergence uniforme : Comme la série ∑ fn ne converge pas absolument sur ]1,+∞[ alors la série ∑ fn ne converge pas
uniformément sur ]1,+∞[.
2. Soit x ∈ [2,+∞[. On écrit

S(x) = 1 + (
+∞

∑
n=1

(−1)n
n
) 1
x
+
+∞

∑
n=1

−1
nx(nx + (−1)n)

= 1 − ln 2
x
+
+∞

∑
n=1

−1
nx(nx + (−1)n)

.

Or ∀x ∈ [2,+∞[ , ∀n ∈ N∗, nx + (−1)n ≥ nx − 1 ≥ nx
2

, donc
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∣
+∞

∑
n=1

−1
nx(nx + (−1)n) ∣ ≤

+∞

∑
n=1

2
(nx)2

= (
+∞

∑
n=1

2
n2 )

1
x2 .

D’où : S(x) =
x→+∞

1 − ln 2
x
+ o( 1

x
).

Corrigé de l’exercice 29. Pour tout n ∈ N∗, la fonction un est continue sur R et ∣un(x)∣ ≤
π

2n2 pour tout x ∈ R. Donc

∀n ∈ N∗, ∥un∥∞,R ≤
π

2n2 et la série ∑
π

2n2 converge

i.e. la série ∑un CN sur R donc CU sur R. D’où par le théorème de continuité sous signe somme, la fonction S est définie
et continue sur R.
Montrons que S est de classe C1 sur R∗. On a un est une fonction impaire, il suffit donc de restreindre l’étude à R∗

+
.

• Chaque un est de classe C1 sur R∗
+

et u′n(x) =
1

n(1 + n2x2)
.

• ∑un CS sur R∗
+
.

• Soit a > 0 et x ∈ [a,+∞[. On a

∥u′n∥∞,[a,+∞[ ≤
1

n(1 + n2a2)
et la série ∑

1
n(1 + n2a2)

converge

i.e. la série ∑u′n CN sur [a,+∞[ donc CU sur [a,+∞[.

D’où par le théorème de dérivation sous signe somme, la fonction S est de classe C1 sur R∗
+
. Par imparité, elle l’est sur R∗.

Corrigé de l’exercice 30. Soit N ∈ N∗. On a :
N

∑
n=0

(−1)n
na + 1

=
N

∑
n=0
∫

1

0
(−ta)ndt = ∫

1

0
(
N

∑
n=0
(−ta)n)dt = ∫

1

0

1 − (−ta)N+1

1 + ta
dt = ∫

1

0

dt
1 + ta

+ (−1)N ∫
1

0

ta(N+1)

1 + ta
dt.

Or ∣(−1)N ∫
1

0

ta(N+1)

1 + ta
dt∣ ≤ ∫

1

0
ta(N+1)dt = 1

a(N + 1) + 1
ÐÐÐÐ→
N→+∞

0. Par suite,

+∞

∑
n=0

(−1)n
na + 1

= lim
N→+∞

N

∑
n=0

(−1)n
na + 1

= ∫
1

0

dt
1 + ta

.

Corrigé de l’exercice 31. 1. Soit r ∈ ]−1,1[. On note, pour n ∈ N∗ et x ∈ R, fn(x) =
rn cos(nx)

n
. Chaque fn est continue sur

R et

∀n ∈ N∗, ∀x ∈ R, ∣fn(x)∣ ≤
∣r∣n

n
≤∣r∣n et la série ∑∣r∣n converge

donc la série∑ fn CN sur R donc CU sur R. Par le théorème de continuité, la fonction f est bien définie et continue sur R.

2. Soit x ∈ R. On note gn(r) =
rn cos(nx)

n
.

• Chaque gn est de classe C1 sur ]−1,1[ et g′n(r) = rn−1 cos(nx).

• Pour r ∈ ]−1,1[ et n ∈ N∗, on a : ∣gn(r)∣ ≤∣r∣n et la série ∑∣r∣n converge donc la série ∑ fn CS sur ]−1,1[.

• Soit b ∈ ]0,1[. On a :

∥g′n∥∞,[−b,b] ≤ bn−1 et la série ∑ bn−1 converge

donc la série ∑ g′n CN sur [−b, b] donc CU sur [−b, b].

Par le théorème de dérivation sous le signe somme, la fonction g est de classe C1 sur ]−1,1[ et, pour tout r ∈ ]−1,1[,

g′(r) =
+∞

∑
n=1

rn−1 cos(nx) = Re(
+∞

∑
n=1

rn−1(eix)n)

= Re( eix
1 − r eix

)

= Re
⎛
⎝

eix(1 − r e−ix)
(1 − r eix)(1 − r e−ix)

⎞
⎠

= Re( eix −r
1 − 2r cosx + r2 ) =

cosx − r
1 − 2r cosx + r2 .
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Ainsi, pour tout r ∈ ]−1,1[ , g(r) = g(0)
±
=0

+∫
r

0

cosx − t
1 − 2t cosx + t2

dt = [−1
2

ln(1 − 2t cosx + t2)]
t=r

0
= −1

2
ln(1 − 2r cosx + r2).

3. Fixons r ∈ ]−1,1[. On a pour tout x ∈ R,

f(x) = −1
2

ln(1 − 2r cosx + r2) =
+∞

∑
n=1

rn cos(nx)
n

.

D’après la première question, on a convergence normale sur R de la série ∑ fn, donc sur [−π,π]. On peut donc écrire

−1
2 ∫

π

−π
ln(1 − 2r cosx + r2)dx =

+∞

∑
n=1
(∫

π

−π

rn cos(nx)
n

dx).

Or, pour n ∈ N∗, ∫
π

−π
cos(nx)dx = [ sin(nx)

n
]
π

−π
= 0. Finalement, ∫

π

−π
ln(1 − 2r cosx + r2)dx = 0.

Corrigé de l’exercice 32. 1. fn(0) = 0 donc ∑ fn(0) converge. Pour x > 0, ∣fn(x)∣ ≤
x

ln 2
(e−x)n et la série ∑(e−x)n converge

car e−x ∈ ]0,1[. Donc la série ∑ fn CS sur [0,+∞[.

2. On étudie les variations de fn sur [0,+∞[. Pour tout x ≥ 0, on a f ′n(x) =
1 − nx
lnn

e−nx.

x

f ′n(x)

fn

0 1
n

+∞
+ 0 −

00

fn ( 1
n
)fn ( 1

n
)

00

∥fn∥
∞,[0,+∞[

= ∣fn (
1
n
)∣ = e−1

n lnn
. La série∑

e−1

n lnn
est divergente et la série∑ fn ne converge pas normalement sur [0,+∞[.

Soit a > 0. Pour n assez grand, 1
n
≤ a donc

∥fn∥
∞,[a,+∞[

= ∣fn(a)∣ et la série ∑∣fn(a)∣ converge,

donc la série ∑ fn CN sur [a,+∞[.
3. Soit x ∈ [0,+∞[. Pour x = 0, Rn(0) = 0 et pour x > 0, on a

∣Rn(x)∣ = ∣
+∞

∑
k=n+1

fk(x)∣ ≤
1

ln(n + 1)
x e−(n+1)x

1 − e−x
≤ 1

ln(n + 1)
x

ex −1
²
=φ(x)

≤ g(x)
ln(n + 1)

La fonction φ est continue sur ]0,+∞[ et admet une limite finie en 0 et une limite finie en +∞, donc φ est bornée sur
]0,+∞[. Soit alors M = ∥φ∥∞,]0,+∞[. On a donc

∀x ∈ [0,+∞[ , ∣Rn(x)∣ ≤
M

ln(n + 1)
ÐÐÐ→
n→+∞

0.

D’où la série ∑ fn CU sur [0,+∞[.
4. Chaque fn, n ≥ 2 est continue sur [0,+∞[ et la série ∑ fn CU sur [0,+∞[ donc la fonction f est continue sur [0,+∞[.

Chaque fn, n ≥ 2 est de classe C1 sur ]0,+∞[ et f ′n(x) =
1 − nx
lnn

e−nx. Comme f ′n(0) =
1

lnn
, la série∑ f ′n(0) diverge donc f

n’est pas dérivable en 0 à droite.

Soit [a, b] ⊂ ]0,+∞[. On a :

∀x ∈ [a, b] , ∀n ≥ 2, ∣f ′n(x)∣ ≤
1 + nb
lnn

e−na

et la série ∑
1 + nb
lnn

e−na converge puisque n2 1 + nb
lnn

e−na ÐÐÐ→
n→+∞

0 (croissance comparée). Donc la série ∑ f ′n CN sur [a, b]
donc CU sur [a, b]. Par le théorème de dérivation sous le signe somme, la fonction f est de classe C1 sur ]0,+∞[.
5. Soit k ∈ N. En appliquant la même méthode que pour la convergence uniforme, on peut considérer la série ∑ gn avec

gn(x) = xkfn(x). On majore alors uniformément le reste de cette série par Mk

ln(n + 1)
où Mk est un majorant sur ]0,+∞[ de

φk ∶ x z→ xkφ(x) (il existe pour les mêmes raisons, à savoir fonction continue avec des limites aux bornes de l’intervalle).
On obtient alors la convergence uniforme sur [0,+∞[ de la série de fonctions. Et puisque lim

x→+∞
xkfn(x) = 0 pour tout n ≥ 2,

on peut permuter somme et limite et obtenir lim
x→+∞

xkf(x) = 0.
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Corrigé de l’exercice 33. On note, pour n ∈ N∗ et x ∈ R, fn(x) = (−1)n n

n2 + x2 .
• Chaque fn est de classe C∞ sur R et

∀k ∈ N∗, f
(k)
n (x) = (−1)n ( i

2
( 1
x + in

− 1
x − in

))
(k)

= (−1)n i
2
( (−1)kk!
(x + in)k+1 −

(−1)kk!
(x − in)k+1 )

= i
2
(−1)n+kk!( 1

(x + in)k+1 −
1

(x − in)k+1 ) .

• Soit x ∈ R. La fonction t z→ t

t2 + x2 est décroissante sur [∣x∣,+∞[ donc la suite ( n

n2 + x2 )
n≥∣x∣

est décroissante de

limite nulle. Par le critère de Leibniz, la série ∑ fn(x) converge. Ainsi, la série ∑ fn CS sur R.

• Soit k ∈ N∗ et x ∈ R. On a : ∣f (k)n (x)∣ ≤
k!
nk+1 donc

∥f (k)n ∥∞,R ≤
k!
nk+1 et la série ∑

n≥1

k!
nk+1 converge (k ≥ 1)

Par suite, la série ∑ f (k)n CN sur R donc CU sur R.
Finalement, la fonction f est de classe C∞ sur R.

Corrigé de l’exercice 34. 1. Soit x ∈ [0,+∞[. On a ∣un(x)∣ ≤
1

1 + n2 et la série ∑
1

1 + n2 converge donc la série ∑un CN sur
[0,+∞[.
2. Soit a > 0 et x ∈ [a,+∞[. On a :

∣nun(x)∣ ≤
n e−na
1 + n2 et ∣n2un(x)∣ ≤

n2 e−na
1 + n2

Les séries ∑
n e−na
1 + n2 et ∑

n2 e−na
1 + n2 convergent puisque n e−na

1 + n2 =+∞ o( 1
n2 ) et n2 e−na

1 + n2 =
+∞

o( 1
n2 ), donc les séries ∑

n≥1
nun et

∑
n≥1

n2un CN sur [a,+∞[.

3. Chaque un est continue sur [0,+∞[ et la série ∑un CU sur [0,+∞[, donc par le théorème de continuité sous le signe
somme, la fonction u est continue sur [0,+∞[.

4. On a un(x) ÐÐÐ→
x→+∞

0 pour tout n ∈ N∗ et la série ∑un CU sur [0,+∞[, donc lim
x→+∞

u(x) =
+∞

∑
n=1

lim
x→+∞

un(x) = 0.

5. Chaque un est de classe C2 sur ]0,+∞[ et u′n(x) = −nun(x), u′′n(x) = n2un(x).

• La série ∑un CS sur ]0,+∞[ et la série ∑u′n CS sur ]0,+∞[ puisque u′n(x) =
n e−nx
1 + n2 =+∞ o(

1
n2 ) pour tout x > 0.

• Pour tout a > 0, la série ∑u′′n CN sur [a,+∞[ donc CU sur [a,+∞[.
Donc la fonction u est de classe C2 sur ]0,+∞[ et on a :

∀x > 0, u′′(x) =
+∞

∑
n=1

n2 e−nx
1 + n2 .

6. Soit x > 0. On a :

u′′(x) =
+∞

∑
n=1

n2un(x) =
+∞

∑
n=1

(1 + n2 − 1) e−nx
1 + n2 = −

+∞

∑
n=1

un(x) +
+∞

∑
n=1
(e−x)n = −u(x) + e−x

1 − e−x

donc u′′(x) + u(x) = e−x
1 − e−x

pour tout x > 0.

Corrigé de l’exercice 35. 1. Une étude de fonction montre que ∥gn∥∞,]0,+∞[ = gn(n) =
1

2n
et la série ∑

1
2n

diverge donc la
série ∑ gn ne converge pas normalement sur ]0,+∞[.
2. Soit x > 0. La fonction tz→ x

t2 + x2 est décroissante sur [0,+∞[ donc

∀k ∈ N∗, ∫
k+1

k

x

t2 + x2 dt ≤ x

k2 + x2 ≤ ∫
k

k−1

x

t2 + x2 dt.
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En sommant ces inégalités, on obtient : ∫
n+1

1

x

t2 + x2 dt ≤
n

∑
k=1

x

k2 + x2 ≤ ∫
n

0

x

t2 + x2 dt.

3. On fait tendre n vers +∞ dans l’inégalité précédente, on obtient :

∫
+∞

1

x

t2 + x2 dt ≤
+∞

∑
n=1

x

n2 + x2 ≤ ∫
+∞

0

x

t2 + x2 dt.

Or ∫
+∞

1

x

t2 + x2 dt = [arctan( t
x
)]
+∞

1
= π

2
− arctan( 1

x
) et ∫

n

0

x

t2 + x2 dt = π
2

. Ainsi, pour tout x non nul,

π

2
− arctan 1

x
≤
+∞

∑
n=1

gn(x) ≤
π

2
.

4. On fait tendre x vers +∞ dans l’inégalité précédente, on obtient : lim
x→+∞

+∞

∑
n=1

gn(x) =
π

2
. Si la série de fonctions ∑

n≥1
gn

converge uniformément sur ]0,+∞[ alors : π
2
= lim
x→+∞

+∞

∑
n=1

gn(x) =
+∞

∑
n=1

lim
x→+∞

gn(x) = 0 ce qui est absurde. Ainsi, La série de

fonctions ∑
n≥1

gn ne converge pas uniformément sur ]0,+∞[.
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